/*++ Copyright (c) 2025 Microsoft Corporation Module Name: finite_set_axioms.cpp Abstract: This module implements axiom schemas that are invoked by saturating constraints with respect to the semantics of set operations. Author: GitHub Copilot Agent 2025 Revision History: --*/ #include "ast/ast.h" #include "ast/ast_pp.h" #include "ast/finite_set_decl_plugin.h" #include "ast/arith_decl_plugin.h" #include "ast/array_decl_plugin.h" #include "ast/rewriter/finite_set_axioms.h" std::ostream& operator<<(std::ostream& out, theory_axiom const& ax) { return out << "axiom"; } // a ~ set.empty => not (x in a) // x is an element, generate axiom that x is not in any empty set of x's type void finite_set_axioms::in_empty_axiom(expr *x) { // Generate: not (x in empty_set) // where empty_set is the empty set of x's type sort* elem_sort = x->get_sort(); expr_ref empty_set(u.mk_empty(elem_sort), m); expr_ref x_in_empty(u.mk_in(x, empty_set), m); theory_axiom* ax = alloc(theory_axiom, m, "in-empty"); ax->clause.push_back(m.mk_not(x_in_empty)); m_add_clause(ax); } // a := set.union(b, c) // (x in a) <=> (x in b) or (x in c) void finite_set_axioms::in_union_axiom(expr *x, expr *a) { expr* b = nullptr, *c = nullptr; if (!u.is_union(a, b, c)) return; expr_ref x_in_a(u.mk_in(x, a), m); expr_ref x_in_b(u.mk_in(x, b), m); expr_ref x_in_c(u.mk_in(x, c), m); // (x in a) => (x in b) or (x in c) theory_axiom *ax1 = alloc(theory_axiom, m, "in-union"); ax1->clause.push_back(m.mk_not(x_in_a)); ax1->clause.push_back(x_in_b); ax1->clause.push_back(x_in_c); m_add_clause(ax1); // (x in b) => (x in a) theory_axiom* ax2 = alloc(theory_axiom, m, "in-union"); ax2->clause.push_back(m.mk_not(x_in_b)); ax2->clause.push_back(x_in_a); m_add_clause(ax2); // (x in c) => (x in a) theory_axiom* ax3 = alloc(theory_axiom, m, "in-union"); ax3->clause.push_back(m.mk_not(x_in_c)); ax3->clause.push_back(x_in_a); m_add_clause(ax3); } // a := set.intersect(b, c) // (x in a) <=> (x in b) and (x in c) void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) { expr* b = nullptr, *c = nullptr; if (!u.is_intersect(a, b, c)) return; expr_ref x_in_a(u.mk_in(x, a), m); expr_ref x_in_b(u.mk_in(x, b), m); expr_ref x_in_c(u.mk_in(x, c), m); // (x in a) => (x in b) theory_axiom* ax1 = alloc(theory_axiom, m, "in-intersect"); ax1->clause.push_back(m.mk_not(x_in_a)); ax1->clause.push_back(x_in_b); m_add_clause(ax1); // (x in a) => (x in c) theory_axiom* ax2 = alloc(theory_axiom, m, "in-intersect"); ax2->clause.push_back(m.mk_not(x_in_a)); ax2->clause.push_back(x_in_c); m_add_clause(ax2); // (x in b) and (x in c) => (x in a) theory_axiom* ax3 = alloc(theory_axiom, m, "in-intersect"); ax3->clause.push_back(m.mk_not(x_in_b)); ax3->clause.push_back(m.mk_not(x_in_c)); ax3->clause.push_back(x_in_a); m_add_clause(ax3); } // a := set.difference(b, c) // (x in a) <=> (x in b) and not (x in c) void finite_set_axioms::in_difference_axiom(expr *x, expr *a) { expr* b = nullptr, *c = nullptr; if (!u.is_difference(a, b, c)) return; expr_ref x_in_a(u.mk_in(x, a), m); expr_ref x_in_b(u.mk_in(x, b), m); expr_ref x_in_c(u.mk_in(x, c), m); // (x in a) => (x in b) theory_axiom* ax1 = alloc(theory_axiom, m, "in-difference"); ax1->clause.push_back(m.mk_not(x_in_a)); ax1->clause.push_back(x_in_b); m_add_clause(ax1); // (x in a) => not (x in c) theory_axiom* ax2 = alloc(theory_axiom, m, "in-difference"); ax2->clause.push_back(m.mk_not(x_in_a)); ax2->clause.push_back(m.mk_not(x_in_c)); m_add_clause(ax2); // (x in b) and not (x in c) => (x in a) theory_axiom* ax3 = alloc(theory_axiom, m, "in-difference"); ax3->clause.push_back(m.mk_not(x_in_b)); ax3->clause.push_back(x_in_c); ax3->clause.push_back(x_in_a); m_add_clause(ax3); } // a := set.singleton(b) // (x in a) <=> (x == b) void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) { expr* b = nullptr; if (!u.is_singleton(a, b)) return; expr_ref x_in_a(u.mk_in(x, a), m); theory_axiom* ax = alloc(theory_axiom, m, "in-singleton"); if (x == b) { // If x and b are syntactically identical, then (x in a) is always true ax->clause.push_back(x_in_a); m_add_clause(ax); return; } expr_ref x_eq_b(m.mk_eq(x, b), m); // (x in a) => (x == b) ax->clause.push_back(m.mk_not(x_in_a)); ax->clause.push_back(x_eq_b); m_add_clause(ax); ax = alloc(theory_axiom, m, "in-singleton"); // (x == b) => (x in a) ax->clause.push_back(m.mk_not(x_eq_b)); ax->clause.push_back(x_in_a); m_add_clause(ax); } void finite_set_axioms::in_singleton_axiom(expr* a) { expr *b = nullptr; if (!u.is_singleton(a, b)) return; expr_ref b_in_a(u.mk_in(b, a), m); auto ax = alloc(theory_axiom, m, "in-singleton"); ax->clause.push_back(b_in_a); m_add_clause(ax); } // a := set.range(lo, hi) // (x in a) <=> (lo <= x <= hi) void finite_set_axioms::in_range_axiom(expr *x, expr *a) { expr* lo = nullptr, *hi = nullptr; if (!u.is_range(a, lo, hi)) return; arith_util arith(m); expr_ref x_in_a(u.mk_in(x, a), m); expr_ref lo_le_x(arith.mk_le(arith.mk_sub(lo, x), arith.mk_int(0)), m); expr_ref x_le_hi(arith.mk_le(arith.mk_sub(x, hi), arith.mk_int(0)), m); m_rewriter(lo_le_x); m_rewriter(x_le_hi); // (x in a) => (lo <= x) theory_axiom* ax1 = alloc(theory_axiom, m, "in-range"); ax1->clause.push_back(m.mk_not(x_in_a)); ax1->clause.push_back(lo_le_x); m_add_clause(ax1); // (x in a) => (x <= hi) theory_axiom* ax2 = alloc(theory_axiom, m, "in-range"); ax2->clause.push_back(m.mk_not(x_in_a)); ax2->clause.push_back(x_le_hi); m_add_clause(ax2); // (lo <= x) and (x <= hi) => (x in a) theory_axiom* ax3 = alloc(theory_axiom, m, "in-range"); ax3->clause.push_back(m.mk_not(lo_le_x)); ax3->clause.push_back(m.mk_not(x_le_hi)); ax3->clause.push_back(x_in_a); m_add_clause(ax3); } // a := set.range(lo, hi) // (not (set.in (- lo 1) r)) // (not (set.in (+ hi 1) r)) // (set.in lo r) // (set.in hi r) void finite_set_axioms::in_range_axiom(expr* r) { expr *lo = nullptr, *hi = nullptr; if (!u.is_range(r, lo, hi)) return; theory_axiom* ax = alloc(theory_axiom, m, "range-bounds"); ax->clause.push_back(u.mk_in(lo, r)); m_add_clause(ax); ax = alloc(theory_axiom, m, "range-bounds"); ax->clause.push_back(u.mk_in(hi, r)); m_add_clause(ax); arith_util a(m); ax = alloc(theory_axiom, m, "range-bounds"); ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r))); m_add_clause(ax); ax = alloc(theory_axiom, m, "range-bounds"); ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r))); m_add_clause(ax); } // a := set.map(f, b) // (x in a) <=> set.map_inverse(f, x, b) in b void finite_set_axioms::in_map_axiom(expr *x, expr *a) { expr* f = nullptr, *b = nullptr; if (!u.is_map(a, f, b)) return; // For now, we provide a placeholder implementation // The full implementation would require skolemization // to express the inverse relationship properly. // This would be: exists y. f(y) = x and y in b } // a := set.map(f, b) // (x in b) => f(x) in a void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) { expr* f = nullptr, *b = nullptr; if (!u.is_map(a, f, b)) return; expr_ref x_in_b(u.mk_in(x, b), m); // Apply function f to x using array select array_util autil(m); expr_ref fx(autil.mk_select(f, x), m); expr_ref fx_in_a(u.mk_in(fx, a), m); // (x in b) => f(x) in a theory_axiom* ax = alloc(theory_axiom, m, "in-map-image"); ax->clause.push_back(m.mk_not(x_in_b)); ax->clause.push_back(fx_in_a); m_add_clause(ax); } // a := set.filter(p, b) // (x in a) <=> (x in b) and p(x) void finite_set_axioms::in_filter_axiom(expr *x, expr *a) { expr* p = nullptr, *b = nullptr; if (!u.is_filter(a, p, b)) return; expr_ref x_in_a(u.mk_in(x, a), m); expr_ref x_in_b(u.mk_in(x, b), m); // Apply predicate p to x using array select array_util autil(m); expr_ref px(autil.mk_select(p, x), m); // (x in a) => (x in b) theory_axiom* ax1 = alloc(theory_axiom, m, "in-filter"); ax1->clause.push_back(m.mk_not(x_in_a)); ax1->clause.push_back(x_in_b); m_add_clause(ax1); // (x in a) => p(x) theory_axiom* ax2 = alloc(theory_axiom, m, "in-filter"); ax2->clause.push_back(m.mk_not(x_in_a)); ax2->clause.push_back(px); m_add_clause(ax2); // (x in b) and p(x) => (x in a) theory_axiom* ax3 = alloc(theory_axiom, m, "in-filter"); ax3->clause.push_back(m.mk_not(x_in_b)); ax3->clause.push_back(m.mk_not(px)); ax3->clause.push_back(x_in_a); m_add_clause(ax3); } // a := set.singleton(b) // set.size(a) = 1 void finite_set_axioms::size_singleton_axiom(expr *a) { expr* b = nullptr; if (!u.is_singleton(a, b)) return; arith_util arith(m); expr_ref size_a(u.mk_size(a), m); expr_ref one(arith.mk_int(1), m); expr_ref eq(m.mk_eq(size_a, one), m); theory_axiom* ax = alloc(theory_axiom, m, "size-singleton"); ax->clause.push_back(eq); m_add_clause(ax); } void finite_set_axioms::subset_axiom(expr* a) { expr *b = nullptr, *c = nullptr; if (!u.is_subset(a, b, c)) return; expr_ref intersect_bc(u.mk_intersect(b, c), m); expr_ref eq(m.mk_eq(intersect_bc, b), m); theory_axiom* ax1 = alloc(theory_axiom, m, "subset"); ax1->clause.push_back(m.mk_not(a)); ax1->clause.push_back(eq); m_add_clause(ax1); theory_axiom* ax2 = alloc(theory_axiom, m, "subset"); ax2->clause.push_back(a); ax2->clause.push_back(m.mk_not(eq)); m_add_clause(ax2); } void finite_set_axioms::extensionality_axiom(expr *a, expr* b) { // a != b => set.in (set.diff(a, b) a) != set.in (set.diff(a, b) b) expr_ref diff_ab(u.mk_difference(a, b), m); expr_ref a_eq_b(m.mk_eq(a, b), m); expr_ref diff_in_a(u.mk_in(diff_ab, a), m); expr_ref diff_in_b(u.mk_in(diff_ab, b), m); // (a != b) => (x in diff_ab != x in diff_ba) theory_axiom* ax = alloc(theory_axiom, m, "extensionality"); ax->clause.push_back(a_eq_b); ax->clause.push_back(m.mk_not(diff_in_a)); ax->clause.push_back(m.mk_not(diff_in_b)); m_add_clause(ax); theory_axiom* ax2 = alloc(theory_axiom, m, "extensionality"); ax2->clause.push_back(m.mk_not(a_eq_b)); ax2->clause.push_back(diff_in_a); ax2->clause.push_back(diff_in_b); m_add_clause(ax2); }