/*++ Copyright (c) 2015 Microsoft Corporation Module Name: qe_arith.cpp Abstract: Simple projection function for real arithmetic based on Loos-W. Author: Nikolaj Bjorner (nbjorner) 2013-09-12 Revision History: Moved projection functionality to model_based_opt module. 2016-06-26 --*/ #include "qe/qe_arith.h" #include "qe/qe_mbp.h" #include "ast/ast_util.h" #include "ast/arith_decl_plugin.h" #include "ast/ast_pp.h" #include "model/model_v2_pp.h" #include "ast/rewriter/th_rewriter.h" #include "ast/expr_functors.h" #include "ast/rewriter/expr_safe_replace.h" #include "math/simplex/model_based_opt.h" #include "model/model_evaluator.h" namespace qe { struct arith_project_plugin::imp { ast_manager& m; arith_util a; void insert_mul(expr* x, rational const& v, obj_map& ts) { TRACE("qe", tout << "Adding variable " << mk_pp(x, m) << " " << v << "\n";); rational w; if (ts.find(x, w)) { ts.insert(x, w + v); } else { ts.insert(x, v); } } // // extract linear inequalities from literal 'lit' into the model-based optimization manager 'mbo'. // It uses the current model to choose values for conditionals and it primes mbo with the current // interpretation of sub-expressions that are treated as variables for mbo. // bool linearize(opt::model_based_opt& mbo, model_evaluator& eval, expr* lit, expr_ref_vector& fmls, obj_map& tids) { obj_map ts; rational c(0), mul(1); expr_ref t(m); opt::ineq_type ty = opt::t_le; expr* e1, *e2; DEBUG_CODE(expr_ref val(m); eval(lit, val); CTRACE("qe", !m.is_true(val), tout << mk_pp(lit, m) << " := " << val << "\n";); SASSERT(m.is_true(val));); bool is_not = m.is_not(lit, lit); if (is_not) { mul.neg(); } SASSERT(!m.is_not(lit)); if ((a.is_le(lit, e1, e2) || a.is_ge(lit, e2, e1))) { linearize(mbo, eval, mul, e1, c, fmls, ts, tids); linearize(mbo, eval, -mul, e2, c, fmls, ts, tids); ty = is_not ? opt::t_lt : opt::t_le; } else if ((a.is_lt(lit, e1, e2) || a.is_gt(lit, e2, e1))) { linearize(mbo, eval, mul, e1, c, fmls, ts, tids); linearize(mbo, eval, -mul, e2, c, fmls, ts, tids); ty = is_not ? opt::t_le: opt::t_lt; } else if (m.is_eq(lit, e1, e2) && !is_not && is_arith(e1)) { linearize(mbo, eval, mul, e1, c, fmls, ts, tids); linearize(mbo, eval, -mul, e2, c, fmls, ts, tids); ty = opt::t_eq; } else if (m.is_eq(lit, e1, e2) && is_not && is_arith(e1)) { rational r1, r2; expr_ref val1 = eval(e1); expr_ref val2 = eval(e2); if (!a.is_numeral(val1, r1)) return false; if (!a.is_numeral(val2, r2)) return false; SASSERT(r1 != r2); if (r1 < r2) { std::swap(e1, e2); } ty = opt::t_lt; linearize(mbo, eval, mul, e1, c, fmls, ts, tids); linearize(mbo, eval, -mul, e2, c, fmls, ts, tids); } else if (m.is_distinct(lit) && !is_not && is_arith(to_app(lit)->get_arg(0))) { expr_ref val(m); rational r; app* alit = to_app(lit); vector > nums; for (unsigned i = 0; i < alit->get_num_args(); ++i) { val = eval(alit->get_arg(i)); if (!a.is_numeral(val, r)) return false; nums.push_back(std::make_pair(alit->get_arg(i), r)); } std::sort(nums.begin(), nums.end(), compare_second()); for (unsigned i = 0; i + 1 < nums.size(); ++i) { SASSERT(nums[i].second < nums[i+1].second); expr_ref fml(a.mk_lt(nums[i].first, nums[i+1].first), m); if (!linearize(mbo, eval, fml, fmls, tids)) { return false; } } return true; } else if (m.is_distinct(lit) && is_not && is_arith(to_app(lit)->get_arg(0))) { // find the two arguments that are equal. // linearize these. map values; bool found_eq = false; for (unsigned i = 0; !found_eq && i < to_app(lit)->get_num_args(); ++i) { expr* arg1 = to_app(lit)->get_arg(i), *arg2 = 0; rational r; expr_ref val = eval(arg1); if (!a.is_numeral(val, r)) return false; if (values.find(r, arg2)) { ty = opt::t_eq; linearize(mbo, eval, mul, arg1, c, fmls, ts, tids); linearize(mbo, eval, -mul, arg2, c, fmls, ts, tids); found_eq = true; } else { values.insert(r, arg1); } } SASSERT(found_eq); } else { TRACE("qe", tout << "Skipping " << mk_pp(lit, m) << "\n";); return false; } vars coeffs; extract_coefficients(mbo, eval, ts, tids, coeffs); mbo.add_constraint(coeffs, c, ty); return true; } // // convert linear arithmetic term into an inequality for mbo. // void linearize(opt::model_based_opt& mbo, model_evaluator& eval, rational const& mul, expr* t, rational& c, expr_ref_vector& fmls, obj_map& ts, obj_map& tids) { expr* t1, *t2, *t3; rational mul1; expr_ref val(m); if (a.is_mul(t, t1, t2) && is_numeral(t1, mul1)) { linearize(mbo, eval, mul* mul1, t2, c, fmls, ts, tids); } else if (a.is_mul(t, t1, t2) && is_numeral(t2, mul1)) { linearize(mbo, eval, mul* mul1, t1, c, fmls, ts, tids); } else if (a.is_add(t)) { app* ap = to_app(t); for (unsigned i = 0; i < ap->get_num_args(); ++i) { linearize(mbo, eval, mul, ap->get_arg(i), c, fmls, ts, tids); } } else if (a.is_sub(t, t1, t2)) { linearize(mbo, eval, mul, t1, c, fmls, ts, tids); linearize(mbo, eval, -mul, t2, c, fmls, ts, tids); } else if (a.is_uminus(t, t1)) { linearize(mbo, eval, -mul, t1, c, fmls, ts, tids); } else if (a.is_numeral(t, mul1)) { c += mul*mul1; } else if (m.is_ite(t, t1, t2, t3)) { val = eval(t1); SASSERT(m.is_true(val) || m.is_false(val)); TRACE("qe", tout << mk_pp(t1, m) << " := " << val << "\n";); if (m.is_true(val)) { linearize(mbo, eval, mul, t2, c, fmls, ts, tids); fmls.push_back(t1); } else { expr_ref not_t1(mk_not(m, t1), m); fmls.push_back(not_t1); linearize(mbo, eval, mul, t3, c, fmls, ts, tids); } } else if (a.is_mod(t, t1, t2) && is_numeral(t2, mul1) && !mul1.is_zero()) { rational r; val = eval(t); VERIFY(a.is_numeral(val, r)); c += mul*r; // t1 mod mul1 == r rational c0(-r), mul0(1); obj_map ts0; linearize(mbo, eval, mul0, t1, c0, fmls, ts0, tids); vars coeffs; extract_coefficients(mbo, eval, ts0, tids, coeffs); mbo.add_divides(coeffs, c0, mul1); } else { insert_mul(t, mul, ts); } } bool is_numeral(expr* t, rational& r) { expr* t1, *t2; rational r1, r2; if (a.is_numeral(t, r)) { // no-op } else if (a.is_uminus(t, t1) && is_numeral(t1, r)) { r.neg(); } else if (a.is_mul(t)) { app* ap = to_app(t); r = rational(1); for (unsigned i = 0; i < ap->get_num_args(); ++i) { if (!is_numeral(ap->get_arg(i), r1)) return false; r *= r1; } } else if (a.is_add(t)) { app* ap = to_app(t); r = rational(0); for (unsigned i = 0; i < ap->get_num_args(); ++i) { if (!is_numeral(ap->get_arg(i), r1)) return false; r += r1; } } else if (a.is_sub(t, t1, t2) && is_numeral(t1, r1) && is_numeral(t2, r2)) { r = r1 - r2; } else { return false; } return true; } struct compare_second { bool operator()(std::pair const& a, std::pair const& b) const { return a.second < b.second; } }; bool is_arith(expr* e) { return a.is_int(e) || a.is_real(e); } rational n_sign(rational const& b) { return rational(b.is_pos()?-1:1); } imp(ast_manager& m): m(m), a(m) {} ~imp() {} bool solve(model& model, app_ref_vector& vars, expr_ref_vector& lits) { return false; } bool operator()(model& model, app* v, app_ref_vector& vars, expr_ref_vector& lits) { app_ref_vector vs(m); vs.push_back(v); (*this)(model, vs, lits); return vs.empty(); } typedef opt::model_based_opt::var var; typedef opt::model_based_opt::row row; typedef vector vars; void operator()(model& model, app_ref_vector& vars, expr_ref_vector& fmls) { bool has_arith = false; for (unsigned i = 0; !has_arith && i < vars.size(); ++i) { expr* v = vars[i].get(); has_arith |= is_arith(v); } if (!has_arith) { return; } model_evaluator eval(model); // eval.set_model_completion(true); opt::model_based_opt mbo; obj_map tids; unsigned j = 0; for (unsigned i = 0; i < fmls.size(); ++i) { expr* fml = fmls[i].get(); if (!linearize(mbo, eval, fml, fmls, tids)) { if (i != j) { fmls[j] = fmls[i].get(); } ++j; } else { TRACE("qe", tout << mk_pp(fml, m) << "\n";); } } fmls.resize(j); // fmls holds residue, // mbo holds linear inequalities that are in scope // collect variables in residue an in tids. // filter variables that are absent from residue. // project those. // collect result of projection // return those to fmls. expr_mark var_mark, fmls_mark; for (unsigned i = 0; i < vars.size(); ++i) { app* v = vars[i].get(); var_mark.mark(v); if (is_arith(v) && !tids.contains(v)) { rational r; expr_ref val = eval(v); a.is_numeral(val, r); TRACE("qe", tout << mk_pp(v, m) << " " << val << "\n";); tids.insert(v, mbo.add_var(r, a.is_int(v))); } } for (unsigned i = 0; i < fmls.size(); ++i) { fmls_mark.mark(fmls[i].get()); } obj_map::iterator it = tids.begin(), end = tids.end(); ptr_vector index2expr; for (; it != end; ++it) { expr* e = it->m_key; if (!var_mark.is_marked(e)) { mark_rec(fmls_mark, e); } index2expr.setx(it->m_value, e, 0); } j = 0; unsigned_vector real_vars; for (unsigned i = 0; i < vars.size(); ++i) { app* v = vars[i].get(); if (is_arith(v) && !fmls_mark.is_marked(v)) { real_vars.push_back(tids.find(v)); } else { if (i != j) { vars[j] = v; } ++j; } } vars.resize(j); TRACE("qe", tout << "remaining vars: " << vars << "\n"; for (unsigned i = 0; i < real_vars.size(); ++i) { unsigned v = real_vars[i]; tout << "v" << v << " " << mk_pp(index2expr[v], m) << "\n"; } mbo.display(tout);); mbo.project(real_vars.size(), real_vars.c_ptr()); TRACE("qe", mbo.display(tout);); vector rows; mbo.get_live_rows(rows); for (unsigned i = 0; i < rows.size(); ++i) { expr_ref_vector ts(m); expr_ref t(m), s(m), val(m); row const& r = rows[i]; if (r.m_vars.size() == 0) { continue; } if (r.m_vars.size() == 1 && r.m_vars[0].m_coeff.is_neg() && r.m_type != opt::t_mod) { var const& v = r.m_vars[0]; t = index2expr[v.m_id]; if (!v.m_coeff.is_minus_one()) { t = a.mk_mul(a.mk_numeral(-v.m_coeff, a.is_int(t)), t); } s = a.mk_numeral(r.m_coeff, a.is_int(t)); switch (r.m_type) { case opt::t_lt: t = a.mk_gt(t, s); break; case opt::t_le: t = a.mk_ge(t, s); break; case opt::t_eq: t = a.mk_eq(t, s); break; default: UNREACHABLE(); } fmls.push_back(t); val = eval(t); CTRACE("qe", !m.is_true(val), tout << "Evaluated unit " << t << " to " << val << "\n";); continue; } for (j = 0; j < r.m_vars.size(); ++j) { var const& v = r.m_vars[j]; t = index2expr[v.m_id]; if (!v.m_coeff.is_one()) { t = a.mk_mul(a.mk_numeral(v.m_coeff, a.is_int(t)), t); } ts.push_back(t); } s = a.mk_numeral(-r.m_coeff, a.is_int(t)); if (ts.size() == 1) { t = ts[0].get(); } else { t = a.mk_add(ts.size(), ts.c_ptr()); } switch (r.m_type) { case opt::t_lt: t = a.mk_lt(t, s); break; case opt::t_le: t = a.mk_le(t, s); break; case opt::t_eq: t = a.mk_eq(t, s); break; case opt::t_mod: { if (!r.m_coeff.is_zero()) { t = a.mk_sub(t, s); } t = a.mk_eq(a.mk_mod(t, a.mk_numeral(r.m_mod, true)), a.mk_int(0)); break; } } fmls.push_back(t); val = eval(t); CTRACE("qe", !m.is_true(val), tout << "Evaluated " << t << " to " << val << "\n";); } } opt::inf_eps maximize(expr_ref_vector const& fmls0, model& mdl, app* t, expr_ref& ge, expr_ref& gt) { SASSERT(a.is_real(t)); expr_ref_vector fmls(fmls0); opt::model_based_opt mbo; opt::inf_eps value; obj_map ts; obj_map tids; model_evaluator eval(mdl); // extract objective function. vars coeffs; rational c(0), mul(1); linearize(mbo, eval, mul, t, c, fmls, ts, tids); extract_coefficients(mbo, eval, ts, tids, coeffs); mbo.set_objective(coeffs, c); SASSERT(validate_model(eval, fmls0)); // extract linear constraints for (unsigned i = 0; i < fmls.size(); ++i) { linearize(mbo, eval, fmls[i].get(), fmls, tids); } // find optimal value value = mbo.maximize(); // update model to use new values that satisfy optimality ptr_vector vars; obj_map::iterator it = tids.begin(), end = tids.end(); for (; it != end; ++it) { expr* e = it->m_key; if (is_uninterp_const(e)) { unsigned id = it->m_value; func_decl* f = to_app(e)->get_decl(); expr_ref val(a.mk_numeral(mbo.get_value(id), false), m); mdl.register_decl(f, val); } else { TRACE("qe", tout << "omitting model update for non-uninterpreted constant " << mk_pp(e, m) << "\n";); } } expr_ref val(a.mk_numeral(value.get_rational(), false), m); expr_ref tval = eval(t); // update the predicate 'bound' which forces larger values when 'strict' is true. // strict: bound := valuue < t // !strict: bound := value <= t if (!value.is_finite()) { ge = a.mk_ge(t, tval); gt = m.mk_false(); } else if (value.get_infinitesimal().is_neg()) { ge = a.mk_ge(t, tval); gt = a.mk_ge(t, val); } else { ge = a.mk_ge(t, val); gt = a.mk_gt(t, val); } SASSERT(validate_model(eval, fmls0)); return value; } bool validate_model(model_evaluator& eval, expr_ref_vector const& fmls) { bool valid = true; for (unsigned i = 0; i < fmls.size(); ++i) { expr_ref val = eval(fmls[i]); if (!m.is_true(val)) { valid = false; TRACE("qe", tout << mk_pp(fmls[i], m) << " := " << val << "\n";); } } return valid; } void extract_coefficients(opt::model_based_opt& mbo, model_evaluator& eval, obj_map const& ts, obj_map& tids, vars& coeffs) { coeffs.reset(); eval.set_model_completion(true); obj_map::iterator it = ts.begin(), end = ts.end(); for (; it != end; ++it) { unsigned id; expr* v = it->m_key; if (!tids.find(v, id)) { rational r; expr_ref val = eval(v); a.is_numeral(val, r); id = mbo.add_var(r, a.is_int(v)); tids.insert(v, id); } CTRACE("qe", it->m_value.is_zero(), tout << mk_pp(v, m) << " has coefficeint 0\n";); if (!it->m_value.is_zero()) { coeffs.push_back(var(id, it->m_value)); } } } }; arith_project_plugin::arith_project_plugin(ast_manager& m) { m_imp = alloc(imp, m); } arith_project_plugin::~arith_project_plugin() { dealloc(m_imp); } bool arith_project_plugin::operator()(model& model, app* var, app_ref_vector& vars, expr_ref_vector& lits) { return (*m_imp)(model, var, vars, lits); } void arith_project_plugin::operator()(model& model, app_ref_vector& vars, expr_ref_vector& lits) { (*m_imp)(model, vars, lits); } bool arith_project_plugin::solve(model& model, app_ref_vector& vars, expr_ref_vector& lits) { return m_imp->solve(model, vars, lits); } family_id arith_project_plugin::get_family_id() { return m_imp->a.get_family_id(); } opt::inf_eps arith_project_plugin::maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& ge, expr_ref& gt) { return m_imp->maximize(fmls, mdl, t, ge, gt); } bool arith_project(model& model, app* var, expr_ref_vector& lits) { ast_manager& m = lits.get_manager(); arith_project_plugin ap(m); app_ref_vector vars(m); return ap(model, var, vars, lits); } }