/*++ Copyright (c) 2020 Microsoft Corporation Module Name: a_solver.cpp Abstract: Quantifier solver plugin Author: Nikolaj Bjorner (nbjorner) 2020-09-29 --*/ #include "ast/rewriter/var_subst.h" #include "sat/smt/q_solver.h" #include "sat/smt/euf_solver.h" #include "sat/smt/sat_th.h" #include "ast/normal_forms/pull_quant.h" #include "ast/well_sorted.h" namespace q { solver::solver(euf::solver& ctx, family_id fid) : th_euf_solver(ctx, ctx.get_manager().get_family_name(fid), fid), m_mbqi(ctx, *this) { } void solver::asserted(sat::literal l) { expr* e = bool_var2expr(l.var()); if (!is_forall(e) && !is_exists(e)) return; if (l.sign() == is_forall(e)) add_clause(~l, skolemize(to_quantifier(e))); else { add_clause(~l, specialize(to_quantifier(e))); ctx.push_vec(m_universal, l); } m_stats.m_num_quantifier_asserts++; } sat::check_result solver::check() { if (ctx.get_config().m_mbqi) { switch (m_mbqi()) { case l_true: return sat::check_result::CR_DONE; case l_false: return sat::check_result::CR_CONTINUE; case l_undef: return sat::check_result::CR_GIVEUP; } } return sat::check_result::CR_GIVEUP; } std::ostream& solver::display(std::ostream& out) const { return out; } void solver::collect_statistics(statistics& st) const { st.update("quantifier asserts", m_stats.m_num_quantifier_asserts); m_mbqi.collect_statistics(st); } euf::th_solver* solver::clone(euf::solver& ctx) { family_id fid = ctx.get_manager().mk_family_id(symbol("quant")); return alloc(solver, ctx, fid); } bool solver::unit_propagate() { return false; } euf::theory_var solver::mk_var(euf::enode* n) { SASSERT(is_forall(n->get_expr()) || is_exists(n->get_expr())); auto v = euf::th_euf_solver::mk_var(n); ctx.attach_th_var(n, this, v); return v; } sat::literal solver::instantiate(quantifier* _q, bool negate, std::function& mk_var) { sat::literal sk; expr_ref tmp(m); quantifier_ref q(_q, m); expr_ref_vector vars(m); if (negate) { q = m.mk_quantifier( is_forall(q) ? quantifier_kind::exists_k : quantifier_kind::forall_k, q->get_num_decls(), q->get_decl_sorts(), q->get_decl_names(), m.mk_not(q->get_expr()), q->get_weight(), q->get_qid(), q->get_skid()); } quantifier* q_flat = flatten(q); unsigned sz = q_flat->get_num_decls(); vars.resize(sz, nullptr); for (unsigned i = 0; i < sz; ++i) vars[i] = mk_var(q_flat, i); var_subst subst(m); expr_ref body = subst(q_flat->get_expr(), vars); rewrite(body); return mk_literal(body); } sat::literal solver::skolemize(quantifier* q) { std::function mk_var = [&](quantifier* q, unsigned i) { return m.mk_fresh_const(q->get_decl_name(i), q->get_decl_sort(i)); }; return instantiate(q, is_forall(q), mk_var); } /* * Find initial values to instantiate quantifier with so to make it as hard as possible for solver * to find values to free variables. */ sat::literal solver::specialize(quantifier* q) { std::function mk_var = [&](quantifier* q, unsigned i) { return get_unit(q->get_decl_sort(i)); }; return instantiate(q, is_exists(q), mk_var); } void solver::init_search() { m_mbqi.init_search(); } sat::literal solver::internalize(expr* e, bool sign, bool root, bool learned) { SASSERT(is_forall(e) || is_exists(e)); sat::bool_var v = ctx.get_si().add_bool_var(e); sat::literal lit = ctx.attach_lit(sat::literal(v, sign), e); mk_var(ctx.get_egraph().find(e)); return lit; } void solver::finalize_model(model& mdl) { m_mbqi.finalize_model(mdl); } quantifier* solver::flatten(quantifier* q) { quantifier* q_flat = nullptr; if (!has_quantifiers(q->get_expr())) return q; if (m_flat.find(q, q_flat)) return q_flat; proof_ref pr(m); expr_ref new_q(m); pull_quant pull(m); pull(q, new_q, pr); SASSERT(is_well_sorted(m, new_q)); q_flat = to_quantifier(new_q); m.inc_ref(q_flat); m.inc_ref(q); m_flat.insert(q, q_flat); ctx.push(insert_ref2_map(m, m_flat, q, q_flat)); return q_flat; } void solver::init_units() { if (!m_unit_table.empty()) return; for (euf::enode* n : ctx.get_egraph().nodes()) { if (!n->interpreted() && !m.is_uninterp(m.get_sort(n->get_expr()))) continue; expr* e = n->get_expr(); sort* s = m.get_sort(e); if (m_unit_table.contains(s)) continue; m_unit_table.insert(s, e); ctx.push(insert_map, sort*>(m_unit_table, s)); } } expr* solver::get_unit(sort* s) { expr* u = nullptr; if (m_unit_table.find(s, u)) return u; init_units(); if (m_unit_table.find(s, u)) return u; model mdl(m); expr* val = mdl.get_some_value(s); m.inc_ref(val); m.inc_ref(s); ctx.push(insert_ref2_map(m, m_unit_table, s, val)); return val; } }