/*++ Copyright (c) 2017 Microsoft Corporation Module Name: Abstract: Author: Nikolaj Bjorner (nbjorner) Lev Nachmanson (levnach) Revision History: --*/ #pragma once #include #include #include #include #include #include #include #include "math/lp/bound_analyzer_on_row.h" #include "math/lp/implied_bound.h" #include "math/lp/int_solver.h" #include "math/lp/lar_constraints.h" #include "math/lp/lar_core_solver.h" #include "math/lp/lp_bound_propagator.h" #include "math/lp/lp_primal_core_solver.h" #include "math/lp/lp_types.h" #include "math/lp/nra_solver.h" #include "math/lp/numeric_pair.h" #include "math/lp/random_updater.h" #include "math/lp/stacked_vector.h" #include "util/buffer.h" #include "util/debug.h" #include "util/stacked_value.h" #include "util/vector.h" #include "util/trail.h" namespace lp { class int_branch; class int_solver; class lar_solver : public column_namer { struct term_hasher { std::size_t operator()(const lar_term& t) const { using std::hash; using std::size_t; using std::string; size_t seed = 0; int i = 0; for (const auto p : t) { hash_combine(seed, (unsigned)p.j()); hash_combine(seed, p.coeff()); if (i++ > 10) break; } return seed; } }; struct term_comparer { bool operator()(const lar_term& a, const lar_term& b) const { return a == b; } }; //////////////////// fields ////////////////////////// trail_stack m_trail; lp_settings m_settings; lp_status m_status = lp_status::UNKNOWN; stacked_value m_simplex_strategy; // such can be found at the initialization step: u < l lpvar m_crossed_bounds_column = null_lpvar; u_dependency* m_crossed_bounds_deps = nullptr; lar_core_solver m_mpq_lar_core_solver; int_solver* m_int_solver = nullptr; bool m_need_register_terms = false; var_register m_var_register; svector m_columns; constraint_set m_constraints; // the set of column indices j such that bounds have changed for j indexed_uint_set m_columns_with_changed_bounds; indexed_uint_set m_touched_rows; unsigned_vector m_row_bounds_to_replay; u_dependency_manager m_dependencies; svector m_tmp_dependencies; indexed_uint_set m_basic_columns_with_changed_cost; // these are basic columns with the value changed, so the corresponding row in the tableau // does not sum to zero anymore indexed_uint_set m_incorrect_columns; // copy of m_r_solver.inf_heap() unsigned_vector m_inf_index_copy; vector m_terms; indexed_vector m_column_buffer; std::unordered_map, term_hasher, term_comparer> m_normalized_terms_to_columns; vector m_backup_x; stacked_vector m_usage_in_terms; // ((x[j], is_int(j))->j) for fixed j, used in equalities propagation // maps values to integral fixed vars map, default_eq> m_fixed_var_table_int; // maps values to non-integral fixed vars map, default_eq> m_fixed_var_table_real; // the set of fixed variables which are also base variables indexed_uint_set m_fixed_base_var_set; // end of fields ////////////////// nested structs ///////////////////////// struct undo_add_column; ////////////////// methods //////////////////////////////// static bool valid_index(unsigned j) { return static_cast(j) >= 0; } bool row_has_a_big_num(unsigned i) const; // init region void register_new_external_var(unsigned ext_v, bool is_int); bool term_is_int(const lar_term* t) const; bool term_is_int(const vector>& coeffs) const; void add_non_basic_var_to_core_fields(unsigned ext_j, bool is_int); void add_new_var_to_core_fields_for_mpq(bool register_in_basis); mpq adjust_bound_for_int(lpvar j, lconstraint_kind&, const mpq&); // terms bool all_vars_are_registered(const vector>& coeffs); bool term_coeffs_are_ok(const vector>& coeffs); void add_row_from_term_no_constraint(lar_term* term, unsigned term_ext_index); void add_basic_var_to_core_fields(); bool compare_values(impq const& lhs, lconstraint_kind k, const mpq& rhs); inline void clear_columns_with_changed_bounds() { m_columns_with_changed_bounds.reset(); } public: const auto& columns_with_changed_bounds() const { return m_columns_with_changed_bounds; } void insert_to_columns_with_changed_bounds(unsigned j); const u_dependency* crossed_bounds_deps() const { return m_crossed_bounds_deps;} u_dependency*& crossed_bounds_deps() { return m_crossed_bounds_deps;} lpvar crossed_bounds_column() const { return m_crossed_bounds_column; } lpvar& crossed_bounds_column() { return m_crossed_bounds_column; } private: bool validate_bound(lpvar j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep); void add_dep_constraints_to_solver(lar_solver& ls, u_dependency* dep); void add_bound_negation_to_solver(lar_solver& ls, lpvar j, lconstraint_kind kind, const mpq& right_side); void add_constraint_to_validate(lar_solver& ls, constraint_index ci); bool m_validate_blocker = false; void update_column_type_and_bound_check_on_equal(unsigned j, const mpq& right_side, constraint_index ci, unsigned&); void update_column_type_and_bound(unsigned j, const mpq& right_side, constraint_index ci); public: bool validate_blocker() const { return m_validate_blocker; } bool & validate_blocker() { return m_validate_blocker; } void update_column_type_and_bound(unsigned j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep); private: void require_nbasis_sort() { m_mpq_lar_core_solver.m_r_solver.m_nbasis_sort_counter = 0; } void update_column_type_and_bound_with_ub(lpvar j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep); void update_column_type_and_bound_with_no_ub(lpvar j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep); void update_bound_with_ub_lb(lpvar j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep); void update_bound_with_no_ub_lb(lpvar j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep); void update_bound_with_ub_no_lb(lpvar j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep); void update_bound_with_no_ub_no_lb(lpvar j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep); void register_in_fixed_var_table(unsigned, unsigned&); void remove_non_fixed_from_fixed_var_table(); constraint_index add_var_bound_on_constraint_for_term(lpvar j, lconstraint_kind kind, const mpq& right_side); void set_crossed_bounds_column_and_deps(unsigned j, bool lower_bound, u_dependency* dep); unsigned row_of_basic_column(unsigned) const; bool sizes_are_correct() const; bool implied_bound_is_correctly_explained(implied_bound const& be, const vector>& explanation) const; template unsigned calculate_implied_bounds_for_row(unsigned row_index, lp_bound_propagator& bp) { if (A_r().m_rows[row_index].size() > settings().max_row_length_for_bound_propagation || row_has_a_big_num(row_index)) return 0; return bound_analyzer_on_row, lp_bound_propagator>::analyze_row( A_r().m_rows[row_index], null_ci, zero_of_type>(), row_index, bp); } static void clean_popped_elements_for_heap(unsigned n, lpvar_heap& set); static void clean_popped_elements(unsigned n, indexed_uint_set& set); bool maximize_term_on_tableau(const lar_term& term, impq& term_max); bool costs_are_zeros_for_r_solver() const; bool reduced_costs_are_zeroes_for_r_solver() const; void set_costs_to_zero(const lar_term& term); void prepare_costs_for_r_solver(const lar_term& term); bool maximize_term_on_feasible_r_solver(lar_term& term, impq& term_max, vector>* max_coeffs); u_dependency* get_dependencies_of_maximum(const vector>& max_coeffs); void pop_core_solver_params(); void pop_core_solver_params(unsigned k); void set_upper_bound_witness(lpvar j, u_dependency* ci); void set_lower_bound_witness(lpvar j, u_dependency* ci); void substitute_terms_in_linear_expression(const vector>& left_side_with_terms, vector>& left_side) const; bool use_tableau_costs() const; bool tableau_with_costs() const; bool costs_are_used() const; void change_basic_columns_dependend_on_a_given_nb_column(unsigned j, const numeric_pair& delta); void update_x_and_inf_costs_for_column_with_changed_bounds(unsigned j); void add_touched_row(unsigned rid); void detect_rows_with_changed_bounds_for_column(unsigned j); void detect_rows_with_changed_bounds(); void update_x_and_inf_costs_for_columns_with_changed_bounds_tableau(); void solve_with_core_solver(); numeric_pair get_basic_var_value_from_row(unsigned i); bool all_constrained_variables_are_registered(const vector>& left_side); bool all_constraints_hold() const; bool constraint_holds(const lar_base_constraint& constr, std::unordered_map& var_map) const; static void register_in_map(std::unordered_map& coeffs, const lar_base_constraint& cn, const mpq& a); static void register_monoid_in_map(std::unordered_map& coeffs, const mpq& a, unsigned j); bool the_left_sides_sum_to_zero(const vector>& evidence) const; bool explanation_is_correct(explanation&) const; bool inf_explanation_is_correct() const; mpq sum_of_right_sides_of_explanation(explanation&) const; void get_infeasibility_explanation_for_inf_sign( explanation& exp, const vector>& inf_row, int inf_sign) const; mpq get_left_side_val(const lar_base_constraint& cns, const std::unordered_map& var_map) const; void fill_var_set_for_random_update(unsigned sz, lpvar const* vars, vector& column_list); bool column_represents_row_in_tableau(unsigned j); void make_sure_that_the_bottom_right_elem_not_zero_in_tableau(unsigned i, unsigned j); void remove_last_row_and_column_from_tableau(unsigned j); void remove_last_column_from_A(); void remove_last_column_from_basis_tableau(unsigned j); void remove_last_column_from_tableau(); void clean_inf_heap_of_r_solver_after_pop(); inline bool column_value_is_integer(unsigned j) const { return get_column_value(j).is_int(); } bool model_is_int_feasible() const; bool bound_is_integer_for_integer_column(unsigned j, const mpq& right_side) const; inline lar_core_solver& get_core_solver() { return m_mpq_lar_core_solver; } lpvar to_column(unsigned ext_j) const; void fix_terms_with_rounded_columns(); bool remove_from_basis(unsigned); lar_term get_term_to_maximize(unsigned ext_j) const; bool sum_first_coords(const lar_term& t, mpq& val) const; void register_normalized_term(const lar_term&, lpvar); void deregister_normalized_term(const lar_term&); mutable std::unordered_set m_set_of_different_pairs; mutable std::unordered_set m_set_of_different_singles; mutable mpq m_delta; public: u_dependency* find_improved_bound(lpvar j, bool is_lower, mpq& bound); std::ostream& print_explanation( std::ostream& out, const explanation& exp, std::function var_str = [](lpvar j) { return std::string("j") + T_to_string(j); }) const; // this function just looks at the status bool is_feasible() const; const map, default_eq>& fixed_var_table_int() const { return m_fixed_var_table_int; } const map, default_eq>& fixed_var_table_real() const { return m_fixed_var_table_real; } map, default_eq>& fixed_var_table_real() { return m_fixed_var_table_real; } bool find_in_fixed_tables(const rational& mpq, bool is_int, unsigned& j) const { return is_int ? fixed_var_table_int().find(mpq, j) : fixed_var_table_real().find(mpq, j); } template void remove_non_fixed_from_table(T&); bool inside_bounds(lpvar, const impq&) const; inline void set_column_value(unsigned j, const impq& v) { m_mpq_lar_core_solver.m_r_solver.update_x(j, v); } inline void set_column_value_test(unsigned j, const impq& v) { set_column_value(j, v); } lpvar add_named_var(unsigned ext_j, bool is_integer, const std::string&); lp_status maximize_term(unsigned j_or_term, impq& term_max); inline core_solver_pretty_printer pp(std::ostream& out) const { return core_solver_pretty_printer(m_mpq_lar_core_solver.m_r_solver, out); } void get_infeasibility_explanation(explanation&) const; inline void backup_x() { m_backup_x = m_mpq_lar_core_solver.m_r_x; } inline void restore_x() { m_mpq_lar_core_solver.m_r_x = m_backup_x; } std::function m_fixed_var_eh; template void explain_implied_bound(const implied_bound& ib, lp_bound_propagator& bp) { u_dependency* dep = ib.explain_implied(); for (auto ci : flatten(dep)) bp.consume(mpq(1), ci); // TODO: flatten should provide the coefficients /* if (ib.m_is_monic) { NOT_IMPLEMENTED_YET(); } else { unsigned i = ib.m_row_or_term_index; int bound_sign = (ib.m_is_lower_bound ? 1 : -1); int j_sign = (ib.m_coeff_before_j_is_pos ? 1 : -1) * bound_sign; unsigned bound_j = ib.m_j; if (tv::is_term(bound_j)) bound_j = m_var_register.external_to_local(bound_j); for (auto const& r : get_row(i)) { unsigned j = r.var(); if (j == bound_j) continue; mpq const& a = r.coeff(); int a_sign = is_pos(a) ? 1 : -1; int sign = j_sign * a_sign; const column& ul = m_columns[j]; auto* witness = sign > 0 ? ul.upper_bound_witness() : ul.lower_bound_witness(); lp_assert(witness); for (auto ci : flatten(witness)) bp.consume(a, ci); } }*/ } void set_value_for_nbasic_column(unsigned j, const impq& new_val); void remove_fixed_vars_from_base(); /** * \brief set j to basic (if not already basic) * return the rest of the row as t comprising of non-fixed variables and coeff as sum of fixed variables. * return false if j has no rows. */ struct solution { unsigned j; lar_term t; }; void solve_for(unsigned_vector const& js, vector& sol); void check_fixed(unsigned j); void solve_for(unsigned j, uint_set& tabu, vector& sol); inline unsigned get_base_column_in_row(unsigned row_index) const { return m_mpq_lar_core_solver.m_r_solver.get_base_column_in_row(row_index); } #ifdef Z3DEBUG bool fixed_base_removed_correctly() const; #endif constraint_index mk_var_bound(lpvar j, lconstraint_kind kind, const mpq& right_side); void activate_check_on_equal(constraint_index, lpvar&); void activate(constraint_index); void random_update(unsigned sz, lpvar const* vars); void add_column_rows_to_touched_rows(lpvar j); template void propagate_bounds_for_touched_rows(lp_bound_propagator& bp) { if (settings().propagate_eqs()) { if (settings().random_next() % 10 == 0) remove_fixed_vars_from_base(); bp.clear_for_eq(); for (unsigned i : m_touched_rows) { unsigned offset_eqs = stats().m_offset_eqs; bp.cheap_eq_on_nbase(i); if (settings().get_cancel_flag()) return; if (stats().m_offset_eqs > offset_eqs) m_row_bounds_to_replay.push_back(i); } } for (unsigned i : m_touched_rows) { calculate_implied_bounds_for_row(i, bp); if (settings().get_cancel_flag()) return; } m_touched_rows.reset(); } void collect_more_rows_for_lp_propagation(); template void check_missed_propagations(lp_bound_propagator& bp) { for (unsigned i = 0; i < A_r().row_count(); i++) if (!m_touched_rows.contains(i)) if (0 < calculate_implied_bounds_for_row(i, bp)) { verbose_stream() << i << ": " << get_row(i) << "\n"; } } void register_add_term_delegate(const std::function&); void register_update_column_bound_delegate(const std::function&); private: std_vector> m_add_term_callbacks; std_vector> m_update_column_bound_callbacks; public: bool external_is_used(unsigned) const; void pop(unsigned k); unsigned num_scopes() const { return m_trail.get_num_scopes(); } trail_stack& trail() { return m_trail; } bool compare_values(lpvar j, lconstraint_kind kind, const mpq& right_side); lpvar add_term(const vector>& coeffs, unsigned ext_i); void register_existing_terms(); constraint_index add_var_bound(lpvar, lconstraint_kind, const mpq&); constraint_index add_var_bound_check_on_equal(lpvar, lconstraint_kind, const mpq&, lpvar&); lpvar add_var(unsigned ext_j, bool is_integer); void set_cut_strategy(unsigned cut_frequency); inline unsigned column_count() const { return A_r().column_count(); } inline lpvar local_to_external(lpvar idx) const { return m_var_register.local_to_external(idx); } inline bool column_associated_with_row(lpvar j) const { return m_columns[j].associated_with_row(); } inline unsigned row_count() const { return A_r().row_count(); } bool var_is_registered(lpvar vj) const; void clear_inf_heap() { m_mpq_lar_core_solver.m_r_solver.inf_heap().clear(); } void pivot(int entering, int leaving) { m_mpq_lar_core_solver.pivot(entering, leaving); } template void change_basic_columns_dependend_on_a_given_nb_column_report(unsigned j, const numeric_pair& delta, const ChangeReport& after) { for (const auto& c : A_r().m_columns[j]) { unsigned bj = m_mpq_lar_core_solver.m_r_basis[c.var()]; if (tableau_with_costs()) m_basic_columns_with_changed_cost.insert(bj); m_mpq_lar_core_solver.m_r_solver.add_delta_to_x_and_track_feasibility(bj, -A_r().get_val(c) * delta); after(bj); TRACE("change_x_del", tout << "changed basis column " << bj << ", it is " << (m_mpq_lar_core_solver.m_r_solver.column_is_feasible(bj) ? "feas" : "inf") << std::endl;); } } template void set_value_for_nbasic_column_report(unsigned j, const impq& new_val, const ChangeReport& after) { lp_assert(!is_base(j)); auto& x = m_mpq_lar_core_solver.m_r_x[j]; auto delta = new_val - x; x = new_val; after(j); change_basic_columns_dependend_on_a_given_nb_column_report(j, delta, after); } template bool try_to_patch(lpvar j, const mpq& val, const Blocker& is_blocked, const ChangeReport& change_report) { if (is_base(j)) { TRACE("nla_solver", get_int_solver()->display_row_info(tout, row_of_basic_column(j)) << "\n";); if (!remove_from_basis(j)) return false; } impq ival(val); if (is_blocked(j, ival)) return false; TRACE("nla_solver", tout << "j" << j << " not blocked\n";); impq delta = get_column_value(j) - ival; for (auto c : A_r().column(j)) { unsigned row_index = c.var(); const mpq& a = c.coeff(); unsigned rj = m_mpq_lar_core_solver.m_r_basis[row_index]; impq rj_new_val = a * delta + get_column_value(rj); // if (column_is_int(rj) && !rj_new_val.is_int()) // return false; if (is_blocked(rj, rj_new_val)) return false; } set_value_for_nbasic_column_report(j, ival, change_report); return true; } inline bool column_has_upper_bound(unsigned j) const { return m_mpq_lar_core_solver.m_r_solver.column_has_upper_bound(j); } inline bool column_has_lower_bound(unsigned j) const { return m_mpq_lar_core_solver.m_r_solver.column_has_lower_bound(j); } svector const& flatten(u_dependency* d) { m_tmp_dependencies.reset(); m_dependencies.linearize(d, m_tmp_dependencies); return m_tmp_dependencies; } void push_explanation(u_dependency* d, explanation& ex) { for (auto ci : flatten(d)) ex.push_back(ci); } u_dependency_manager& dep_manager() { return m_dependencies; } inline u_dependency* get_column_upper_bound_witness(unsigned j) const { return m_columns[j].upper_bound_witness(); } inline const impq& get_upper_bound(lpvar j) const { return m_mpq_lar_core_solver.m_r_solver.m_upper_bounds[j]; } inline const impq& get_lower_bound(lpvar j) const { return m_mpq_lar_core_solver.m_r_solver.m_lower_bounds[j]; } inline mpq bound_span_x(lpvar j) const { return m_mpq_lar_core_solver.m_r_solver.m_upper_bounds[j].x - m_mpq_lar_core_solver.m_r_solver.m_lower_bounds[j].x; } bool has_lower_bound(lpvar var, u_dependency*& ci, mpq& value, bool& is_strict) const; bool has_upper_bound(lpvar var, u_dependency*& ci, mpq& value, bool& is_strict) const; bool has_bound_of_type(lpvar var, u_dependency*& ci, mpq& value, bool& is_strict, bool is_upper) const; bool has_value(lpvar var, mpq& value) const; bool fetch_normalized_term_column(const lar_term& t, std::pair&) const; bool column_is_fixed(unsigned j) const; bool column_is_free(unsigned j) const; bool column_is_feasible(unsigned j) const { return m_mpq_lar_core_solver.m_r_solver.column_is_feasible(j);} lp_settings& settings(); lp_settings const& settings() const; statistics& stats(); void updt_params(params_ref const& p); column_type get_column_type(unsigned j) const { return m_mpq_lar_core_solver.m_column_types()[j]; } const vector& get_column_types() const { return m_mpq_lar_core_solver.m_column_types(); } std::ostream& print_terms(std::ostream& out) const; std::ostream& print_term(lar_term const& term, std::ostream& out) const; static std::ostream& print_term_as_indices(lar_term const& term, std::ostream& out); std::ostream& print_constraint_indices_only(const lar_base_constraint* c, std::ostream& out) const; std::ostream& print_implied_bound(const implied_bound& be, std::ostream& out) const; std::ostream& print_values(std::ostream& out) const; std::ostream& display(std::ostream& out) const; std::ostream& display_constraint(std::ostream& out, constraint_index ci) const { return m_constraints.display(out, ci); } bool init_model() const; mpq from_model_in_impq_to_mpq(const impq& v) const { return v.x + m_delta * v.y; } mpq get_value(lpvar j) const; void get_model(std::unordered_map& variable_values) const; void get_rid_of_inf_eps(); void get_model_do_not_care_about_diff_vars(std::unordered_map& variable_values) const; std::string get_variable_name(lpvar vi) const override; void set_variable_name(lpvar vi, std::string); inline unsigned number_of_vars() const { return m_var_register.size(); } inline bool is_base(unsigned j) const { return m_mpq_lar_core_solver.m_r_heading[j] >= 0; } inline const impq& column_lower_bound(unsigned j) const { return m_mpq_lar_core_solver.lower_bound(j); } inline const impq& column_upper_bound(unsigned j) const { return m_mpq_lar_core_solver.upper_bound(j); } inline bool column_is_bounded(unsigned j) const { return m_mpq_lar_core_solver.column_is_bounded(j); } bool check_feasible() const { return m_mpq_lar_core_solver.m_r_solver.calc_current_x_is_feasible_include_non_basis(); } bool are_equal(lpvar j, lpvar k); std::pair add_equality(lpvar j, lpvar k); u_dependency* get_bound_constraint_witnesses_for_column(unsigned j) { const column& ul = m_columns[j]; return m_dependencies.mk_join(ul.lower_bound_witness(), ul.upper_bound_witness()); } template u_dependency* get_bound_constraint_witnesses_for_columns(const T& collection) { u_dependency* dep = nullptr; for (auto j : collection) { u_dependency* d = get_bound_constraint_witnesses_for_column(j); dep = m_dependencies.mk_join(dep, d); } return dep; } std::ostream& print_expl(std::ostream& out, const explanation& exp) const { for (auto p : exp) constraints().display( out, [this](lpvar j) { return get_variable_name(j); }, p.ci()); return out; } void explain_fixed_column(unsigned j, explanation& ex); u_dependency* mk_join(u_dependency* a, u_dependency *b) { return m_dependencies.mk_join(a, b); } inline constraint_set const& constraints() const { return m_constraints; } void push(); void pop(); inline u_dependency* get_column_lower_bound_witness(unsigned j) const { return m_columns[j].lower_bound_witness(); } inline bool column_has_term(lpvar j) const { return m_columns[j].term() != nullptr; } std::ostream& print_column_info(unsigned j, std::ostream& out) const { m_mpq_lar_core_solver.m_r_solver.print_column_info(j, out); if (column_has_term(j)) print_term_as_indices(get_term(j), out) << "\n"; display_column_explanation(out, j); return out; } std::ostream& display_column_explanation(std::ostream& out, unsigned j) const { const column& ul = m_columns[j]; svector vs1, vs2; m_dependencies.linearize(ul.lower_bound_witness(), vs1); m_dependencies.linearize(ul.upper_bound_witness(), vs2); if (!vs1.empty()) out << "lo: " << vs1; if (!vs2.empty()) out << "hi: " << vs2; if (!vs1.empty() || !vs2.empty()) out << "\n"; return out; } void subst_known_terms(lar_term*); std::ostream& print_column_bound_info(unsigned j, std::ostream& out) const { return m_mpq_lar_core_solver.m_r_solver.print_column_bound_info(j, out); } bool has_int_var() const; inline bool has_inf_int() const { for (unsigned j = 0; j < column_count(); j++) { if (column_is_int(j) && !column_value_is_int(j)) return true; } return false; } inline const vector& terms() const { return m_terms; } inline void set_int_solver(int_solver* int_slv) { m_int_solver = int_slv; } inline int_solver* get_int_solver() { return m_int_solver; } inline const int_solver* get_int_solver() const { return m_int_solver; } inline const lar_term& get_term(lpvar j) const { SASSERT(column_has_term(j)); return *m_columns[j].term(); } lp_status find_feasible_solution(); void move_non_basic_columns_to_bounds(); bool move_non_basic_column_to_bounds(unsigned j); bool move_lpvar_to_value(lpvar j, mpq const& value); inline bool r_basis_has_inf_int() const { for (unsigned j : r_basis()) { if (column_is_int(j) && !column_value_is_int(j)) return true; } return false; } void round_to_integer_solution(); inline const row_strip& get_row(unsigned i) const { return A_r().m_rows[i]; } inline const row_strip& basic2row(unsigned i) const { return A_r().m_rows[row_of_basic_column(i)]; } inline const column_strip& get_column(unsigned i) const { return A_r().m_columns[i]; } bool row_is_correct(unsigned i) const; bool ax_is_correct() const; bool get_equality_and_right_side_for_term_on_current_x(lpvar j, mpq& rs, u_dependency*& ci, bool& upper_bound) const; bool var_is_int(lpvar v) const; inline const std_vector& r_heading() const { return m_mpq_lar_core_solver.m_r_heading; } inline const vector& r_basis() const { return m_mpq_lar_core_solver.r_basis(); } inline const vector& r_nbasis() const { return m_mpq_lar_core_solver.r_nbasis(); } inline bool column_is_real(unsigned j) const { return !column_is_int(j); } lp_status get_status() const; bool has_changed_columns() const { return !m_columns_with_changed_bounds.empty(); } void set_status(lp_status s); lp_status solve(); void fill_explanation_from_crossed_bounds_column(explanation& evidence) const; bool term_is_used_as_row(unsigned term) const; bool tighten_term_bounds_by_delta(lpvar j, const impq&); lar_solver(); void track_touched_rows(bool v); bool touched_rows_are_tracked() const; ~lar_solver() override; const vector& r_x() const { return m_mpq_lar_core_solver.m_r_x; } bool column_is_int(unsigned j) const; inline bool column_value_is_int(unsigned j) const { return m_mpq_lar_core_solver.m_r_x[j].is_int(); } inline static_matrix& A_r() { return m_mpq_lar_core_solver.m_r_A; } inline const static_matrix& A_r() const { return m_mpq_lar_core_solver.m_r_A; } // columns const impq& get_column_value(lpvar j) const { return m_mpq_lar_core_solver.m_r_x[j]; } inline lpvar external_to_local(unsigned j) const { lpvar local_j; if (m_var_register.external_is_used(j, local_j)) { return local_j; } else { return -1; } } unsigned usage_in_terms(lpvar j) const { if (j >= m_usage_in_terms.size()) return 0; return m_usage_in_terms[j]; } std::function m_find_monics_with_changed_bounds_func = nullptr; friend int_solver; friend int_branch; }; } // namespace lp