/*++ Copyright (c) 2022 Microsoft Corporation Module Name: euf_completion.cpp Abstract: Ground completion for equalities Author: Nikolaj Bjorner (nbjorner) 2022-10-30 Notes: Create a congruence closure of E. Select _simplest_ term in each equivalence class. A term is _simplest_ if it is smallest in a well-order, such as a ground Knuth-Bendix order. A basic approach is terms that are of smallest depth, are values can be chosen as simplest. Ties between equal-depth terms can be resolved arbitrarily. Algorithm for extracting canonical form from an E-graph: * Compute function canon(t) that maps every term in E to a canonical, least with respect to well-order relative to the congruence closure. That is, terms that are equal modulo the congruence closure have the same canonical representative. * Each f(t) = g(s) in E: * add f(canon(t)) = canon(f(t)), g(canon(s)) = canon(g(s)) where canon(f(t)) = canon(g(s)) by construction. * Each other g(t) in E: * add g(canon(t)) to E. * Note that canon(g(t)) = true because g(t) = true is added to congruence closure of E. * We claim the new formula is equivalent. * The dependencies for each rewrite can be computed by following the equality justification data-structure. --*/ #include "ast/ast_pp.h" #include "ast/ast_util.h" #include "ast/euf/euf_egraph.h" #include "ast/simplifiers/euf_completion.h" #include "ast/shared_occs.h" namespace euf { completion::completion(ast_manager& m, dependent_expr_state& fmls): dependent_expr_simplifier(m, fmls), m_egraph(m), m_canonical(m), m_eargs(m), m_deps(m), m_rewriter(m) { m_tt = m_egraph.mk(m.mk_true(), 0, 0, nullptr); m_ff = m_egraph.mk(m.mk_false(), 0, 0, nullptr); m_rewriter.set_order_eq(true); m_rewriter.set_flat_and_or(false); } void completion::reduce() { m_has_new_eq = true; for (unsigned rounds = 0; m_has_new_eq && rounds <= 3 && !m_fmls.inconsistent(); ++rounds) { ++m_epoch; m_has_new_eq = false; add_egraph(); map_canonical(); read_egraph(); IF_VERBOSE(11, verbose_stream() << "(euf.completion :rounds " << rounds << ")\n"); } } void completion::add_egraph() { m_nodes_to_canonize.reset(); unsigned sz = qtail(); auto add_children = [&](enode* n) { for (auto* ch : enode_args(n)) m_nodes_to_canonize.push_back(ch); }; for (unsigned i = qhead(); i < sz; ++i) { expr* x, * y; auto [f, p, d] = m_fmls[i](); if (m.is_eq(f, x, y)) { enode* a = mk_enode(x); enode* b = mk_enode(y); m_egraph.merge(a, b, d); add_children(a); add_children(b); } else if (m.is_not(f, f)) { enode* n = mk_enode(f); m_egraph.merge(n, m_ff, d); add_children(n); } else { enode* n = mk_enode(f); m_egraph.merge(n, m_tt, d); add_children(n); } } m_egraph.propagate(); } void completion::read_egraph() { if (m_egraph.inconsistent()) { auto* d = explain_conflict(); dependent_expr de(m, m.mk_false(), nullptr, d); m_fmls.update(0, de); return; } unsigned sz = qtail(); for (unsigned i = qhead(); i < sz; ++i) { auto [f, p, d] = m_fmls[i](); expr_dependency_ref dep(d, m); expr_ref g = canonize_fml(f, dep); if (g != f) { m_fmls.update(i, dependent_expr(m, g, nullptr, dep)); m_stats.m_num_rewrites++; IF_VERBOSE(11, verbose_stream() << mk_bounded_pp(f, m, 3) << " -> " << mk_bounded_pp(g, m, 3) << "\n"); update_has_new_eq(g); } CTRACE("euf_completion", g != f, tout << mk_bounded_pp(f, m) << " -> " << mk_bounded_pp(g, m) << "\n"); } } bool completion::is_new_eq(expr* a, expr* b) { enode* na = m_egraph.find(a); enode* nb = m_egraph.find(b); if (!na) IF_VERBOSE(11, verbose_stream() << "not internalied " << mk_bounded_pp(a, m) << "\n"); if (!nb) IF_VERBOSE(11, verbose_stream() << "not internalied " << mk_bounded_pp(b, m) << "\n"); if (na && nb && na->get_root() != nb->get_root()) IF_VERBOSE(11, verbose_stream() << m_egraph.bpp(na) << " " << m_egraph.bpp(nb) << "\n"); return !na || !nb || na->get_root() != nb->get_root(); } void completion::update_has_new_eq(expr* g) { expr* x, * y; if (m_has_new_eq) return; else if (m.is_eq(g, x, y)) m_has_new_eq |= is_new_eq(x, y); else if (m.is_and(g)) { for (expr* arg : *to_app(g)) update_has_new_eq(arg); } else if (m.is_not(g, g)) m_has_new_eq |= is_new_eq(g, m.mk_false()); else m_has_new_eq |= is_new_eq(g, m.mk_true()); } enode* completion::mk_enode(expr* e) { m_todo.push_back(e); enode* n; while (!m_todo.empty()) { e = m_todo.back(); if (m_egraph.find(e)) { m_todo.pop_back(); continue; } if (!is_app(e)) { m_nodes_to_canonize.push_back(m_egraph.mk(e, 0, 0, nullptr)); m_todo.pop_back(); continue; } m_args.reset(); unsigned sz = m_todo.size(); for (expr* arg : *to_app(e)) { n = m_egraph.find(arg); if (n) m_args.push_back(n); else m_todo.push_back(arg); } if (sz == m_todo.size()) { m_nodes_to_canonize.push_back(m_egraph.mk(e, 0, m_args.size(), m_args.data())); m_todo.pop_back(); } } return m_egraph.find(e); } expr_ref completion::canonize_fml(expr* f, expr_dependency_ref& d) { auto is_nullary = [&](expr* e) { return is_app(e) && to_app(e)->get_num_args() == 0; }; expr* x, * y; if (m.is_eq(f, x, y)) { expr_ref x1 = canonize(x, d); expr_ref y1 = canonize(y, d); if (is_nullary(x)) { SASSERT(x1 == x); x1 = get_canonical(x, d); } if (is_nullary(y)) { SASSERT(y1 == y); y1 = get_canonical(y, d); } if (x == y) return expr_ref(m.mk_true(), m); if (x == x1 && y == y1) return m_rewriter.mk_eq(x, y); if (is_nullary(x) && is_nullary(y)) return mk_and(m_rewriter.mk_eq(x, x1), m_rewriter.mk_eq(y, x1)); if (x == x1 && is_nullary(x)) return m_rewriter.mk_eq(y1, x1); if (y == y1 && is_nullary(y)) return m_rewriter.mk_eq(x1, y1); if (is_nullary(x)) return mk_and(m_rewriter.mk_eq(x, x1), m_rewriter.mk_eq(y1, x1)); if (is_nullary(y)) return mk_and(m_rewriter.mk_eq(y, y1), m_rewriter.mk_eq(x1, y1)); if (x1 == y1) return expr_ref(m.mk_true(), m); else { expr* c = get_canonical(x, d); if (c == x1) return m_rewriter.mk_eq(y1, c); else if (c == y1) return m_rewriter.mk_eq(x1, c); else return mk_and(m_rewriter.mk_eq(x1, c), m_rewriter.mk_eq(y1, c)); } } if (m.is_not(f, x)) { expr_ref x1 = canonize(x, d); return expr_ref(mk_not(m, x1), m); } return canonize(f, d); } expr_ref completion::mk_and(expr* a, expr* b) { if (m.is_true(a)) return expr_ref(b, m); if (m.is_true(b)) return expr_ref(a, m); return expr_ref(m.mk_and(a, b), m); } expr_ref completion::canonize(expr* f, expr_dependency_ref& d) { if (!is_app(f)) return expr_ref(f, m); // todo could normalize ground expressions under quantifiers m_eargs.reset(); bool change = false; for (expr* arg : *to_app(f)) { m_eargs.push_back(get_canonical(arg, d)); change |= arg != m_eargs.back(); } if (m.is_eq(f)) return m_rewriter.mk_eq(m_eargs.get(0), m_eargs.get(1)); if (!change) return expr_ref(f, m); else return expr_ref(m_rewriter.mk_app(to_app(f)->get_decl(), m_eargs.size(), m_eargs.data()), m); } expr* completion::get_canonical(expr* f, expr_dependency_ref& d) { enode* n = m_egraph.find(f); enode* r = n->get_root(); d = m.mk_join(d, explain_eq(n, r)); d = m.mk_join(d, m_deps.get(r->get_id(), nullptr)); SASSERT(m_canonical.get(r->get_id())); return m_canonical.get(r->get_id()); } expr* completion::get_canonical(enode* n) { if (m_epochs.get(n->get_id(), 0) == m_epoch) return m_canonical.get(n->get_id()); else return nullptr; } void completion::set_canonical(enode* n, expr* e) { class vtrail : public trail { expr_ref_vector& c; unsigned idx; expr_ref old_value; public: vtrail(expr_ref_vector& c, unsigned idx) : c(c), idx(idx), old_value(c.get(idx), c.m()) { } void undo() override { c[idx] = old_value; old_value = nullptr; } }; SASSERT(e); if (num_scopes() > 0 && m_canonical.size() > n->get_id()) m_trail.push(vtrail(m_canonical, n->get_id())); m_canonical.setx(n->get_id(), e); m_epochs.setx(n->get_id(), m_epoch, 0); } expr_dependency* completion::explain_eq(enode* a, enode* b) { if (a == b) return nullptr; ptr_vector just; m_egraph.begin_explain(); m_egraph.explain_eq(just, nullptr, a, b); m_egraph.end_explain(); expr_dependency* d = nullptr; for (expr_dependency* d2 : just) d = m.mk_join(d, d2); return d; } expr_dependency* completion::explain_conflict() { ptr_vector just; m_egraph.begin_explain(); m_egraph.explain(just, nullptr); m_egraph.end_explain(); expr_dependency* d = nullptr; for (expr_dependency* d2 : just) d = m.mk_join(d, d2); return d; } void completion::collect_statistics(statistics& st) const { st.update("euf-completion-rewrites", m_stats.m_num_rewrites); } void completion::map_canonical() { m_todo.reset(); enode_vector roots; if (m_nodes_to_canonize.empty()) return; for (unsigned i = 0; i < m_nodes_to_canonize.size(); ++i) { enode* n = m_nodes_to_canonize[i]->get_root(); if (n->is_marked1()) continue; n->mark1(); roots.push_back(n); enode* rep = nullptr; for (enode* k : enode_class(n)) if (!rep || m.is_value(k->get_expr()) || get_depth(rep->get_expr()) > get_depth(k->get_expr())) rep = k; m_reps.setx(n->get_id(), rep, nullptr); TRACE("euf_completion", tout << "rep " << m_egraph.bpp(n) << " -> " << m_egraph.bpp(rep) << "\n"; for (enode* k : enode_class(n)) tout << m_egraph.bpp(k) << "\n";); m_todo.push_back(n->get_expr()); for (enode* arg : enode_args(n)) { arg = arg->get_root(); if (!arg->is_marked1()) m_nodes_to_canonize.push_back(arg); } } for (enode* r : roots) r->unmark1(); // explain dependencies when no nodes are marked. // explain_eq uses both mark1 and mark2 on e-nodes so // we cannot call it inside the previous loop where mark1 is used // to track which roots have been processed. for (enode* r : roots) { enode* rep = m_reps[r->get_id()]; auto* d = explain_eq(r, rep); m_deps.setx(r->get_id(), d); } expr_ref new_expr(m); while (!m_todo.empty()) { expr* e = m_todo.back(); enode* n = m_egraph.find(e); SASSERT(n->is_root()); enode* rep = m_reps[n->get_id()]; if (get_canonical(n)) m_todo.pop_back(); else if (get_depth(rep->get_expr()) == 0 || !is_app(rep->get_expr())) { set_canonical(n, rep->get_expr()); m_todo.pop_back(); } else { m_eargs.reset(); unsigned sz = m_todo.size(); bool new_arg = false; expr_dependency* d = m_deps.get(n->get_id(), nullptr); for (enode* arg : enode_args(rep)) { enode* rarg = arg->get_root(); expr* c = get_canonical(rarg); if (c) { m_eargs.push_back(c); new_arg |= c != arg->get_expr(); d = m.mk_join(d, m_deps.get(rarg->get_id(), nullptr)); } else m_todo.push_back(rarg->get_expr()); } if (sz == m_todo.size()) { m_todo.pop_back(); if (new_arg) new_expr = m_rewriter.mk_app(to_app(rep->get_expr())->get_decl(), m_eargs.size(), m_eargs.data()); else new_expr = rep->get_expr(); set_canonical(n, new_expr); m_deps.setx(n->get_id(), d); } } } } }