/*++ Copyright (c) 2010 Microsoft Corporation and Arie Gurfinkel Module Name: spacer_qe_project.cpp Abstract: Simple projection function for real arithmetic based on Loos-W. Projection functions for arrays based on MBP Author: Nikolaj Bjorner (nbjorner) 2013-09-12 Anvesh Komuravelli Arie Gurfinkel --*/ #include "ast/arith_decl_plugin.h" #include "ast/ast_pp.h" #include "ast/ast_util.h" #include "ast/expr_functors.h" #include "ast/expr_substitution.h" #include "ast/is_variable_test.h" #include "ast/rewriter/expr_replacer.h" #include "ast/rewriter/expr_safe_replace.h" #include "ast/rewriter/th_rewriter.h" #include "model/model_evaluator.h" #include "model/model_pp.h" #include "qe/lite/qe_lite_tactic.h" #include "qe/qe.h" #include "muz/spacer/spacer_mev_array.h" #include "muz/spacer/spacer_qe_project.h" namespace spacer_qe { bool is_partial_eq(app *a); /** * \brief utility class for partial equalities * * A partial equality (a ==I b), for two arrays a,b and a finite set of indices * I holds iff (Forall i. i \not\in I => a[i] == b[i]); in other words, it is a * restricted form of the extensionality axiom * * using this class, we denote (a =I b) as f(a,b,i0,i1,...) * where f is an uninterpreted predicate with name PARTIAL_EQ and * I = {i0,i1,...} */ class peq { ast_manager &m; expr_ref m_lhs; expr_ref m_rhs; unsigned m_num_indices; expr_ref_vector m_diff_indices; func_decl_ref m_decl; // the partial equality declaration app_ref m_peq; // partial equality application app_ref m_eq; // equivalent std equality using def. of partial eq array_util m_arr_u; public: static const char *PARTIAL_EQ; peq(app *p, ast_manager &m); peq(expr *lhs, expr *rhs, unsigned num_indices, expr *const *diff_indices, ast_manager &m); void lhs(expr_ref &result); void rhs(expr_ref &result); void get_diff_indices(expr_ref_vector &result); void mk_peq(app_ref &result); void mk_eq(app_ref_vector &aux_consts, app_ref &result, bool stores_on_rhs = true); }; const char *peq::PARTIAL_EQ = "partial_eq"; peq::peq(app *p, ast_manager &m) : m(m), m_lhs(p->get_arg(0), m), m_rhs(p->get_arg(1), m), m_num_indices(p->get_num_args() - 2), m_diff_indices(m), m_decl(p->get_decl(), m), m_peq(p, m), m_eq(m), m_arr_u(m) { VERIFY(is_partial_eq(p)); SASSERT(m_arr_u.is_array(m_lhs) && m_arr_u.is_array(m_rhs) && ast_eq_proc()(m_lhs->get_sort(), m_rhs->get_sort())); for (unsigned i = 2; i < p->get_num_args(); i++) { m_diff_indices.push_back(p->get_arg(i)); } } peq::peq(expr *lhs, expr *rhs, unsigned num_indices, expr *const *diff_indices, ast_manager &m) : m(m), m_lhs(lhs, m), m_rhs(rhs, m), m_num_indices(num_indices), m_diff_indices(m), m_decl(m), m_peq(m), m_eq(m), m_arr_u(m) { SASSERT(m_arr_u.is_array(lhs) && m_arr_u.is_array(rhs) && ast_eq_proc()(lhs->get_sort(), rhs->get_sort())); ptr_vector sorts; sorts.push_back(m_lhs->get_sort()); sorts.push_back(m_rhs->get_sort()); for (unsigned i = 0; i < num_indices; i++) { sorts.push_back(diff_indices[i]->get_sort()); m_diff_indices.push_back(diff_indices[i]); } m_decl = m.mk_func_decl(symbol(PARTIAL_EQ), sorts.size(), sorts.data(), m.mk_bool_sort()); } void peq::lhs(expr_ref &result) { result = m_lhs; } void peq::rhs(expr_ref &result) { result = m_rhs; } void peq::get_diff_indices(expr_ref_vector &result) { for (unsigned i = 0; i < m_diff_indices.size(); i++) { result.push_back(m_diff_indices.get(i)); } } void peq::mk_peq(app_ref &result) { if (!m_peq) { ptr_vector args; args.push_back(m_lhs); args.push_back(m_rhs); for (auto idx : m_diff_indices) args.push_back(idx); m_peq = m.mk_app(m_decl, args.size(), args.data()); } result = m_peq; } void peq::mk_eq(app_ref_vector &aux_consts, app_ref &result, bool stores_on_rhs) { if (!m_eq) { expr_ref lhs(m_lhs, m), rhs(m_rhs, m); if (!stores_on_rhs) { std::swap(lhs, rhs); } // lhs = (...(store (store rhs i0 v0) i1 v1)...) sort *val_sort = get_array_range(lhs->get_sort()); for (auto it : m_diff_indices) { app *val = m.mk_fresh_const("diff", val_sort); ptr_vector store_args; store_args.push_back(rhs); store_args.push_back(it); store_args.push_back(val); rhs = m_arr_u.mk_store(store_args); aux_consts.push_back(val); } m_eq = m.mk_eq(lhs, rhs); } result = m_eq; } bool is_partial_eq(app *a) { return a->get_decl()->get_name() == peq::PARTIAL_EQ; } } // namespace spacer_qe namespace spacer_qe { class is_relevant_default : public i_expr_pred { public: bool operator()(expr *e) override { return true; } }; class mk_atom_default : public qe::i_nnf_atom { public: void operator()(expr *e, bool pol, expr_ref &result) override { if (pol) result = e; else result = result.get_manager().mk_not(e); } }; class arith_project_util { ast_manager &m; arith_util a; th_rewriter m_rw; expr_ref_vector m_lits; expr_ref_vector m_terms; vector m_coeffs; vector m_divs; bool_vector m_strict; bool_vector m_eq; scoped_ptr m_var; bool is_linear(rational const &mul, expr *t, rational &c, expr_ref_vector &ts) { expr *t1, *t2; rational mul1; bool res = true; if (t == m_var->x()) { c += mul; } else if (a.is_mul(t, t1, t2) && a.is_numeral(t1, mul1)) { res = is_linear(mul * mul1, t2, c, ts); } else if (a.is_mul(t, t1, t2) && a.is_numeral(t2, mul1)) { res = is_linear(mul * mul1, t1, c, ts); } else if (a.is_add(t)) { app *ap = to_app(t); for (unsigned i = 0; res && i < ap->get_num_args(); ++i) { res = is_linear(mul, ap->get_arg(i), c, ts); } } else if (a.is_sub(t, t1, t2)) { res = is_linear(mul, t1, c, ts) && is_linear(-mul, t2, c, ts); } else if (a.is_uminus(t, t1)) { res = is_linear(-mul, t1, c, ts); } else if (a.is_numeral(t, mul1)) { ts.push_back(a.mk_numeral(mul * mul1, t->get_sort())); } else if ((*m_var)(t)) { IF_VERBOSE(2, verbose_stream() << "can't project:" << mk_pp(t, m) << "\n";); TRACE(qe, tout << "Failed to project: " << mk_pp(t, m) << "\n";); res = false; } else if (mul.is_one()) { ts.push_back(t); } else { ts.push_back(a.mk_mul(a.mk_numeral(mul, t->get_sort()), t)); } return res; } // either an equality (cx + t = 0) or an inequality (cx + t <= 0) or a // divisibility literal (d | cx + t) bool is_linear(expr *lit, rational &c, expr_ref &t, rational &d, bool &is_strict, bool &is_eq, bool &is_diseq) { SASSERT((*m_var)(lit)); expr *e1, *e2; c.reset(); sort *s; expr_ref_vector ts(m); bool is_not = m.is_not(lit, lit); rational mul(1); if (is_not) { mul.neg(); } SASSERT(!m.is_not(lit)); if (a.is_le(lit, e1, e2) || a.is_ge(lit, e2, e1)) { if (!is_linear(mul, e1, c, ts) || !is_linear(-mul, e2, c, ts)) return false; s = e1->get_sort(); is_strict = is_not; } else if (a.is_lt(lit, e1, e2) || a.is_gt(lit, e2, e1)) { if (!is_linear(mul, e1, c, ts) || !is_linear(-mul, e2, c, ts)) return false; s = e1->get_sort(); is_strict = !is_not; } else if (m.is_eq(lit, e1, e2) && a.is_int_real(e1)) { expr *t, *num; rational num_val, d_val, z; bool is_int; if (a.is_mod(e1, t, num) && a.is_numeral(num, num_val, is_int) && is_int && a.is_numeral(e2, z) && z.is_zero()) { // divsibility constraint: t % num == 0 <=> num | t if (num_val.is_zero()) { IF_VERBOSE(1, verbose_stream() << "div by zero" << mk_pp(lit, m) << "\n";); return false; } d = num_val; if (!is_linear(mul, t, c, ts)) return false; } else if (a.is_mod(e2, t, num) && a.is_numeral(num, num_val, is_int) && is_int && a.is_numeral(e1, z) && z.is_zero()) { // divsibility constraint: 0 == t % num <=> num | t if (num_val.is_zero()) { IF_VERBOSE(1, verbose_stream() << "div by zero" << mk_pp(lit, m) << "\n";); return false; } d = num_val; if (!is_linear(mul, t, c, ts)) return false; } else { // equality or disequality if (!is_linear(mul, e1, c, ts) || !is_linear(-mul, e2, c, ts)) return false; if (is_not) is_diseq = true; else is_eq = true; } s = e1->get_sort(); } else { IF_VERBOSE(2, verbose_stream() << "can't project:" << mk_pp(lit, m) << "\n";); TRACE(qe, tout << "Failed to project: " << mk_pp(lit, m) << "\n";); return false; } if (ts.empty()) t = a.mk_numeral(rational(0), s); else if (ts.size() == 1) t = ts.get(0); else t = a.mk_add(ts.size(), ts.data()); return true; } bool project(model &mdl, expr_ref_vector &lits) { unsigned num_pos = 0; unsigned num_neg = 0; bool use_eq = false; expr_ref_vector new_lits(m); expr_ref eq_term(m); m_lits.reset(); m_terms.reset(); m_coeffs.reset(); m_strict.reset(); m_eq.reset(); for (auto lit : lits) { rational c(0), d(0); expr_ref t(m); bool is_strict = false; bool is_eq = false; bool is_diseq = false; if (!(*m_var)(lit)) { new_lits.push_back(lit); continue; } if (is_linear(lit, c, t, d, is_strict, is_eq, is_diseq)) { if (c.is_zero()) { m_rw(lit, t); new_lits.push_back(t); } else if (is_eq) { if (!use_eq) { // c*x + t = 0 <=> x = -t/c eq_term = mk_mul(-(rational::one() / c), t); use_eq = true; } m_lits.push_back(lit); m_coeffs.push_back(c); m_terms.push_back(t); m_strict.push_back(false); m_eq.push_back(true); } else { if (is_diseq) { // c*x + t != 0 // find out whether c*x + t < 0, or c*x + t > 0 expr_ref cx(m), cxt(m), val(m); rational r; cx = mk_mul(c, m_var->x()); cxt = mk_add(cx, t); val = mdl(cxt); VERIFY(a.is_numeral(val, r)); SASSERT(r > rational::zero() || r < rational::zero()); if (r > rational::zero()) { c = -c; t = mk_mul(-(rational::one()), t); } is_strict = true; } m_lits.push_back(lit); m_coeffs.push_back(c); m_terms.push_back(t); m_strict.push_back(is_strict); m_eq.push_back(false); if (c.is_pos()) { ++num_pos; } else { ++num_neg; } } } else return false; } if (use_eq) { TRACE(qe, tout << "Using equality term: " << mk_pp(eq_term, m) << "\n";); // substitute eq_term for x everywhere for (unsigned i = 0; i < m_lits.size(); ++i) { expr_ref cx(m), cxt(m), z(m), result(m); cx = mk_mul(m_coeffs[i], eq_term); cxt = mk_add(cx, m_terms.get(i)); z = a.mk_numeral(rational(0), eq_term->get_sort()); if (m_eq[i]) { // c*x + t = 0 result = a.mk_eq(cxt, z); } else if (m_strict[i]) { // c*x + t < 0 result = a.mk_lt(cxt, z); } else { // c*x + t <= 0 result = a.mk_le(cxt, z); } m_rw(result); new_lits.push_back(result); } } lits.reset(); lits.append(new_lits); if (use_eq || num_pos == 0 || num_neg == 0) { return true; } bool use_pos = num_pos < num_neg; unsigned max_t = find_max(mdl, use_pos); expr_ref new_lit(m); for (unsigned i = 0; i < m_lits.size(); ++i) { if (i != max_t) { if (m_coeffs[i].is_pos() == use_pos) { new_lit = mk_le(i, max_t); } else { new_lit = mk_lt(i, max_t); } lits.push_back(new_lit); TRACE(qe, tout << "Old literal: " << mk_pp(m_lits.get(i), m) << "\n"; tout << "New literal: " << mk_pp(new_lit, m) << "\n";); } } return true; } bool project(model &mdl, app_ref_vector const &lits, expr_map &map, app_ref &div_lit) { unsigned num_pos = 0; // number of positive literals true in the model unsigned num_neg = 0; // number of negative literals true in the model m_lits.reset(); m_terms.reset(); m_coeffs.reset(); m_divs.reset(); m_strict.reset(); m_eq.reset(); expr_ref var_val = mdl(m_var->x()); unsigned eq_idx = lits.size(); for (unsigned i = 0; i < lits.size(); ++i) { rational c(0), d(0); expr_ref t(m); bool is_strict = false; bool is_eq = false; bool is_diseq = false; if (!(*m_var)(lits.get(i))) continue; if (is_linear(lits.get(i), c, t, d, is_strict, is_eq, is_diseq)) { TRACE(qe, tout << "Literal: " << mk_pp(lits.get(i), m) << "\n";); if (c.is_zero()) { TRACE(qe, tout << "independent of variable\n";); continue; } // evaluate c*x + t in the model expr_ref cx(m), cxt(m), val(m); rational r; cx = mk_mul(c, m_var->x()); cxt = mk_add(cx, t); val = mdl(cxt); VERIFY(a.is_numeral(val, r)); if (is_eq) { TRACE(qe, tout << "equality term\n";); // check if the equality is true in the mdl if (eq_idx == lits.size() && r == rational::zero()) { eq_idx = m_lits.size(); } m_lits.push_back(lits.get(i)); m_coeffs.push_back(c); m_terms.push_back(t); m_strict.push_back(false); m_eq.push_back(true); m_divs.push_back(d); } else { TRACE(qe, tout << "not an equality term\n";); if (is_diseq) { // c*x + t != 0 // find out whether c*x + t < 0, or c*x + t > 0 if (r > rational::zero()) { c = -c; t = mk_mul(-(rational::one()), t); r = -r; } // note: if the disequality is false in the model, // r==0 and we end up choosing c*x + t < 0 is_strict = true; } m_lits.push_back(lits.get(i)); m_coeffs.push_back(c); m_terms.push_back(t); m_strict.push_back(is_strict); m_eq.push_back(false); m_divs.push_back(d); if (d.is_zero()) { // not a div term if ((is_strict && r < rational::zero()) || (!is_strict && r <= rational::zero())) { // literal true in the // model if (c.is_pos()) ++num_pos; else ++num_neg; } } } TRACE(qe, tout << "c: " << c << "\n"; tout << "t: " << mk_pp(t, m) << "\n"; tout << "d: " << d << "\n";); } else return false; } rational lcm_coeffs(1), lcm_divs(1); if (a.is_int(m_var->x())) { // lcm of (absolute values of) coeffs for (unsigned i = 0; i < m_lits.size(); i++) { lcm_coeffs = lcm(lcm_coeffs, abs(m_coeffs[i])); } // normalize coeffs of x to +/-lcm_coeffs and scale terms and divs // appropriately; find lcm of scaled-up divs for (unsigned i = 0; i < m_lits.size(); i++) { rational factor(lcm_coeffs / abs(m_coeffs[i])); if (!factor.is_one() && !a.is_zero(m_terms.get(i))) m_terms[i] = a.mk_mul(a.mk_numeral(factor, a.mk_int()), m_terms.get(i)); m_coeffs[i] = (m_coeffs[i].is_pos() ? lcm_coeffs : -lcm_coeffs); if (!m_divs[i].is_zero()) { m_divs[i] *= factor; lcm_divs = lcm(lcm_divs, m_divs[i]); } TRACE(qe, tout << "normalized coeff: " << m_coeffs[i] << "\n"; tout << "normalized term: " << mk_pp(m_terms.get(i), m) << "\n"; tout << "normalized div: " << m_divs[i] << "\n";); } // consider new divisibility literal (lcm_coeffs | (lcm_coeffs * x)) lcm_divs = lcm(lcm_divs, lcm_coeffs); TRACE(qe, tout << "lcm of coeffs: " << lcm_coeffs << "\n"; tout << "lcm of divs: " << lcm_divs << "\n";); } expr_ref z(a.mk_numeral(rational::zero(), true), m); expr_ref x_term_val(m); // use equality term if (eq_idx < lits.size()) { if (a.is_real(m_var->x())) { // c*x + t = 0 <=> x = -t/c expr_ref eq_term(mk_mul(-(rational::one() / m_coeffs[eq_idx]), m_terms.get(eq_idx)), m); m_rw(eq_term); map.insert(m_var->x(), eq_term, nullptr); TRACE(qe, tout << "Using equality term: " << mk_pp(eq_term, m) << "\n";); } else { // find substitution term for (lcm_coeffs * x) if (m_coeffs[eq_idx].is_pos()) x_term_val = a.mk_uminus(m_terms.get(eq_idx)); else x_term_val = m_terms.get(eq_idx); m_rw(x_term_val); TRACE(qe, tout << "Using equality literal: " << mk_pp(m_lits.get(eq_idx), m) << "\n"; tout << "substitution for (lcm_coeffs * x): " << mk_pp(x_term_val, m) << "\n";); // can't simply substitute for x; need to explicitly substitute // the lits mk_lit_substitutes(x_term_val, map, eq_idx); if (!lcm_coeffs.is_one()) { // new div constraint: lcm_coeffs | x_term_val div_lit = m.mk_eq(a.mk_mod(x_term_val, a.mk_numeral(lcm_coeffs, a.mk_int())), z); } } return true; } expr_ref new_lit(m); if (num_pos == 0 || num_neg == 0) { TRACE( qe, if (num_pos == 0) { tout << "virtual substitution with +infinity\n"; } else { tout << "virtual substitution with -infinity\n"; }); /** * make all equalities false; * if num_pos = 0 (num_neg = 0), make all positive (negative) * inequalities false; make the rest inequalities true; substitute * value of x under given model for the rest (div terms) */ if (a.is_int(m_var->x())) { // to substitute for (lcm_coeffs * x), it suffices to pick // some element in the congruence class of (lcm_coeffs * x) mod // lcm_divs; simply substituting var_val for x in the literals // does this job; but to keep constants small, we use // (lcm_coeffs * var_val) % lcm_divs instead rational var_val_num; VERIFY(a.is_numeral(var_val, var_val_num)); rational mod_val = mod(lcm_coeffs * var_val_num, lcm_divs); x_term_val = a.mk_numeral(mod_val, true); std::cout << "t"; TRACE(qe, tout << "Substitution for (lcm_coeffs * x): " << mk_pp(x_term_val, m) << "\n";); } for (unsigned i = 0; i < m_lits.size(); i++) { if (!m_divs[i].is_zero()) { // m_divs[i] | (x_term_val + m_terms[i]) // -- x_term_val is the absolute value, negate it if needed if (m_coeffs.get(i).is_pos()) new_lit = a.mk_add(m_terms.get(i), x_term_val); else new_lit = a.mk_add(m_terms.get(i), a.mk_uminus(x_term_val)); // XXX Our handling of divisibility constraints is very // fragile. // XXX Rewrite before applying divisibility to preserve // syntactic structure m_rw(new_lit); expr* mod_val = a.mk_numeral(m_divs[i], true); expr* mod_expr = a.mk_mod(new_lit, mod_val); new_lit = m.mk_eq(mod_expr, z); } else if (m_eq[i] || (num_pos == 0 && m_coeffs[i].is_pos()) || (num_neg == 0 && m_coeffs[i].is_neg())) { new_lit = m.mk_false(); } else { new_lit = m.mk_true(); } map.insert(m_lits.get(i), new_lit, nullptr); TRACE(qe, tout << "Old literal: " << mk_pp(m_lits.get(i), m) << "\n"; tout << "New literal: " << mk_pp(new_lit, m) << "\n";); } return true; } bool use_pos = num_pos < num_neg; // pick a side; both are sound unsigned max_t = find_max(mdl, use_pos); TRACE( qe, if (use_pos) { tout << "virtual substitution with upper bound:\n"; } else { tout << "virtual substitution with lower bound:\n"; } tout << "test point: " << mk_pp(m_lits.get(max_t), m) << "\n"; tout << "coeff: " << m_coeffs[max_t] << "\n"; tout << "term: " << mk_pp(m_terms.get(max_t), m) << "\n"; tout << "is_strict: " << m_strict[max_t] << "\n";); if (a.is_real(m_var->x())) { for (unsigned i = 0; i < m_lits.size(); ++i) { if (i != max_t) { if (m_eq[i]) { if (!m_strict[max_t]) { new_lit = mk_eq(i, max_t); } else { new_lit = m.mk_false(); } } else if (m_coeffs[i].is_pos() == use_pos) { new_lit = mk_le(i, max_t); } else { new_lit = mk_lt(i, max_t); } } else { new_lit = m.mk_true(); } map.insert(m_lits.get(i), new_lit, nullptr); TRACE(qe, tout << "Old literal: " << mk_pp(m_lits.get(i), m) << "\n"; tout << "New literal: " << mk_pp(new_lit, m) << "\n";); } } else { SASSERT(a.is_int(m_var->x())); // mk substitution term for (lcm_coeffs * x) // evaluate c*x + t for the literal at max_t expr_ref cx(m), cxt(m), val(m); rational r; cx = mk_mul(m_coeffs[max_t], m_var->x()); cxt = mk_add(cx, m_terms.get(max_t)); val = mdl(cxt); VERIFY(a.is_numeral(val, r)); // get the offset from the smallest/largest possible value for x // literal smallest/largest val of x // ------- -------------------------- // l < x l+1 // l <= x l // x < u u-1 // x <= u u rational offset; if (m_strict[max_t]) { offset = abs(r) - rational::one(); } else { offset = abs(r); } // obtain the offset modulo lcm_divs offset %= lcm_divs; // for strict negative literal (i.e. strict lower bound), // substitution term is (t+1+offset); for non-strict, it's // (t+offset) // // for positive term, subtract from 0 expr* offset_expr = a.mk_numeral(offset, true); x_term_val = mk_add(m_terms.get(max_t), offset_expr); if (m_strict[max_t]) { expr* one = a.mk_numeral(rational::one(), true); x_term_val = a.mk_add(x_term_val, one); } if (m_coeffs[max_t].is_pos()) { x_term_val = a.mk_uminus(x_term_val); } m_rw(x_term_val); TRACE(qe, tout << "substitution for (lcm_coeffs * x): " << mk_pp(x_term_val, m) << "\n";); // obtain substitutions for all literals in map mk_lit_substitutes(x_term_val, map, max_t); if (!lcm_coeffs.is_one()) { // new div constraint: lcm_coeffs | x_term_val expr* mod_val = a.mk_numeral(lcm_coeffs, true); expr* mod_expr = a.mk_mod(x_term_val, mod_val); div_lit = m.mk_eq(mod_expr, z); } } return true; } unsigned find_max(model &mdl, bool do_pos) { unsigned result = UINT_MAX; bool found = false; bool found_strict = false; rational found_val(0), r, r_plus_x, found_c; expr_ref val(m); // evaluate x in mdl rational r_x; val = mdl(m_var->x()); VERIFY(a.is_numeral(val, r_x)); for (unsigned i = 0; i < m_terms.size(); ++i) { rational const &ac = m_coeffs[i]; if (!m_eq[i] && ac.is_pos() == do_pos) { val = mdl(m_terms.get(i)); VERIFY(a.is_numeral(val, r)); r /= abs(ac); // skip the literal if false in the model if (do_pos) { r_plus_x = r + r_x; } else { r_plus_x = r - r_x; } if (!((m_strict[i] && r_plus_x < rational::zero()) || (!m_strict[i] && r_plus_x <= rational::zero()))) { continue; } IF_VERBOSE( 2, verbose_stream() << "max: " << mk_pp(m_terms.get(i), m) << " " << r << " " << (!found || r > found_val || (r == found_val && !found_strict && m_strict[i])) << "\n";); if (!found || r > found_val || (r == found_val && !found_strict && m_strict[i])) { result = i; found_val = r; found_c = ac; found = true; found_strict = m_strict[i]; } } } SASSERT(found); return result; } // ax + t <= 0 // bx + s <= 0 // a and b have different signs. // Infer: a|b|x + |b|t + |a|bx + |a|s <= 0 // e.g. |b|t + |a|s <= 0 expr_ref mk_lt(unsigned i, unsigned j) { rational const &ac = m_coeffs[i]; rational const &bc = m_coeffs[j]; SASSERT(ac.is_pos() != bc.is_pos()); SASSERT(ac.is_neg() != bc.is_neg()); expr_ref bt(m), as(m), ts(m), z(m); expr *t = m_terms.get(i); expr *s = m_terms.get(j); bt = mk_mul(abs(bc), t); as = mk_mul(abs(ac), s); ts = mk_add(bt, as); z = a.mk_numeral(rational(0), t->get_sort()); expr_ref result1(m), result2(m); if (m_strict[i] || m_strict[j]) { result1 = a.mk_lt(ts, z); } else { result1 = a.mk_le(ts, z); } m_rw(result1, result2); return result2; } // ax + t <= 0 // bx + s <= 0 // a and b have same signs. // encode:// t/|a| <= s/|b| // e.g. |b|t <= |a|s expr_ref mk_le(unsigned i, unsigned j) { rational const &ac = m_coeffs[i]; rational const &bc = m_coeffs[j]; SASSERT(ac.is_pos() == bc.is_pos()); SASSERT(ac.is_neg() == bc.is_neg()); expr_ref bt(m), as(m); expr *t = m_terms.get(i); expr *s = m_terms.get(j); bt = mk_mul(abs(bc), t); as = mk_mul(abs(ac), s); expr_ref result1(m), result2(m); if (!m_strict[j] && m_strict[i]) { result1 = a.mk_lt(bt, as); } else { result1 = a.mk_le(bt, as); } m_rw(result1, result2); return result2; } // ax + t = 0 // bx + s <= 0 // replace equality by (-t/a == -s/b), or, as = bt expr_ref mk_eq(unsigned i, unsigned j) { expr_ref as(m), bt(m); as = mk_mul(m_coeffs[i], m_terms.get(j)); bt = mk_mul(m_coeffs[j], m_terms.get(i)); expr_ref result(m); result = m.mk_eq(as, bt); m_rw(result); return result; } expr *mk_add(expr *t1, expr *t2) { return a.mk_add(t1, t2); } expr *mk_mul(rational const &r, expr *t2) { expr *t1 = a.mk_numeral(r, t2->get_sort()); return a.mk_mul(t1, t2); } /** * walk the ast of fml and introduce a fresh variable for every mod term * (updating the mdl accordingly) */ void factor_mod_terms(expr_ref &fml, app_ref_vector &vars, model &mdl) { expr_ref_vector todo(m), eqs(m); expr_map factored_terms(m); ast_mark done; todo.push_back(fml); while (!todo.empty()) { expr *e = todo.back(); if (!is_app(e) || done.is_marked(e)) { todo.pop_back(); continue; } app *ap = to_app(e); bool all_done = true, changed = false; expr_ref_vector args(m); for (expr *old_arg : *ap) { if (!done.is_marked(old_arg)) { todo.push_back(old_arg); all_done = false; } if (!all_done) continue; // all args so far have been processed // get the correct arg to use proof *pr = nullptr; expr *new_arg = nullptr; factored_terms.get(old_arg, new_arg, pr); if (new_arg) { // changed args.push_back(new_arg); changed = true; } else { // not changed args.push_back(old_arg); } } if (all_done) { // all args processed; make new term func_decl *d = ap->get_decl(); expr_ref new_term(m); new_term = m.mk_app(d, args.size(), args.data()); // check for mod and introduce new var if (a.is_mod(ap)) { app_ref new_var(m); new_var = m.mk_fresh_const("mod_var", d->get_range()); eqs.push_back(m.mk_eq(new_var, new_term)); // obtain value of new_term in mdl expr_ref val = mdl(new_term); // use the variable from now on new_term = new_var; changed = true; // update vars and mdl vars.push_back(new_var); mdl.register_decl(new_var->get_decl(), val); } if (changed) { factored_terms.insert(e, new_term, nullptr); } done.mark(e, true); todo.pop_back(); } } // mk new fml proof *pr = nullptr; expr *new_fml = nullptr; factored_terms.get(fml, new_fml, pr); if (new_fml) { fml = new_fml; // add in eqs fml = m.mk_and(fml, m.mk_and(eqs.size(), eqs.data())); } else { // unchanged SASSERT(eqs.empty()); } } /** * factor out mod terms by using divisibility terms; * * for now, only handle mod equalities of the form (t1 % num == t2), * replacing it by the equivalent (num | (t1-t2)) /\ (0 <= t2 < abs(num)); * the divisibility atom is a special mod term ((t1-t2) % num == 0) */ void mod2div(expr_ref &fml, expr_map &map) { expr *new_fml = nullptr; proof *pr = nullptr; map.get(fml, new_fml, pr); if (new_fml) { fml = new_fml; return; } expr_ref z(a.mk_numeral(rational::zero(), true), m); bool is_mod_eq = false; expr *e1, *e2, *num; expr_ref t1(m), t2(m); rational num_val; bool is_int; // check if fml is a mod equality (t1 % num) == t2 if (m.is_eq(fml, e1, e2)) { expr *t; if (a.is_mod(e1, t, num) && a.is_numeral(num, num_val, is_int) && is_int) { t1 = t; t2 = e2; is_mod_eq = true; } else if (a.is_mod(e2, t, num) && a.is_numeral(num, num_val, is_int) && is_int) { t1 = t; t2 = e1; is_mod_eq = true; } } if (is_mod_eq) { // recursively mod2div for t1 and t2 mod2div(t1, map); mod2div(t2, map); rational t2_num; if (a.is_numeral(t2, t2_num) && t2_num.is_zero()) { // already in the desired form; // new_fml is (num_val | t1) expr* mod_val = a.mk_numeral(num_val, true); expr* mod_expr = a.mk_mod(t1, mod_val); new_fml = m.mk_eq(mod_expr, z); } else { expr_ref_vector lits(m); // num_val | (t1 - t2) lits.push_back( m.mk_eq(a.mk_mod(a.mk_sub(t1, t2), a.mk_numeral(num_val, true)), z)); // 0 <= t2 lits.push_back(a.mk_le(z, t2)); // t2 < abs (num_val) expr* abs_val = a.mk_numeral(abs(num_val), true); lits.push_back(a.mk_lt(t2, abs_val)); new_fml = m.mk_and(lits.size(), lits.data()); } } else if (!is_app(fml)) { new_fml = fml; } else { app *a = to_app(fml); expr_ref_vector children(m); expr_ref ch(m); for (unsigned i = 0; i < a->get_num_args(); i++) { ch = a->get_arg(i); mod2div(ch, map); children.push_back(ch); } new_fml = m.mk_app(a->get_decl(), children.size(), children.data()); } map.insert(fml, new_fml, nullptr); fml = new_fml; } void collect_lits(expr *fml, app_ref_vector &lits) { expr_ref_vector todo(m); ast_mark visited; todo.push_back(fml); while (!todo.empty()) { expr *e = todo.back(); todo.pop_back(); if (visited.is_marked(e)) { continue; } visited.mark(e, true); if (!is_app(e)) { continue; } app *a = to_app(e); if (m.is_and(a) || m.is_or(a)) { for (unsigned i = 0; i < a->get_num_args(); ++i) { todo.push_back(a->get_arg(i)); } } else { lits.push_back(a); } } SASSERT(todo.empty()); visited.reset(); } /** * assume that all coeffs of x are the same, say c * substitute x_term_val for (c*x) in all lits and update map * make the literal at idx true */ void mk_lit_substitutes(expr_ref const &x_term_val, expr_map &map, unsigned idx) { expr_ref z(a.mk_numeral(rational::zero(), true), m); expr_ref cxt(m), new_lit(m); for (unsigned i = 0; i < m_lits.size(); ++i) { if (i == idx) { new_lit = m.mk_true(); } else { // cxt if (m_coeffs[i].is_neg()) { cxt = a.mk_sub(m_terms.get(i), x_term_val); } else { cxt = a.mk_add(m_terms.get(i), x_term_val); } if (m_divs[i].is_zero()) { if (m_eq[i]) { new_lit = m.mk_eq(cxt, z); } else if (m_strict[i]) { new_lit = a.mk_lt(cxt, z); } else { new_lit = a.mk_le(cxt, z); } m_rw(new_lit); } else { // div term // XXX rewrite before applying mod to ensure mod is the // top-level operator m_rw(cxt); expr* mod_val = a.mk_numeral(m_divs[i], true); expr* mod_expr = a.mk_mod(cxt, mod_val); new_lit = m.mk_eq(mod_expr, z); } } map.insert(m_lits.get(i), new_lit, nullptr); TRACE(qe, tout << "Old literal: " << mk_pp(m_lits.get(i), m) << "\n"; tout << "New literal: " << mk_pp(new_lit, m) << "\n";); } } void substitute(expr_ref &fml, app_ref_vector &lits, expr_map &map) { expr_substitution sub(m); // literals for (unsigned i = 0; i < lits.size(); i++) { expr *new_lit = nullptr; proof *pr = nullptr; app *old_lit = lits.get(i); map.get(old_lit, new_lit, pr); if (new_lit) { sub.insert(old_lit, new_lit); TRACE(qe, tout << "old lit " << mk_pp(old_lit, m) << "\n"; tout << "new lit " << mk_pp(new_lit, m) << "\n";); } } // substitute for x, if any expr *x_term = nullptr; proof *pr = nullptr; map.get(m_var->x(), x_term, pr); if (x_term) { sub.insert(m_var->x(), x_term); TRACE(qe, tout << "substituting " << mk_pp(m_var->x(), m) << " by " << mk_pp(x_term, m) << "\n";); } scoped_ptr rep = mk_default_expr_replacer(m, false); rep->set_substitution(&sub); (*rep)(fml); } public: arith_project_util(ast_manager &m) : m(m), a(m), m_rw(m), m_lits(m), m_terms(m) {} // OLD AND UNUSED INTERFACE expr_ref operator()(model &mdl, app_ref_vector &vars, expr_ref_vector const &lits) { app_ref_vector new_vars(m); expr_ref_vector result(lits); for (unsigned i = 0; i < vars.size(); ++i) { app *v = vars.get(i); m_var = alloc(contains_app, m, v); bool fail = a.is_int(v) || !project(mdl, result); if (fail) new_vars.push_back(v); IF_VERBOSE( 2, if (fail) { verbose_stream() << "can't project:" << mk_pp(v, m) << "\n"; }); TRACE( qe, if (!fail) { tout << "projected: " << mk_pp(v, m) << "\n"; for (unsigned i = 0; i < result.size(); ++i) { tout << mk_pp(result.get(i), m) << "\n"; } } else { tout << "Failed to project: " << mk_pp(v, m) << "\n"; }); } vars.reset(); vars.append(new_vars); return mk_and(result); } void operator()(model &mdl, app_ref_vector &vars, expr_ref &fml) { expr_map map(m); operator()(mdl, vars, fml, map); } void operator()(model &mdl, app_ref_vector &vars, expr_ref &fml, expr_map &map) { app_ref_vector new_vars(m); // factor out mod terms by introducing new variables TRACE(qe, tout << "before factoring out mod terms:" << "\n"; tout << mk_pp(fml, m) << "\n"; tout << "mdl:\n"; model_pp(tout, mdl); tout << "\n";); factor_mod_terms(fml, vars, mdl); TRACE(qe, tout << "after factoring out mod terms:" << "\n"; tout << mk_pp(fml, m) << "\n"; tout << "updated mdl:\n"; model_pp(tout, mdl); tout << "\n";); app_ref_vector lits(m); // expr_map map (m); for (unsigned i = 0; i < vars.size(); ++i) { app *v = vars.get(i); TRACE(qe, tout << "projecting variable: " << mk_pp(v, m) << "\n";); m_var = alloc(contains_app, m, v); map.reset(); lits.reset(); if (a.is_int(v)) { // factor out mod terms using div terms expr_map mod_map(m); mod2div(fml, mod_map); TRACE(qe, tout << "after mod2div:" << "\n"; tout << mk_pp(fml, m) << "\n";); } collect_lits(fml, lits); app_ref div_lit(m); if (project(mdl, lits, map, div_lit)) { substitute(fml, lits, map); if (div_lit) { fml = m.mk_and(fml, div_lit); } TRACE(qe, tout << "projected: " << mk_pp(v, m) << " " << mk_pp(fml, m) << "\n";); } else { IF_VERBOSE(2, verbose_stream() << "can't project:" << mk_pp(v, m) << "\n";); TRACE(qe, tout << "Failed to project: " << mk_pp(v, m) << "\n";); new_vars.push_back(v); } } vars.reset(); vars.append(new_vars); m_rw(fml); } }; class array_project_eqs_util { ast_manager &m; array_util m_arr_u; model_ref M; app_ref m_v; // array var to eliminate ast_mark m_has_stores_v; // has stores for m_v expr_ref m_subst_term_v; // subst term for m_v expr_safe_replace m_true_sub_v; // subst for true equalities expr_safe_replace m_false_sub_v; // subst for false equalities expr_ref_vector m_aux_lits_v; expr_ref_vector m_idx_lits_v; app_ref_vector m_aux_vars; model_evaluator_array_util m_mev; void reset_v() { m_v = nullptr; m_has_stores_v.reset(); m_subst_term_v = nullptr; m_true_sub_v.reset(); m_false_sub_v.reset(); m_aux_lits_v.reset(); m_idx_lits_v.reset(); } void reset() { M = nullptr; reset_v(); m_aux_vars.reset(); } /** * find all array equalities on m_v or containing stores on/of m_v * * also mark terms containing stores on/of m_v */ void find_arr_eqs(expr_ref const &fml, expr_ref_vector &eqs) { if (!is_app(fml)) return; ast_mark done; ptr_vector todo; todo.push_back(to_app(fml)); while (!todo.empty()) { app *a = todo.back(); if (done.is_marked(a)) { todo.pop_back(); continue; } bool all_done = true; bool args_have_stores = false; for (expr *arg : *a) { if (!is_app(arg)) continue; if (!done.is_marked(arg)) { all_done = false; todo.push_back(to_app(arg)); } else if (!args_have_stores && m_has_stores_v.is_marked(arg)) { args_have_stores = true; } } if (!all_done) continue; todo.pop_back(); // mark if a has stores if ((!m_arr_u.is_select(a) && args_have_stores) || (m_arr_u.is_store(a) && (a->get_arg(0) == m_v))) { m_has_stores_v.mark(a, true); TRACE(qe, tout << "has stores:\n" << mk_pp(a, m) << "\n"); } // check if a is a relevant array equality if (m.is_eq(a)) { expr *a0 = to_app(a)->get_arg(0); expr *a1 = to_app(a)->get_arg(1); if (a0 == m_v || a1 == m_v || (m_arr_u.is_array(a0) && m_has_stores_v.is_marked(a))) { eqs.push_back(a); } } // else, we can check for disequalities and handle them using // extensionality, but it's not necessary done.mark(a, true); } } /** * factor out select terms on m_v using fresh consts */ void factor_selects(app_ref &fml) { expr_map sel_cache(m); ast_mark done; ptr_vector todo; expr_ref_vector pinned(m); // to ensure a reference todo.push_back(fml); while (!todo.empty()) { app *a = todo.back(); if (done.is_marked(a)) { todo.pop_back(); continue; } expr_ref_vector args(m); bool all_done = true; for (expr *arg : *a) { if (!is_app(arg)) continue; if (!done.is_marked(arg)) { all_done = false; todo.push_back(to_app(arg)); } else if (all_done) { // all done so far.. expr *arg_new = nullptr; proof *pr; sel_cache.get(arg, arg_new, pr); if (!arg_new) { arg_new = arg; } args.push_back(arg_new); } } if (!all_done) continue; todo.pop_back(); expr_ref a_new(m.mk_app(a->get_decl(), args.size(), args.data()), m); // if a_new is select on m_v, introduce new constant if (m_arr_u.is_select(a) && (args.get(0) == m_v || m_has_stores_v.is_marked(args.get(0)))) { sort *val_sort = get_array_range(m_v->get_sort()); app_ref val_const(m.mk_fresh_const("sel", val_sort), m); m_aux_vars.push_back(val_const); // extend M to include val_const expr_ref val(m); m_mev.eval(*M, a_new, val); M->register_decl(val_const->get_decl(), val); // add equality m_aux_lits_v.push_back(m.mk_eq(val_const, a_new)); // replace select by const a_new = val_const; } if (a != a_new) { sel_cache.insert(a, a_new, nullptr); pinned.push_back(a_new); } done.mark(a, true); } expr *res = nullptr; proof *pr; sel_cache.get(fml, res, pr); if (res) { fml = to_app(res); } } /** * convert partial equality expression p_exp to an equality by * recursively adding stores on diff indices * * add stores on lhs or rhs depending on whether stores_on_rhs is false/true */ void convert_peq_to_eq(expr *p_exp, app_ref &eq, bool stores_on_rhs = true) { peq p(to_app(p_exp), m); app_ref_vector diff_val_consts(m); p.mk_eq(diff_val_consts, eq, stores_on_rhs); m_aux_vars.append(diff_val_consts); // extend M to include diff_val_consts expr_ref arr(m); expr_ref_vector I(m); p.lhs(arr); p.get_diff_indices(I); expr_ref val(m); unsigned num_diff = diff_val_consts.size(); SASSERT(num_diff == I.size()); for (unsigned i = 0; i < num_diff; i++) { // mk val term ptr_vector sel_args; sel_args.push_back(arr); sel_args.push_back(I.get(i)); expr_ref val_term( m_arr_u.mk_select(sel_args.size(), sel_args.data()), m); // evaluate and assign to ith diff_val_const m_mev.eval(*M, val_term, val); M->register_decl(diff_val_consts.get(i)->get_decl(), val); } } /** * mk (e0 ==indices e1) * * result has stores if either e0 or e1 or an index term has stores */ void mk_peq(expr *e0, expr *e1, unsigned num_indices, expr *const *indices, app_ref &result) { peq p(e0, e1, num_indices, indices, m); p.mk_peq(result); } void find_subst_term(app *eq) { app_ref p_exp(m); mk_peq(eq->get_arg(0), eq->get_arg(1), 0, nullptr, p_exp); bool subst_eq_found = false; while (true) { TRACE(qe, tout << "processing peq:\n"; tout << mk_pp(p_exp, m) << "\n";); peq p(p_exp, m); expr_ref lhs(m), rhs(m); p.lhs(lhs); p.rhs(rhs); if (!m_has_stores_v.is_marked(lhs)) { std::swap(lhs, rhs); } if (m_has_stores_v.is_marked(lhs)) { /** project using the equivalence: * * (store(arr0,idx,x) ==I arr1) <-> * * (idx \in I => (arr0 ==I arr1)) /\ * (idx \not\in I => (arr0 ==I+idx arr1) /\ (arr1[idx] == x))) */ expr_ref_vector I(m); p.get_diff_indices(I); app *a_lhs = to_app(lhs); expr *arr0 = a_lhs->get_arg(0); expr *idx = a_lhs->get_arg(1); expr *x = a_lhs->get_arg(2); expr *arr1 = rhs; // check if (idx \in I) in M bool idx_in_I = false; expr_ref_vector idx_diseq(m); if (!I.empty()) { expr_ref val(m); m_mev.eval(*M, idx, val); for (unsigned i = 0; i < I.size() && !idx_in_I; i++) { if (idx == I.get(i)) { idx_in_I = true; } else { expr_ref val1(m); expr *idx1 = I.get(i); expr_ref idx_eq(m.mk_eq(idx, idx1), m); m_mev.eval(*M, idx1, val1); if (val == val1) { idx_in_I = true; m_idx_lits_v.push_back(idx_eq); } else { idx_diseq.push_back(m.mk_not(idx_eq)); } } } } if (idx_in_I) { TRACE(qe, tout << "store index in diff indices:\n"; tout << mk_pp(m_idx_lits_v.back(), m) << "\n";); // arr0 ==I arr1 mk_peq(arr0, arr1, I.size(), I.data(), p_exp); TRACE(qe, tout << "new peq:\n"; tout << mk_pp(p_exp, m) << "\n";); } else { m_idx_lits_v.append(idx_diseq); // arr0 ==I+idx arr1 I.push_back(idx); mk_peq(arr0, arr1, I.size(), I.data(), p_exp); TRACE(qe, tout << "new peq:\n"; tout << mk_pp(p_exp, m) << "\n";); // arr1[idx] == x ptr_vector sel_args; sel_args.push_back(arr1); sel_args.push_back(idx); expr_ref arr1_idx( m_arr_u.mk_select(sel_args.size(), sel_args.data()), m); expr_ref eq(m.mk_eq(arr1_idx, x), m); m_aux_lits_v.push_back(eq); TRACE(qe, tout << "new eq:\n"; tout << mk_pp(eq, m) << "\n";); } } else if (lhs == rhs) { // trivial peq (a ==I a) break; } else if (lhs == m_v || rhs == m_v) { subst_eq_found = true; TRACE(qe, tout << "subst eq found!\n";); break; } else { UNREACHABLE(); } } // factor out select terms on m_v from p_exp using fresh constants if (subst_eq_found) { factor_selects(p_exp); TRACE( qe, tout << "after factoring selects:\n"; tout << mk_pp(p_exp, m) << "\n"; for (unsigned i = m_aux_lits_v.size() - m_aux_vars.size(); i < m_aux_lits_v.size(); i++) { tout << mk_pp(m_aux_lits_v.get(i), m) << "\n"; }); // find subst_term bool stores_on_rhs = true; app *a = to_app(p_exp); if (a->get_arg(1) == m_v) { stores_on_rhs = false; } app_ref eq(m); convert_peq_to_eq(p_exp, eq, stores_on_rhs); m_subst_term_v = eq->get_arg(1); TRACE(qe, tout << "subst term found:\n"; tout << mk_pp(m_subst_term_v, m) << "\n";); } } /** * try to substitute for m_v, using array equalities * * compute substitution term and aux lits */ bool project(expr_ref const &fml) { expr_ref_vector eqs(m); ptr_vector true_eqs; // subset of eqs; eqs ensures references find_arr_eqs(fml, eqs); TRACE( qe, tout << "array equalities:\n"; for (unsigned i = 0; i < eqs.size(); i++) { tout << mk_pp(eqs.get(i), m) << "\n"; }); // evaluate eqs in M for (unsigned i = 0; i < eqs.size(); i++) { TRACE(qe, tout << "array equality:\n"; tout << mk_pp(eqs.get(i), m) << "\n";); expr *eq = eqs.get(i); // evaluate eq in M app *a = to_app(eq); expr_ref val(m); m_mev.eval_array_eq(*M, a, a->get_arg(0), a->get_arg(1), val); if (!val) { // XXX HACK: unable to evaluate. set to true? val = m.mk_true(); } SASSERT(m.is_true(val) || m.is_false(val)); if (m.is_false(val)) { m_false_sub_v.insert(eq, m.mk_false()); } else { true_eqs.push_back(to_app(eq)); } } // compute nesting depths of stores on m_v in true_eqs, as follows: // 0 if m_v appears on both sides of equality // 1 if equality is (m_v=t) // 2 if equality is (store(m_v,i,v)=t) // ... unsigned num_true_eqs = true_eqs.size(); vector nds(num_true_eqs); for (unsigned i = 0; i < num_true_eqs; i++) { app *eq = true_eqs.get(i); expr *lhs = eq->get_arg(0); expr *rhs = eq->get_arg(1); bool lhs_has_v = (lhs == m_v || m_has_stores_v.is_marked(lhs)); bool rhs_has_v = (rhs == m_v || m_has_stores_v.is_marked(rhs)); app *store = nullptr; SASSERT(lhs_has_v || rhs_has_v); if (!lhs_has_v) { store = to_app(rhs); } else if (!rhs_has_v) { store = to_app(lhs); } // else v appears on both sides -- trivial equality // put it in the beginning to simplify it away unsigned nd = 0; // nesting depth if (store) { for (nd = 1; m_arr_u.is_store(store); nd++, store = to_app(store->get_arg(0))) /* empty */; SASSERT(store == m_v); } nds[i] = nd; } SASSERT(true_eqs.size() == nds.size()); // sort true_eqs according to nesting depth // use insertion sort for (unsigned i = 1; i < num_true_eqs; i++) { app_ref eq(m); eq = true_eqs.get(i); unsigned nd = nds.get(i); unsigned j = i; for (; j >= 1 && nds.get(j - 1) > nd; j--) { true_eqs.set(j, true_eqs.get(j - 1)); nds.set(j, nds.get(j - 1)); } if (j < i) { true_eqs.set(j, eq); nds.set(j, nd); TRACE(qe, tout << "changing eq order!\n";); } } // search for subst term for (unsigned i = 0; !m_subst_term_v && i < num_true_eqs; i++) { app *eq = true_eqs.get(i); m_true_sub_v.insert(eq, m.mk_true()); // try to find subst term find_subst_term(eq); } return true; } void mk_result(expr_ref &fml) { th_rewriter rw(m); rw(fml); // add in aux_lits and idx_lits expr_ref_vector lits(m); // TODO: eliminate possible duplicates, especially in idx_lits // theory rewriting is a possibility, but not sure if it // introduces unwanted terms such as ite's lits.append(m_idx_lits_v); lits.append(m_aux_lits_v); lits.push_back(fml); fml = m.mk_and(lits.size(), lits.data()); if (m_subst_term_v) { m_true_sub_v.insert(m_v, m_subst_term_v); m_true_sub_v(fml); } else { m_true_sub_v(fml); m_false_sub_v(fml); } rw(fml); SASSERT(!m.is_false(fml)); } public: array_project_eqs_util(ast_manager &m) : m(m), m_arr_u(m), m_v(m), m_subst_term_v(m), m_true_sub_v(m), m_false_sub_v(m), m_aux_lits_v(m), m_idx_lits_v(m), m_aux_vars(m), m_mev(m) {} void operator()(model &mdl, app_ref_vector &arr_vars, expr_ref &fml, app_ref_vector &aux_vars) { reset(); app_ref_vector rem_arr_vars(m); // remaining arr vars M = &mdl; for (unsigned i = 0; i < arr_vars.size(); i++) { reset_v(); m_v = arr_vars.get(i); if (!m_arr_u.is_array(m_v)) { TRACE(qe, tout << "not an array variable: " << mk_pp(m_v, m) << "\n";); aux_vars.push_back(m_v); continue; } TRACE(qe, tout << "projecting equalities on variable: " << mk_pp(m_v, m) << "\n";); if (project(fml)) { mk_result(fml); contains_app contains_v(m, m_v); if (!m_subst_term_v || contains_v(m_subst_term_v)) { rem_arr_vars.push_back(m_v); } TRACE(qe, tout << "after projection: \n"; tout << mk_pp(fml, m) << "\n";); } else { IF_VERBOSE(2, verbose_stream() << "can't project:" << mk_pp(m_v, m) << "\n";); TRACE(qe, tout << "Failed to project: " << mk_pp(m_v, m) << "\n";); rem_arr_vars.push_back(m_v); } } arr_vars.reset(); arr_vars.append(rem_arr_vars); aux_vars.append(m_aux_vars); } }; class array_select_reducer { ast_manager &m; array_util m_arr_u; obj_map m_cache; expr_ref_vector m_pinned; // to ensure a reference expr_ref_vector m_idx_lits; model_ref M; model_evaluator_array_util m_mev; th_rewriter m_rw; ast_mark m_arr_test; ast_mark m_has_stores; bool m_reduce_all_selects; void reset() { m_cache.reset(); m_pinned.reset(); m_idx_lits.reset(); M = nullptr; m_arr_test.reset(); m_has_stores.reset(); m_reduce_all_selects = false; } bool is_equals(expr *e1, expr *e2) { if (e1 == e2) return true; expr_ref val1(m), val2(m); m_mev.eval(*M, e1, val1); m_mev.eval(*M, e2, val2); return (val1 == val2); } void add_idx_cond(expr_ref &cond) { m_rw(cond); if (!m.is_true(cond)) m_idx_lits.push_back(cond); } bool has_stores(expr *e) { if (m_reduce_all_selects) return true; return m_has_stores.is_marked(e); } void mark_stores(app *a, bool args_have_stores) { if (m_reduce_all_selects) return; if (args_have_stores || (m_arr_u.is_store(a) && m_arr_test.is_marked(a->get_arg(0)))) { m_has_stores.mark(a, true); } } bool reduce(expr_ref &e) { if (!is_app(e)) return true; expr *r = nullptr; if (m_cache.find(e, r)) { e = r; return true; } ptr_vector todo; todo.push_back(to_app(e)); while (!todo.empty()) { app *a = todo.back(); unsigned sz = todo.size(); expr_ref_vector args(m); bool dirty = false; bool args_have_stores = false; for (unsigned i = 0; i < a->get_num_args(); ++i) { expr *arg = a->get_arg(i); expr *narg = nullptr; if (!is_app(arg)) args.push_back(arg); else if (m_cache.find(arg, narg)) { args.push_back(narg); dirty |= (arg != narg); if (!args_have_stores && has_stores(narg)) { args_have_stores = true; } } else { todo.push_back(to_app(arg)); } } if (todo.size() > sz) continue; todo.pop_back(); if (dirty) { r = m.mk_app(a->get_decl(), args.size(), args.data()); m_pinned.push_back(r); } else r = a; if (m_arr_u.is_select(r) && has_stores(to_app(r)->get_arg(0))) { r = reduce_core(to_app(r)); } else { mark_stores(to_app(r), args_have_stores); } m_cache.insert(a, r); } SASSERT(r); e = r; return true; } expr *reduce_core(app *a) { if (!m_arr_u.is_store(a->get_arg(0))) return a; SASSERT(a->get_num_args() == 2 && "Multi-dimensional arrays are not supported"); expr *array = a->get_arg(0); expr *j = a->get_arg(1); while (m_arr_u.is_store(array)) { a = to_app(array); expr *idx = a->get_arg(1); expr_ref cond(m); if (is_equals(idx, j)) { cond = m.mk_eq(idx, j); add_idx_cond(cond); return a->get_arg(2); } else { cond = m.mk_not(m.mk_eq(idx, j)); add_idx_cond(cond); array = a->get_arg(0); } } expr *args[2] = {array, j}; expr *r = m_arr_u.mk_select(2, args); m_pinned.push_back(r); return r; } void mk_result(expr_ref &fml) { // conjoin idx lits expr_ref_vector lits(m); lits.append(m_idx_lits); lits.push_back(fml); fml = m.mk_and(lits.size(), lits.data()); // simplify all trivial expressions introduced m_rw(fml); TRACE(qe, tout << "after reducing selects:\n"; tout << mk_pp(fml, m) << "\n";); } public: array_select_reducer(ast_manager &m) : m(m), m_arr_u(m), m_pinned(m), m_idx_lits(m), m_mev(m), m_rw(m), m_reduce_all_selects(false) {} void operator()(model &mdl, app_ref_vector const &arr_vars, expr_ref &fml, bool reduce_all_selects = false) { if (!reduce_all_selects && arr_vars.empty()) return; reset(); M = &mdl; m_reduce_all_selects = reduce_all_selects; // mark vars to eliminate for (unsigned i = 0; i < arr_vars.size(); i++) { m_arr_test.mark(arr_vars.get(i), true); } // assume all arr_vars are of array sort // and assume no store equalities on arr_vars if (reduce(fml)) { mk_result(fml); } else { IF_VERBOSE(2, verbose_stream() << "can't project arrays:" << "\n";); TRACE(qe, tout << "Failed to project arrays\n";); } } }; class array_project_selects_util { typedef obj_map *> sel_map; ast_manager &m; array_util m_arr_u; arith_util m_ari_u; sel_map m_sel_terms; // representative indices for eliminating selects vector m_idx_reprs; vector m_idx_vals; app_ref_vector m_sel_consts; expr_ref_vector m_idx_lits; model_ref M; model_evaluator_array_util m_mev; expr_safe_replace m_sub; ast_mark m_arr_test; void reset() { m_sel_terms.reset(); m_idx_reprs.reset(); m_idx_vals.reset(); m_sel_consts.reset(); m_idx_lits.reset(); M = nullptr; m_sub.reset(); m_arr_test.reset(); } /** * collect sel terms on array vars as given by m_arr_test */ void collect_selects(expr *fml) { if (!is_app(fml)) return; ast_mark done; ptr_vector todo; todo.push_back(to_app(fml)); while (!todo.empty()) { app *a = todo.back(); if (done.is_marked(a)) { todo.pop_back(); continue; } bool all_done = true; for (auto arg : *a) { if (!done.is_marked(arg) && is_app(arg)) { todo.push_back(to_app(arg)); all_done = false; } } if (!all_done) continue; todo.pop_back(); if (m_arr_u.is_select(a)) { expr *arr = a->get_arg(0); if (m_arr_test.is_marked(arr)) { ptr_vector *lst = m_sel_terms.find(to_app(arr)); lst->push_back(a); } } done.mark(a, true); } } expr_ref mk_eqs(expr_ref_vector const &a, expr_ref_vector const &b) { expr_ref r(m); expr_ref_vector args(m); SASSERT(a.size() == b.size()); for (unsigned i = 0; i < a.size(); ++i) args.push_back(m.mk_eq(a.get(i), b.get(i))); r = mk_and(args); return r; } /** * model based ackermannization for sel terms of some array * * update sub with val consts for sel terms */ void ackermann(ptr_vector const &sel_terms) { if (sel_terms.empty()) return; expr *v = sel_terms.get(0)->get_arg(0); // array variable sort *v_sort = v->get_sort(); sort *val_sort = get_array_range(v_sort); unsigned sz = get_array_arity(v_sort); unsigned start = m_idx_reprs.size(); // append at the end expr_ref_vector vals(m), idxs(m); expr_ref val(m); for (app *a : sel_terms) { vals.reset(); idxs.reset(); for (unsigned i = 0; i < sz; i++) { expr *idx = a->get_arg(i + 1); m_mev.eval(*M, idx, val); vals.push_back(val); idxs.push_back(idx); } bool is_new = true; for (unsigned j = start; j < m_idx_vals.size(); j++) { if (m_idx_vals.get(j) == vals) { // idx belongs to the jth equivalence class; // substitute sel term with ith sel const expr *c = m_sel_consts.get(j); m_sub.insert(a, c); // add equality (idx == repr) auto &repr = m_idx_reprs.get(j); m_idx_lits.push_back(mk_eqs(idxs, repr)); is_new = false; break; } } if (is_new) { // new repr, val, and sel const m_idx_reprs.push_back(idxs); m_idx_vals.push_back(vals); app_ref c(m.mk_fresh_const("sel", val_sort), m); m_sel_consts.push_back(c); // substitute sel term with new const m_sub.insert(a, c); // extend M to include c m_mev.eval(*M, a, val); M->register_decl(c->get_decl(), val); } } // sort reprs by their value and add a chain of strict inequalities unsigned num_reprs = m_idx_reprs.size() - start; if (num_reprs == 0) return; auto idx_sort = get_array_domain(v_sort, 0); if (sz == 1 && (m_ari_u.is_real(idx_sort) || m_ari_u.is_int(idx_sort))) { // using insertion sort unsigned end = start + num_reprs; for (unsigned i = start + 1; i < end; i++) { auto repr = m_idx_reprs.get(i).get(0); auto val = m_idx_vals.get(i).get(0); unsigned j = i; for (; j > start; j--) { rational j_val, jm1_val; VERIFY(m_ari_u.is_numeral(val, j_val)); VERIFY(m_ari_u.is_numeral(m_idx_vals.get(j - 1).get(0), jm1_val)); if (j_val >= jm1_val) break; m_idx_reprs[j][0] = m_idx_reprs.get(j - 1).get(0); m_idx_vals[j][0] = m_idx_vals.get(j - 1).get(0); } m_idx_reprs[j][0] = repr; m_idx_vals[j][0] = val; } for (unsigned i = start; i < end - 1; i++) { m_idx_lits.push_back(m_ari_u.mk_lt(m_idx_reprs[i].get(0), m_idx_reprs[i + 1].get(0))); } return; } vector args; for (unsigned i = start; i < m_idx_reprs.size(); ++i) args.push_back(m_idx_reprs.get(i)); for (unsigned i = 0; i < args.size(); ++i) for (unsigned j = i + 1; j < args.size(); ++j) m_idx_lits.push_back( m.mk_not(mk_eqs(args.get(i), args.get(j)))); } void mk_result(expr_ref &fml) { // conjoin idx lits expr_ref_vector lits(m); lits.append(m_idx_lits); lits.push_back(fml); fml = m.mk_and(lits.size(), lits.data()); // substitute for sel terms m_sub(fml); TRACE(qe, tout << "after projection of selects:\n"; tout << mk_pp(fml, m) << "\n";); } /** * project selects * populates idx lits and obtains substitution for sel terms */ bool project(expr_ref &fml) { // collect sel terms -- populate the map m_sel_terms collect_selects(fml); // model based ackermannization for (auto const &[key, value] : m_sel_terms) { TRACE(qe, tout << "ackermann for var: " << mk_pp(key, m) << "\n";); ackermann(*value); } TRACE( qe, tout << "idx lits:\n"; for (unsigned i = 0; i < m_idx_lits.size(); i++) { tout << mk_pp(m_idx_lits.get(i), m) << "\n"; }); return true; } public: array_project_selects_util(ast_manager &m) : m(m), m_arr_u(m), m_ari_u(m), m_sel_consts(m), m_idx_lits(m), m_mev(m), m_sub(m) {} void operator()(model &mdl, app_ref_vector &arr_vars, expr_ref &fml, app_ref_vector &aux_vars) { reset(); M = &mdl; // mark vars to eliminate for (unsigned i = 0; i < arr_vars.size(); i++) { m_arr_test.mark(arr_vars.get(i), true); } // alloc empty map from array var to sel terms over it for (unsigned i = 0; i < arr_vars.size(); i++) { ptr_vector *lst = alloc(ptr_vector); m_sel_terms.insert(arr_vars.get(i), lst); } // assume all arr_vars are of array sort // and they only appear in select terms if (project(fml)) { mk_result(fml); aux_vars.append(m_sel_consts); arr_vars.reset(); } else { IF_VERBOSE(2, verbose_stream() << "can't project arrays:" << "\n";); TRACE(qe, tout << "Failed to project arrays\n";); } // dealloc sel_map::iterator begin = m_sel_terms.begin(), end = m_sel_terms.end(); for (sel_map::iterator it = begin; it != end; it++) { dealloc(it->m_value); } m_sel_terms.reset(); } }; expr_ref arith_project(model &mdl, app_ref_vector &vars, expr_ref_vector const &lits) { ast_manager &m = vars.get_manager(); arith_project_util ap(m); return ap(mdl, vars, lits); } void arith_project(model &mdl, app_ref_vector &vars, expr_ref &fml) { ast_manager &m = vars.get_manager(); arith_project_util ap(m); qe::atom_set pos_lits, neg_lits; is_relevant_default is_relevant; mk_atom_default mk_atom; get_nnf(fml, is_relevant, mk_atom, pos_lits, neg_lits); ap(mdl, vars, fml); } void arith_project(model &mdl, app_ref_vector &vars, expr_ref &fml, expr_map &map) { ast_manager &m = vars.get_manager(); arith_project_util ap(m); qe::atom_set pos_lits, neg_lits; is_relevant_default is_relevant; mk_atom_default mk_atom; get_nnf(fml, is_relevant, mk_atom, pos_lits, neg_lits); ap(mdl, vars, fml, map); } void array_project_eqs(model &mdl, app_ref_vector &arr_vars, expr_ref &fml, app_ref_vector &aux_vars) { ast_manager &m = arr_vars.get_manager(); array_project_eqs_util ap(m); ap(mdl, arr_vars, fml, aux_vars); } void reduce_array_selects(model &mdl, app_ref_vector const &arr_vars, expr_ref &fml, bool reduce_all_selects) { ast_manager &m = arr_vars.get_manager(); array_select_reducer ap(m); ap(mdl, arr_vars, fml, reduce_all_selects); } void reduce_array_selects(model &mdl, expr_ref &fml) { ast_manager &m = fml.get_manager(); app_ref_vector _tmp(m); reduce_array_selects(mdl, _tmp, fml, true); } void array_project_selects(model &mdl, app_ref_vector &arr_vars, expr_ref &fml, app_ref_vector &aux_vars) { ast_manager &m = arr_vars.get_manager(); array_project_selects_util ap(m); ap(mdl, arr_vars, fml, aux_vars); } void array_project(model &mdl, app_ref_vector &arr_vars, expr_ref &fml, app_ref_vector &aux_vars, bool reduce_all_selects) { // 1. project array equalities array_project_eqs(mdl, arr_vars, fml, aux_vars); TRACE(qe, tout << "Projected array eqs:\n" << fml << "\n"; tout << "Remaining array vars:\n" << arr_vars; tout << "Aux vars:\n" << aux_vars;); // 2. reduce selects if (reduce_all_selects) { reduce_array_selects(mdl, fml); } else { reduce_array_selects(mdl, arr_vars, fml); } TRACE(qe, tout << "Reduced selects:\n" << fml << "\n";); // 3. project selects using model based ackermannization array_project_selects(mdl, arr_vars, fml, aux_vars); TRACE( qe, tout << "Projected array selects:\n"; tout << fml << "\n"; tout << "All aux vars:\n" << aux_vars;); } } // namespace spacer_qe