/*++ Copyright (c) 2011 Microsoft Corporation Module Name: normalize_bounds_tactic.cpp Abstract: Replace x with x' + l, when l <= x where x' is a fresh variable. Note that, after the transformation 0 <= x'. Author: Leonardo de Moura (leonardo) 2011-10-21. Revision History: --*/ #include"tactical.h" #include"bound_manager.h" #include"th_rewriter.h" #include"extension_model_converter.h" #include"filter_model_converter.h" #include"arith_decl_plugin.h" #include"expr_substitution.h" #include"ast_smt2_pp.h" class normalize_bounds_tactic : public tactic { struct imp { ast_manager & m; bound_manager m_bm; arith_util m_util; th_rewriter m_rw; bool m_normalize_int_only; imp(ast_manager & _m, params_ref const & p): m(_m), m_bm(m), m_util(m), m_rw(m, p) { updt_params(p); } void updt_params_core(params_ref const & p) { m_normalize_int_only = p.get_bool(":norm-int-only", true); } void updt_params(params_ref const & p) { m_rw.updt_params(p); updt_params_core(p); } void set_cancel(bool f) { m_rw.set_cancel(f); } bool is_target(expr * var, rational & val) { bool strict; return is_uninterp_const(var) && (!m_normalize_int_only || m_util.is_int(var)) && m_bm.has_lower(var, val, strict) && !val.is_zero(); } bool is_target(expr * var) { rational val; return is_target(var, val); } bool has_lowers() { bound_manager::iterator it = m_bm.begin(); bound_manager::iterator end = m_bm.end(); for (; it != end; ++it) { TRACE("normalize_bounds_tactic", rational val; bool strict; tout << mk_ismt2_pp(*it, m) << " has_lower: " << m_bm.has_lower(*it, val, strict) << " val: " << val << "\n";); if (is_target(*it)) return true; } return false; } virtual void operator()(goal_ref const & in, goal_ref_buffer & result, model_converter_ref & mc, proof_converter_ref & pc, expr_dependency_ref & core) { mc = 0; pc = 0; core = 0; bool produce_models = in->models_enabled(); bool produce_proofs = in->proofs_enabled(); tactic_report report("normalize-bounds", *in); m_bm(*in); if (!has_lowers()) { result.push_back(in.get()); // did not increase depth since it didn't do anything. return; } extension_model_converter * mc1 = 0; filter_model_converter * mc2 = 0; if (produce_models) { mc1 = alloc(extension_model_converter, m); mc2 = alloc(filter_model_converter, m); mc = concat(mc2, mc1); } unsigned num_norm_bounds = 0; expr_substitution subst(m); rational val; bound_manager::iterator it = m_bm.begin(); bound_manager::iterator end = m_bm.end(); for (; it != end; ++it) { expr * x = *it; if (is_target(x, val)) { num_norm_bounds++; sort * s = m.get_sort(x); app * x_prime = m.mk_fresh_const(0, s); expr * def = m_util.mk_add(x_prime, m_util.mk_numeral(val, s)); subst.insert(x, def); if (produce_models) { mc1->insert(to_app(x)->get_decl(), def); mc2->insert(x_prime->get_decl()); } } } report_tactic_progress(":normalized-bounds", num_norm_bounds); m_rw.set_substitution(&subst); expr_ref new_curr(m); proof_ref new_pr(m); unsigned size = in->size(); for (unsigned idx = 0; idx < size; idx++) { expr * curr = in->form(idx); m_rw(curr, new_curr, new_pr); if (produce_proofs) { proof * pr = in->pr(idx); new_pr = m.mk_modus_ponens(pr, new_pr); } in->update(idx, new_curr, new_pr, in->dep(idx)); } TRACE("normalize_bounds_tactic", in->display(tout);); in->inc_depth(); result.push_back(in.get()); } }; imp * m_imp; params_ref m_params; public: normalize_bounds_tactic(ast_manager & m, params_ref const & p): m_params(p) { m_imp = alloc(imp, m, p); } virtual tactic * translate(ast_manager & m) { return alloc(normalize_bounds_tactic, m, m_params); } virtual ~normalize_bounds_tactic() { dealloc(m_imp); } virtual void updt_params(params_ref const & p) { m_imp->updt_params(p); } virtual void collect_param_descrs(param_descrs & r) { insert_produce_models(r); r.insert(":norm-int-only", CPK_BOOL, "(default: true) normalize only the bounds of integer constants."); } virtual void operator()(goal_ref const & in, goal_ref_buffer & result, model_converter_ref & mc, proof_converter_ref & pc, expr_dependency_ref & core) { (*m_imp)(in, result, mc, pc, core); } virtual void cleanup() { ast_manager & m = m_imp->m; imp * d = m_imp; #pragma omp critical (tactic_cancel) { d = m_imp; } dealloc(d); d = alloc(imp, m, m_params); #pragma omp critical (tactic_cancel) { m_imp = d; } } protected: virtual void set_cancel(bool f) { if (m_imp) m_imp->set_cancel(f); } }; tactic * mk_normalize_bounds_tactic(ast_manager & m, params_ref const & p) { return clean(alloc(normalize_bounds_tactic, m, p)); }