/*++ Copyright (c) 2012 Microsoft Corporation Module Name: ctx_solver_simplify_tactic.cpp Abstract: Context simplifier for propagating solver assignments. Author: Nikolaj (nbjorner) 2012-3-6 Notes: --*/ #include "smt/tactic/ctx_solver_simplify_tactic.h" #include "ast/arith_decl_plugin.h" #include "smt/params/smt_params.h" #include "smt/smt_kernel.h" #include "ast/ast_pp.h" #include "ast/rewriter/mk_simplified_app.h" #include "ast/ast_util.h" class ctx_solver_simplify_tactic : public tactic { ast_manager& m; params_ref m_params; smt_params m_front_p; smt::kernel m_solver; arith_util m_arith; mk_simplified_app m_mk_app; func_decl_ref m_fn; obj_map m_fns; unsigned m_num_steps; public: ctx_solver_simplify_tactic(ast_manager & m, params_ref const & p = params_ref()): m(m), m_params(p), m_solver(m, m_front_p), m_arith(m), m_mk_app(m), m_fn(m), m_num_steps(0) { sort* i_sort = m_arith.mk_int(); m_fn = m.mk_func_decl(symbol(0xbeef101), i_sort, m.mk_bool_sort()); } virtual tactic * translate(ast_manager & m) { return alloc(ctx_solver_simplify_tactic, m, m_params); } virtual ~ctx_solver_simplify_tactic() { obj_map::iterator it = m_fns.begin(), end = m_fns.end(); for (; it != end; ++it) { m.dec_ref(it->m_value); } m_fns.reset(); } virtual void updt_params(params_ref const & p) { m_solver.updt_params(p); } virtual void collect_param_descrs(param_descrs & r) { m_solver.collect_param_descrs(r); } virtual void collect_statistics(statistics & st) const { st.update("solver-simplify-steps", m_num_steps); } virtual void reset_statistics() { m_num_steps = 0; } virtual void operator()(goal_ref const & in, goal_ref_buffer & result) { reduce(*(in.get())); in->inc_depth(); result.push_back(in.get()); } virtual void cleanup() { reset_statistics(); m_solver.reset(); } protected: void reduce(goal& g) { SASSERT(g.is_well_sorted()); expr_ref fml(m); tactic_report report("ctx-solver-simplify", g); if (g.inconsistent()) return; ptr_vector fmls; g.get_formulas(fmls); fml = mk_and(m, fmls.size(), fmls.c_ptr()); m_solver.push(); reduce(fml); m_solver.pop(1); SASSERT(m_solver.get_scope_level() == 0); TRACE("ctx_solver_simplify_tactic", for (unsigned i = 0; i < fmls.size(); ++i) { tout << mk_pp(fmls[i], m) << "\n"; } tout << "=>\n"; tout << mk_pp(fml, m) << "\n";); DEBUG_CODE( { m_solver.push(); expr_ref fml1(m); fml1 = mk_and(m, fmls.size(), fmls.c_ptr()); fml1 = m.mk_iff(fml, fml1); fml1 = m.mk_not(fml1); m_solver.assert_expr(fml1); lbool is_sat = m_solver.check(); TRACE("ctx_solver_simplify_tactic", tout << "is non-equivalence sat?: " << is_sat << "\n";); if (is_sat == l_true) { TRACE("ctx_solver_simplify_tactic", tout << "result is not equivalent to input\n"; tout << mk_pp(fml1, m) << "\n";); UNREACHABLE(); } m_solver.pop(1); }); g.reset(); g.assert_expr(fml, 0, 0); IF_VERBOSE(TACTIC_VERBOSITY_LVL, verbose_stream() << "(ctx-solver-simplify :num-steps " << m_num_steps << ")\n";); SASSERT(g.is_well_sorted()); } struct expr_pos { unsigned m_parent; unsigned m_self; unsigned m_idx; expr* m_expr; expr_pos(unsigned p, unsigned s, unsigned i, expr* e): m_parent(p), m_self(s), m_idx(i), m_expr(e) {} expr_pos(): m_parent(0), m_self(0), m_idx(0), m_expr(0) {} }; void reduce(expr_ref& result){ SASSERT(m.is_bool(result)); ptr_vector names; svector todo; expr_ref_vector fresh_vars(m), trail(m); expr_ref res(m), tmp(m); obj_map cache; unsigned id = 1, child_id = 0; expr_ref n2(m), fml(m); unsigned parent_pos = 0, self_pos = 0, self_idx = 0; app * a; unsigned sz; expr_pos path_r; expr_ref_vector args(m); expr_ref n = mk_fresh(id, m.mk_bool_sort()); trail.push_back(n); fml = result.get(); tmp = m.mk_not(m.mk_iff(fml, n)); m_solver.assert_expr(tmp); todo.push_back(expr_pos(0,0,0,fml)); names.push_back(n); m_solver.push(); while (!todo.empty() && !m.canceled()) { expr_ref res(m); args.reset(); expr* e = todo.back().m_expr; self_pos = todo.back().m_self; parent_pos = todo.back().m_parent; self_idx = todo.back().m_idx; n = names.back(); if (cache.contains(e)) { goto done; } if (m.is_bool(e) && simplify_bool(n, res)) { TRACE("ctx_solver_simplify_tactic", tout << "simplified: " << mk_pp(e, m) << " |-> " << mk_pp(res, m) << "\n";); goto done; } if (!is_app(e)) { res = e; goto done; } a = to_app(e); sz = a->get_num_args(); n2 = 0; for (unsigned i = 0; i < sz; ++i) { expr* arg = a->get_arg(i); if (cache.find(arg, path_r)) { // // This is a single traversal version of the context // simplifier. It simplifies only the first occurrence of // a sub-term with respect to the context. // if (path_r.m_parent == self_pos && path_r.m_idx == i) { args.push_back(path_r.m_expr); } else { args.push_back(arg); } } else if (!n2) { n2 = mk_fresh(id, m.get_sort(arg)); trail.push_back(n2); todo.push_back(expr_pos(self_pos, child_id++, i, arg)); names.push_back(n2); args.push_back(n2); } else { args.push_back(arg); } } m_mk_app(a->get_decl(), args.size(), args.c_ptr(), res); trail.push_back(res); // child needs to be visited. if (n2) { m_solver.push(); tmp = m.mk_eq(res, n); m_solver.assert_expr(tmp); continue; } done: if (res) { cache.insert(e, expr_pos(parent_pos, self_pos, self_idx, res)); } todo.pop_back(); names.pop_back(); m_solver.pop(1); } if (!m.canceled()) { VERIFY(cache.find(fml, path_r)); result = path_r.m_expr; } } bool simplify_bool(expr* n, expr_ref& res) { expr_ref tmp(m); m_solver.push(); m_solver.assert_expr(n); lbool is_sat = m_solver.check(); m_solver.pop(1); if (is_sat == l_false) { res = m.mk_true(); return true; } m_solver.push(); tmp = m.mk_not(n); m_solver.assert_expr(tmp); is_sat = m_solver.check(); m_solver.pop(1); if (is_sat == l_false) { res = m.mk_false(); return true; } return false; } expr_ref mk_fresh(unsigned& id, sort* s) { func_decl* fn; if (m.is_bool(s)) { fn = m_fn; } else if (!m_fns.find(s, fn)) { fn = m.mk_func_decl(symbol(0xbeef101 + id), m_arith.mk_int(), s); m.inc_ref(fn); m_fns.insert(s, fn); } return expr_ref(m.mk_app(fn, m_arith.mk_numeral(rational(id++), true)), m); } }; tactic * mk_ctx_solver_simplify_tactic(ast_manager & m, params_ref const & p) { return clean(alloc(ctx_solver_simplify_tactic, m, p)); }