/*++ Copyright (c) 2006 Microsoft Corporation Module Name: smt_consequences.cpp Abstract: Tuned consequence finding for smt_context. Author: nbjorner 2016-07-28. Revision History: --*/ #include "util/max_cliques.h" #include "util/stopwatch.h" #include "ast/ast_util.h" #include "ast/ast_pp.h" #include "ast/datatype_decl_plugin.h" #include "model/model_pp.h" #include "smt/smt_context.h" namespace smt { expr_ref context::antecedent2fml(index_set const& vars) { expr_ref_vector premises(m_manager); index_set::iterator it = vars.begin(), end = vars.end(); for (; it != end; ++it) { expr* e = bool_var2expr(*it); e = m_assumption2orig.find(e); premises.push_back(get_assignment(*it) != l_false ? e : m_manager.mk_not(e)); } return mk_and(premises); } // // The literal lit is assigned at the search level, so it follows from the assumptions. // We retrieve the set of assumptions it depends on in the set 's'. // The map m_antecedents contains the association from these literals to the assumptions they depend on. // We then examine the contents of the literal lit and augment the set of consequences in one of the following cases: // - e is a propositional atom and it is one of the variables that is to be fixed. // - e is an equality between a variable and value that is to be fixed. // - e is a data-type recognizer of a variable that is to be fixed. // void context::extract_fixed_consequences(literal lit, index_set const& assumptions, expr_ref_vector& conseq) { ast_manager& m = m_manager; datatype_util dt(m); expr* e1, *e2; expr_ref fml(m); if (lit == true_literal) return; expr* e = bool_var2expr(lit.var()); TRACE("context", display(tout << mk_pp(e, m) << "\n");); index_set s; if (assumptions.contains(lit.var())) { s.insert(lit.var()); } else { justify(lit, s); } m_antecedents.insert(lit.var(), s); TRACE("context", display_literal_verbose(tout, lit); for (index_set::iterator it = s.begin(), end = s.end(); it != end; ++it) { tout << " " << *it; } tout << "\n";); bool found = false; if (m_var2val.contains(e)) { found = true; m_var2val.erase(e); e = m_var2orig.find(e); fml = lit.sign() ? m.mk_not(e) : e; } else if (!lit.sign() && m.is_eq(e, e1, e2)) { if (m_var2val.contains(e2) && m.is_value(e1)) { found = true; m_var2val.erase(e2); e2 = m_var2orig.find(e2); std::swap(e1, e2); fml = m.mk_eq(e1, e2); } else if (m_var2val.contains(e1) && m.is_value(e2)) { found = true; m_var2val.erase(e1); e1 = m_var2orig.find(e1); fml = m.mk_eq(e1, e2); } } else if (!lit.sign() && is_app(e) && dt.is_recognizer(to_app(e)->get_decl())) { if (m_var2val.contains(to_app(e)->get_arg(0))) { found = true; fml = m.mk_eq(to_app(e)->get_arg(0), m.mk_const(dt.get_recognizer_constructor(to_app(e)->get_decl()))); m_var2val.erase(to_app(e)->get_arg(0)); } } if (found) { fml = m.mk_implies(antecedent2fml(s), fml); conseq.push_back(fml); } } void context::justify(literal lit, index_set& s) { ast_manager& m = m_manager; (void)m; b_justification js = get_justification(lit.var()); switch (js.get_kind()) { case b_justification::CLAUSE: { clause * cls = js.get_clause(); if (!cls) break; unsigned num_lits = cls->get_num_literals(); for (unsigned j = 0; j < num_lits; ++j) { literal lit2 = cls->get_literal(j); if (lit2.var() != lit.var()) { s |= m_antecedents.find(lit2.var()); } } break; } case b_justification::BIN_CLAUSE: { s |= m_antecedents.find(js.get_literal().var()); break; } case b_justification::AXIOM: { break; } case b_justification::JUSTIFICATION: { literal_vector literals; m_conflict_resolution->justification2literals(js.get_justification(), literals); for (unsigned j = 0; j < literals.size(); ++j) { if (!m_antecedents.contains(literals[j].var())) { TRACE("context", tout << literals[j] << " " << mk_pp(bool_var2expr(literals[j].var()), m) << "\n";); } s |= m_antecedents.find(literals[j].var()); } break; } } } void context::extract_fixed_consequences(unsigned& start, index_set const& assumptions, expr_ref_vector& conseq) { pop_to_search_lvl(); SASSERT(!inconsistent()); literal_vector const& lits = assigned_literals(); unsigned sz = lits.size(); for (unsigned i = start; i < sz; ++i) { extract_fixed_consequences(lits[i], assumptions, conseq); } start = sz; SASSERT(!inconsistent()); } // // The assignment stack is assumed consistent. // For each Boolean variable, we check if there is a literal assigned to the // opposite value of the reference model, and for non-Boolean variables we // check if the current state forces the variable to be distinct from the reference value. // // For yet to be determined Boolean variables we furthermore force the phase to be opposite // to the reference value in the attempt to let the sat engine emerge with a model that // rules out as many non-fixed variables as possible. // unsigned context::delete_unfixed(expr_ref_vector& unfixed) { ast_manager& m = m_manager; ptr_vector to_delete; obj_map::iterator it = m_var2val.begin(), end = m_var2val.end(); for (; it != end; ++it) { expr* k = it->m_key; expr* v = it->m_value; if (m.is_bool(k)) { literal lit = get_literal(k); switch (get_assignment(lit)) { case l_true: if (m.is_false(v)) { to_delete.push_back(k); } else { force_phase(lit.var(), false); } break; case l_false: if (m.is_true(v)) { to_delete.push_back(k); } else { force_phase(lit.var(), true); } break; default: to_delete.push_back(k); break; } } else if (e_internalized(k) && m.are_distinct(v, get_enode(k)->get_root()->get_owner())) { to_delete.push_back(k); } else if (get_assignment(mk_diseq(k, v)) == l_true) { to_delete.push_back(k); } } for (unsigned i = 0; i < to_delete.size(); ++i) { m_var2val.remove(to_delete[i]); unfixed.push_back(to_delete[i]); } return to_delete.size(); } #define are_equal(v, k) (e_internalized(k) && e_internalized(v) && get_enode(k)->get_root() == get_enode(v)->get_root()) // // Extract equalities that are congruent at the search level. // Add a clause to short-circuit the congruence justifications for // next rounds. // unsigned context::extract_fixed_eqs(expr_ref_vector& conseq) { TRACE("context", tout << "extract fixed consequences\n";); ast_manager& m = m_manager; ptr_vector to_delete; expr_ref fml(m), eq(m); obj_map::iterator it = m_var2val.begin(), end = m_var2val.end(); for (; it != end; ++it) { expr* k = it->m_key; expr* v = it->m_value; if (!m.is_bool(k) && are_equal(k, v)) { literal_vector literals; m_conflict_resolution->eq2literals(get_enode(v), get_enode(k), literals); index_set s; for (unsigned i = 0; i < literals.size(); ++i) { SASSERT(get_assign_level(literals[i]) <= get_search_level()); s |= m_antecedents.find(literals[i].var()); } fml = m.mk_eq(m_var2orig.find(k), v); fml = m.mk_implies(antecedent2fml(s), fml); conseq.push_back(fml); to_delete.push_back(k); for (unsigned i = 0; i < literals.size(); ++i) { literals[i].neg(); } literal lit = mk_diseq(k, v); literals.push_back(lit); mk_clause(literals.size(), literals.c_ptr(), 0); TRACE("context", display_literals_verbose(tout, literals.size(), literals.c_ptr());); } } for (unsigned i = 0; i < to_delete.size(); ++i) { m_var2val.remove(to_delete[i]); } return to_delete.size(); } literal context::mk_diseq(expr* e, expr* val) { ast_manager& m = m_manager; if (m.is_bool(e) && b_internalized(e)) { return literal(get_bool_var(e), m.is_true(val)); } else if (m.is_bool(e)) { internalize_formula(e, false); return literal(get_bool_var(e), !m.is_true(val)); } else { expr_ref eq(mk_eq_atom(e, val), m); internalize_formula(eq, false); return literal(get_bool_var(eq), true); } } lbool context::get_consequences(expr_ref_vector const& assumptions0, expr_ref_vector const& vars0, expr_ref_vector& conseq, expr_ref_vector& unfixed) { m_antecedents.reset(); m_antecedents.insert(true_literal.var(), index_set()); pop_to_base_lvl(); ast_manager& m = m_manager; expr_ref_vector vars(m), assumptions(m); m_var2val.reset(); m_var2orig.reset(); m_assumption2orig.reset(); bool pushed = false; for (unsigned i = 0; i < vars0.size(); ++i) { expr* v = vars0[i]; if (is_uninterp_const(v)) { vars.push_back(v); m_var2orig.insert(v, v); } else { if (!pushed) { pushed = true; push(); } expr_ref c(m.mk_fresh_const("v", m.get_sort(v)), m); expr_ref eq(m.mk_eq(c, v), m); assert_expr(eq); vars.push_back(c); m_var2orig.insert(c, v); } } for (unsigned i = 0; i < assumptions0.size(); ++i) { expr* a = assumptions0[i]; if (is_uninterp_const(a)) { assumptions.push_back(a); m_assumption2orig.insert(a, a); } else { if (!pushed) { pushed = true; push(); } expr_ref c(m.mk_fresh_const("a", m.get_sort(a)), m); expr_ref eq(m.mk_eq(c, a), m); assert_expr(eq); assumptions.push_back(c); m_assumption2orig.insert(c, a); } } lbool is_sat = check(assumptions.size(), assumptions.c_ptr()); if (is_sat != l_true) { TRACE("context", tout << is_sat << "\n";); if (pushed) pop(1); return is_sat; } index_set _assumptions; for (unsigned i = 0; i < assumptions.size(); ++i) { _assumptions.insert(get_literal(assumptions[i].get()).var()); } model_ref mdl; get_model(mdl); expr_ref_vector trail(m); model_evaluator eval(*mdl.get()); expr_ref val(m); TRACE("context", model_pp(tout, *mdl);); for (unsigned i = 0; i < vars.size(); ++i) { eval(vars[i].get(), val); if (m.is_value(val)) { trail.push_back(val); m_var2val.insert(vars[i].get(), val); } else { unfixed.push_back(vars[i].get()); } } unsigned num_units = 0; extract_fixed_consequences(num_units, _assumptions, conseq); app_ref eq(m); TRACE("context", tout << "vars: " << vars.size() << "\n"; tout << "lits: " << num_units << "\n";); m_case_split_queue->init_search_eh(); unsigned num_iterations = 0; unsigned num_fixed_eqs = 0; unsigned chunk_size = 100; while (!m_var2val.empty()) { obj_map::iterator it = m_var2val.begin(), end = m_var2val.end(); unsigned num_vars = 0; for (; it != end && num_vars < chunk_size; ++it) { if (get_cancel_flag()) { if (pushed) pop(1); return l_undef; } expr* e = it->m_key; expr* val = it->m_value; literal lit = mk_diseq(e, val); mark_as_relevant(lit); if (get_assignment(lit) != l_undef) { continue; } ++num_vars; push_scope(); assign(lit, b_justification::mk_axiom(), true); if (!propagate()) { if (!resolve_conflict() || inconsistent()) { TRACE("context", tout << "inconsistent\n";); SASSERT(inconsistent()); m_conflict = null_b_justification; m_not_l = null_literal; SASSERT(m_search_lvl == get_search_level()); } } } SASSERT(!inconsistent()); ++num_iterations; lbool is_sat = l_undef; while (true) { is_sat = bounded_search(); if (is_sat != l_true && m_last_search_failure != OK) { if (pushed) pop(1); return is_sat; } if (is_sat == l_undef) { IF_VERBOSE(1, verbose_stream() << "(get-consequences inc-limits)\n";); inc_limits(); continue; } break; } if (is_sat == l_false) { SASSERT(inconsistent()); m_conflict = null_b_justification; m_not_l = null_literal; } if (is_sat == l_true) { delete_unfixed(unfixed); } extract_fixed_consequences(num_units, _assumptions, conseq); num_fixed_eqs += extract_fixed_eqs(conseq); IF_VERBOSE(1, display_consequence_progress(verbose_stream(), num_iterations, m_var2val.size(), conseq.size(), unfixed.size(), num_fixed_eqs);); TRACE("context", display_consequence_progress(tout, num_iterations, m_var2val.size(), conseq.size(), unfixed.size(), num_fixed_eqs);); } end_search(); DEBUG_CODE(validate_consequences(assumptions, vars, conseq, unfixed);); if (pushed) { pop(1); } return l_true; } void context::display_consequence_progress(std::ostream& out, unsigned it, unsigned nv, unsigned fixed, unsigned unfixed, unsigned eq) { out << "(get-consequences" << " iterations: " << it << " variables: " << nv << " fixed: " << fixed << " unfixed: " << unfixed << " fixed-eqs: " << eq << ")\n"; } void context::extract_cores(expr_ref_vector const& asms, vector& cores, unsigned& min_core_size) { index_set _asms, _nasms; u_map var2expr; for (unsigned i = 0; i < asms.size(); ++i) { literal lit = get_literal(asms[i]); _asms.insert(lit.index()); _nasms.insert((~lit).index()); var2expr.insert(lit.var(), asms[i]); } m_antecedents.reset(); literal_vector const& lits = assigned_literals(); for (unsigned i = 0; i < lits.size(); ++i) { literal lit = lits[i]; index_set s; if (_asms.contains(lit.index())) { s.insert(lit.var()); } else { justify(lit, s); } m_antecedents.insert(lit.var(), s); if (_nasms.contains(lit.index())) { expr_ref_vector core(m_manager); index_set::iterator it = s.begin(), end = s.end(); for (; it != end; ++it) { core.push_back(var2expr[*it]); } core.push_back(var2expr[lit.var()]); cores.push_back(core); min_core_size = std::min(min_core_size, core.size()); } } } void context::preferred_sat(literal_vector& lits) { bool retry = true; while (retry) { retry = false; for (unsigned i = 0; i < lits.size(); ++i) { literal lit = lits[i]; if (lit == null_literal || get_assignment(lit) != l_undef) { continue; } push_scope(); assign(lit, b_justification::mk_axiom(), true); while (!propagate()) { lits[i] = null_literal; retry = true; if (!resolve_conflict() || inconsistent()) { SASSERT(inconsistent()); return; } } } } } void context::display_partial_assignment(std::ostream& out, expr_ref_vector const& asms, unsigned min_core_size) { unsigned num_true = 0, num_false = 0, num_undef = 0; for (unsigned i = 0; i < asms.size(); ++i) { literal lit = get_literal(asms[i]); if (get_assignment(lit) == l_false) { ++num_false; } if (get_assignment(lit) == l_true) { ++num_true; } if (get_assignment(lit) == l_undef) { ++num_undef; } } out << "(smt.preferred-sat true: " << num_true << " false: " << num_false << " undef: " << num_undef << " min core: " << min_core_size << ")\n"; } lbool context::preferred_sat(expr_ref_vector const& asms, vector& cores) { pop_to_base_lvl(); cores.reset(); setup_context(false); internalize_assertions(); if (m_asserted_formulas.inconsistent() || inconsistent()) { return l_false; } scoped_mk_model smk(*this); init_search(); flet l(m_searching, true); unsigned level = m_scope_lvl; unsigned min_core_size = UINT_MAX; lbool is_sat = l_true; unsigned num_restarts = 0; while (true) { if (m_manager.canceled()) { is_sat = l_undef; break; } literal_vector lits; for (unsigned i = 0; i < asms.size(); ++i) { lits.push_back(get_literal(asms[i])); } preferred_sat(lits); if (inconsistent()) { SASSERT(m_scope_lvl == level); is_sat = l_false; break; } extract_cores(asms, cores, min_core_size); IF_VERBOSE(1, display_partial_assignment(verbose_stream(), asms, min_core_size);); if (min_core_size <= 10) { is_sat = l_undef; break; } is_sat = bounded_search(); if (!restart(is_sat, level)) { break; } ++num_restarts; if (num_restarts >= min_core_size) { is_sat = l_undef; while (num_restarts <= 10*min_core_size) { is_sat = bounded_search(); if (!restart(is_sat, level)) { break; } ++num_restarts; } break; } } end_search(); return check_finalize(is_sat); } struct neg_literal { unsigned negate(unsigned i) { return (~to_literal(i)).index(); } }; lbool context::find_mutexes(expr_ref_vector const& vars, vector& mutexes) { unsigned_vector ps; max_cliques mc; expr_ref lit(m_manager); for (unsigned i = 0; i < vars.size(); ++i) { expr* n = vars[i]; bool neg = m_manager.is_not(n, n); if (b_internalized(n)) { ps.push_back(literal(get_bool_var(n), neg).index()); } } for (unsigned i = 0; i < m_watches.size(); ++i) { watch_list & w = m_watches[i]; for (literal const* it = w.begin_literals(), *end = w.end_literals(); it != end; ++it) { unsigned idx1 = (~to_literal(i)).index(); unsigned idx2 = it->index(); if (idx1 < idx2) { mc.add_edge(idx1, idx2); } } } vector _mutexes; mc.cliques(ps, _mutexes); for (unsigned i = 0; i < _mutexes.size(); ++i) { expr_ref_vector lits(m_manager); for (unsigned j = 0; j < _mutexes[i].size(); ++j) { literal2expr(to_literal(_mutexes[i][j]), lit); lits.push_back(lit); } mutexes.push_back(lits); } return l_true; } // // Validate, in a slow pass, that the current consequences are correctly // extracted. // void context::validate_consequences(expr_ref_vector const& assumptions, expr_ref_vector const& vars, expr_ref_vector const& conseq, expr_ref_vector const& unfixed) { ast_manager& m = m_manager; expr_ref tmp(m); SASSERT(!inconsistent()); for (unsigned i = 0; i < conseq.size(); ++i) { push(); for (unsigned j = 0; j < assumptions.size(); ++j) { assert_expr(assumptions[j]); } TRACE("context", tout << "checking: " << mk_pp(conseq[i], m) << "\n";); tmp = m.mk_not(conseq[i]); assert_expr(tmp); VERIFY(check() != l_true); pop(1); } model_ref mdl; for (unsigned i = 0; i < unfixed.size(); ++i) { push(); for (unsigned j = 0; j < assumptions.size(); ++j) { assert_expr(assumptions[j]); } TRACE("context", tout << "checking unfixed: " << mk_pp(unfixed[i], m) << "\n";); lbool is_sat = check(); SASSERT(is_sat != l_false); if (is_sat == l_true) { get_model(mdl); mdl->eval(unfixed[i], tmp); if (m.is_value(tmp)) { tmp = m.mk_not(m.mk_eq(unfixed[i], tmp)); assert_expr(tmp); is_sat = check(); SASSERT(is_sat != l_false); } } pop(1); } } }