/*++ Copyright (c) 2011 Microsoft Corporation Module Name: model_evaluator.cpp Abstract: Evaluate expressions in a given model. Author: Leonardo de Moura (leonardo) 2011-04-30. Revision History: --*/ #include"model.h" #include"model_evaluator_params.hpp" #include"rewriter_types.h" #include"model_evaluator.h" #include"bool_rewriter.h" #include"arith_rewriter.h" #include"bv_rewriter.h" #include"pb_rewriter.h" #include"seq_rewriter.h" #include"datatype_rewriter.h" #include"array_rewriter.h" #include"fpa_rewriter.h" #include"rewriter_def.h" #include"cooperate.h" #include"ast_pp.h" struct evaluator_cfg : public default_rewriter_cfg { model_core & m_model; bool_rewriter m_b_rw; arith_rewriter m_a_rw; bv_rewriter m_bv_rw; array_rewriter m_ar_rw; datatype_rewriter m_dt_rw; pb_rewriter m_pb_rw; fpa_rewriter m_f_rw; seq_rewriter m_seq_rw; array_util m_ar; unsigned long long m_max_memory; unsigned m_max_steps; bool m_model_completion; bool m_cache; evaluator_cfg(ast_manager & m, model_core & md, params_ref const & p): m_model(md), m_b_rw(m), // We must allow customers to set parameters for arithmetic rewriter/evaluator. // In particular, the maximum degree of algebraic numbers that will be evaluated. m_a_rw(m, p), m_bv_rw(m), // See comment above. We want to allow customers to set :sort-store m_ar_rw(m, p), m_dt_rw(m), m_pb_rw(m), m_f_rw(m), m_seq_rw(m), m_ar(m) { bool flat = true; m_b_rw.set_flat(flat); m_a_rw.set_flat(flat); m_bv_rw.set_flat(flat); m_bv_rw.set_mkbv2num(true); updt_params(p); } void updt_params(params_ref const & _p) { model_evaluator_params p(_p); m_max_memory = megabytes_to_bytes(p.max_memory()); m_max_steps = p.max_steps(); m_model_completion = p.completion(); m_cache = p.cache(); } ast_manager & m() const { return m_model.get_manager(); } bool evaluate(func_decl* f, unsigned num, expr * const * args, expr_ref & result) { func_interp* fi = m_model.get_func_interp(f); return (fi != 0) && eval_fi(fi, num, args, result); } // Try to use the entries to quickly evaluate the fi bool eval_fi(func_interp * fi, unsigned num, expr * const * args, expr_ref & result) { if (fi->num_entries() == 0) return false; // let get_macro handle it. SASSERT(fi->get_arity() == num); bool actuals_are_values = true; for (unsigned i = 0; actuals_are_values && i < num; i++) { actuals_are_values = m().is_value(args[i]); } if (!actuals_are_values) return false; // let get_macro handle it func_entry * entry = fi->get_entry(args); if (entry != 0) { result = entry->get_result(); return true; } return false; } br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) { result_pr = 0; family_id fid = f->get_family_id(); if (num == 0 && (fid == null_family_id || m().get_plugin(f->get_family_id())->is_considered_uninterpreted(f))) { expr * val = m_model.get_const_interp(f); if (val != 0) { result = val; expand_value(result); return BR_DONE; } if (m_model_completion) { sort * s = f->get_range(); expr * val = m_model.get_some_value(s); m_model.register_decl(f, val); result = val; return BR_DONE; } return BR_FAILED; } br_status st = BR_FAILED; if (fid == m_b_rw.get_fid()) { decl_kind k = f->get_decl_kind(); if (k == OP_EQ) { // theory dispatch for = SASSERT(num == 2); family_id s_fid = m().get_sort(args[0])->get_family_id(); if (s_fid == m_a_rw.get_fid()) st = m_a_rw.mk_eq_core(args[0], args[1], result); else if (s_fid == m_bv_rw.get_fid()) st = m_bv_rw.mk_eq_core(args[0], args[1], result); else if (s_fid == m_dt_rw.get_fid()) st = m_dt_rw.mk_eq_core(args[0], args[1], result); else if (s_fid == m_f_rw.get_fid()) st = m_f_rw.mk_eq_core(args[0], args[1], result); else if (s_fid == m_seq_rw.get_fid()) st = m_seq_rw.mk_eq_core(args[0], args[1], result); else if (fid == m_ar_rw.get_fid()) st = mk_array_eq(args[0], args[1], result); if (st != BR_FAILED) return st; } return m_b_rw.mk_app_core(f, num, args, result); } if (fid == m_a_rw.get_fid()) st = m_a_rw.mk_app_core(f, num, args, result); else if (fid == m_bv_rw.get_fid()) st = m_bv_rw.mk_app_core(f, num, args, result); else if (fid == m_ar_rw.get_fid()) st = m_ar_rw.mk_app_core(f, num, args, result); else if (fid == m_dt_rw.get_fid()) st = m_dt_rw.mk_app_core(f, num, args, result); else if (fid == m_pb_rw.get_fid()) st = m_pb_rw.mk_app_core(f, num, args, result); else if (fid == m_f_rw.get_fid()) st = m_f_rw.mk_app_core(f, num, args, result); else if (fid == m_seq_rw.get_fid()) st = m_seq_rw.mk_app_core(f, num, args, result); else if (evaluate(f, num, args, result)) { TRACE("model_evaluator", tout << "reduce_app " << f->get_name() << "\n"; for (unsigned i = 0; i < num; i++) tout << mk_ismt2_pp(args[i], m()) << "\n"; tout << "---->\n" << mk_ismt2_pp(result, m()) << "\n";); return BR_DONE; } if (st == BR_DONE && is_app(result)) { app* a = to_app(result); if (evaluate(a->get_decl(), a->get_num_args(), a->get_args(), result)) { return BR_DONE; } } CTRACE("model_evaluator", st != BR_FAILED, tout << result << "\n";); return st; } void expand_value(expr_ref& val) { vector stores; expr_ref else_case(m()); if (m_ar.is_array(val) && extract_array_func_interp(val, stores, else_case)) { sort* srt = m().get_sort(val); val = m_ar.mk_const_array(srt, else_case); for (unsigned i = stores.size(); i > 0; ) { --i; expr_ref_vector args(m()); args.push_back(val); args.append(stores[i].size(), stores[i].c_ptr()); val = m_ar.mk_store(args.size(), args.c_ptr()); } } } bool get_macro(func_decl * f, expr * & def, quantifier * & q, proof * & def_pr) { #define TRACE_MACRO TRACE("model_evaluator", tout << "get_macro for " << f->get_name() << " (model completion: " << m_model_completion << ")\n";); func_interp * fi = m_model.get_func_interp(f); if (fi != 0) { TRACE_MACRO; if (fi->is_partial()) { if (m_model_completion) { sort * s = f->get_range(); expr * val = m_model.get_some_value(s); fi->set_else(val); } else { return false; } } def = fi->get_interp(); SASSERT(def != 0); return true; } if (m_model_completion && (f->get_family_id() == null_family_id || m().get_plugin(f->get_family_id())->is_considered_uninterpreted(f))) { TRACE_MACRO; sort * s = f->get_range(); expr * val = m_model.get_some_value(s); func_interp * new_fi = alloc(func_interp, m(), f->get_arity()); new_fi->set_else(val); m_model.register_decl(f, new_fi); def = val; return true; } return false; } bool max_steps_exceeded(unsigned num_steps) const { cooperate("model evaluator"); if (memory::get_allocation_size() > m_max_memory) throw rewriter_exception(Z3_MAX_MEMORY_MSG); return num_steps > m_max_steps; } bool cache_results() const { return m_cache; } br_status mk_array_eq(expr* a, expr* b, expr_ref& result) { if (a == b) { result = m().mk_true(); return BR_DONE; } vector stores; expr_ref else1(m()), else2(m()); if (extract_array_func_interp(a, stores, else1) && extract_array_func_interp(b, stores, else2)) { expr_ref_vector conj(m()), args1(m()), args2(m()); conj.push_back(m().mk_eq(else1, else2)); args1.push_back(a); args2.push_back(b); for (unsigned i = 0; i < stores.size(); ++i) { args1.resize(1); args1.append(stores[i].size() - 1, stores[i].c_ptr()); args2.resize(1); args2.append(stores[i].size() - 1, stores[i].c_ptr()); expr* s1 = m_ar.mk_select(args1.size(), args1.c_ptr()); expr* s2 = m_ar.mk_select(args2.size(), args2.c_ptr()); conj.push_back(m().mk_eq(s1, s2)); } result = m().mk_and(conj.size(), conj.c_ptr()); return BR_REWRITE_FULL; } return BR_FAILED; } bool extract_array_func_interp(expr* a, vector& stores, expr_ref& else_case) { SASSERT(m_ar.is_array(a)); while (m_ar.is_store(a)) { expr_ref_vector store(m()); store.append(to_app(a)->get_num_args()-1, to_app(a)->get_args()+1); stores.push_back(store); a = to_app(a)->get_arg(0); } if (m_ar.is_const(a)) { else_case = to_app(a)->get_arg(0); return true; } if (m_ar.is_as_array(a)) { func_decl* f = m_ar.get_as_array_func_decl(to_app(a)); func_interp* g = m_model.get_func_interp(f); unsigned sz = g->num_entries(); unsigned arity = f->get_arity(); for (unsigned i = 0; i < sz; ++i) { expr_ref_vector store(m()); func_entry const* fe = g->get_entry(i); store.append(arity, fe->get_args()); store.push_back(fe->get_result()); for (unsigned j = 0; j < store.size(); ++j) { if (!is_ground(store[j].get())) { TRACE("model_evaluator", tout << "could not extract array interpretation: " << mk_pp(a, m()) << "\n" << mk_pp(store[j].get(), m()) << "\n";); return false; } } stores.push_back(store); } else_case = g->get_else(); if (!else_case) { TRACE("model_evaluator", tout << "no else case " << mk_pp(a, m()) << "\n";); return false; } if (!is_ground(else_case)) { TRACE("model_evaluator", tout << "non-ground else case " << mk_pp(a, m()) << "\n" << mk_pp(else_case, m()) << "\n";); return false; } bool is_value = true; for (unsigned i = stores.size(); is_value && i > 0; ) { --i; if (else_case == stores[i].back()) { for (unsigned j = i + 1; j < stores.size(); ++j) { stores[j-1].reset(); stores[j-1].append(stores[j]); } stores.pop_back(); continue; } for (unsigned j = 0; is_value && j + 1 < stores[i].size(); ++j) { is_value = m().is_value(stores[i][j].get()); } } TRACE("model_evaluator", tout << "else case: " << mk_pp(else_case, m()) << "\n";); return true; } TRACE("model_evaluator", tout << "no translation: " << mk_pp(a, m()) << "\n";); return false; } }; template class rewriter_tpl; struct model_evaluator::imp : public rewriter_tpl { evaluator_cfg m_cfg; imp(model_core & md, params_ref const & p): rewriter_tpl(md.get_manager(), false, // no proofs for evaluator m_cfg), m_cfg(md.get_manager(), md, p) { } }; model_evaluator::model_evaluator(model_core & md, params_ref const & p) { m_imp = alloc(imp, md, p); } ast_manager & model_evaluator::m() const { return m_imp->m(); } model_evaluator::~model_evaluator() { dealloc(m_imp); } void model_evaluator::updt_params(params_ref const & p) { m_imp->cfg().updt_params(p); } void model_evaluator::get_param_descrs(param_descrs & r) { model_evaluator_params::collect_param_descrs(r); } void model_evaluator::set_model_completion(bool f) { m_imp->cfg().m_model_completion = f; } unsigned model_evaluator::get_num_steps() const { return m_imp->get_num_steps(); } void model_evaluator::cleanup(params_ref const & p) { model_core & md = m_imp->cfg().m_model; dealloc(m_imp); m_imp = alloc(imp, md, p); } void model_evaluator::reset(params_ref const & p) { m_imp->reset(); updt_params(p); } void model_evaluator::operator()(expr * t, expr_ref & result) { TRACE("model_evaluator", tout << mk_ismt2_pp(t, m()) << "\n";); m_imp->operator()(t, result); }