/*++ Copyright (c) 2012 Microsoft Corporation Module Name: nlsat.cpp Abstract: nlsat procedure Author: Leonardo (leonardo) 2012-01-09 Notes: --*/ #include "nlsat/nlsat_assignment.h" #include "nlsat/nlsat_interval_set.h" #include "nlsat/nlsat_evaluator.h" #include "nlsat/nlsat_solver.h" #include "nlsat/levelwise.h" #include "util/util.h" #include "nlsat/nlsat_explain.h" #include "math/polynomial/polynomial_cache.h" #include "util/rlimit.h" #include #include // Helper function to check if a point (given by counter_as) is inside a levelwise cell. // Returns true if the point is inside ALL cell intervals, false otherwise. // Prints diagnostic info about which constraint was violated (if any). static bool is_point_inside_cell( anum_manager& am, polynomial::manager& pm, std_vector const& cell, nlsat::assignment const& counter_as, bool verbose = true) { for (unsigned level = 0; level < cell.size(); ++level) { auto const& interval = cell[level]; // Skip whole-line sectors - no constraint if (!interval.is_section() && interval.l_inf() && interval.u_inf()) continue; // Get the value at this level from counter_as if (!counter_as.is_assigned(level)) continue; // Variable not assigned in counterexample scoped_anum counter_val(am); am.set(counter_val, counter_as.value(level)); // Build partial assignment up to this level (exclusive) for root isolation nlsat::assignment partial_as(am); for (unsigned j = 0; j < level; ++j) { if (counter_as.is_assigned(j)) { scoped_anum v(am); am.set(v, counter_as.value(j)); partial_as.set(j, v); } } if (interval.is_section()) { // Section: counter must equal the root polynomial_ref section_p(interval.l, pm); scoped_anum_vector roots(am); am.isolate_roots(section_p, nlsat::undef_var_assignment(partial_as, level), roots); if (roots.size() >= interval.l_index) { bool at_root = am.eq(counter_val, roots[interval.l_index - 1]); if (!at_root) { if (verbose) { std::cout << " Level " << level << ": OUTSIDE (not at section root)\n"; std::cout << " Section root = "; am.display_decimal(std::cout, roots[interval.l_index - 1], 6); std::cout << ", counter = "; am.display_decimal(std::cout, counter_val, 6); std::cout << "\n"; } return false; } } } else { // Sector: check lower and upper bounds if (!interval.l_inf()) { polynomial_ref lower_p(interval.l, pm); scoped_anum_vector lower_roots(am); am.isolate_roots(lower_p, nlsat::undef_var_assignment(partial_as, level), lower_roots); if (lower_roots.size() >= interval.l_index) { int cmp = am.compare(counter_val, lower_roots[interval.l_index - 1]); if (cmp <= 0) { // counter <= lower bound, violates (lower, ...) if (verbose) { std::cout << " Level " << level << ": OUTSIDE (at or below lower bound)\n"; std::cout << " Lower bound = "; am.display_decimal(std::cout, lower_roots[interval.l_index - 1], 6); std::cout << ", counter = "; am.display_decimal(std::cout, counter_val, 6); std::cout << "\n"; } return false; } } } if (!interval.u_inf()) { polynomial_ref upper_p(interval.u, pm); scoped_anum_vector upper_roots(am); am.isolate_roots(upper_p, nlsat::undef_var_assignment(partial_as, level), upper_roots); if (upper_roots.size() >= interval.u_index) { int cmp = am.compare(counter_val, upper_roots[interval.u_index - 1]); if (cmp >= 0) { // counter >= upper bound, violates (..., upper) if (verbose) { std::cout << " Level " << level << ": OUTSIDE (at or above upper bound)\n"; std::cout << " Upper bound = "; am.display_decimal(std::cout, upper_roots[interval.u_index - 1], 6); std::cout << ", counter = "; am.display_decimal(std::cout, counter_val, 6); std::cout << "\n"; } return false; } } } } } if (verbose) { std::cout << " Point is INSIDE the cell (all constraints satisfied)\n"; } return true; } nlsat::interval_set_ref tst_interval(nlsat::interval_set_ref const & s1, nlsat::interval_set_ref const & s2, unsigned expected_num_intervals, bool check_num_intervals = true) { nlsat::interval_set_manager & ism = s1.m(); nlsat::interval_set_ref r(ism); std::cout << "s1: " << s1 << "\n"; std::cout << "s2: " << s2 << "\n"; r = ism.mk_union(s1, s2); std::cout << "union(s1, s2): " << r << std::endl; ENSURE(!check_num_intervals || ism.num_intervals(r) == expected_num_intervals); ENSURE(ism.subset(s1, r)); ENSURE(ism.subset(s2, r)); if (ism.set_eq(s1, s2)) { ENSURE(ism.set_eq(s1, r)); ENSURE(ism.set_eq(s2, r)); } else { ENSURE(ism.subset(s1, s2) || !ism.subset(r, s2)); ENSURE(ism.subset(s2, s1) || !ism.subset(r, s1)); } nlsat::interval_set_ref r2(ism); r2 = ism.mk_union(s2, s1); ENSURE(ism.set_eq(r, r2)); anum zero; nlsat::interval_set_ref full(ism); nlsat::literal dummy(131, false); full = ism.mk(true, true, zero, true, true, zero, dummy, nullptr); ENSURE(ism.set_eq(r, full) == ism.is_full(r)); return r; } static void tst3() { enable_trace("nlsat_interval"); reslimit rl; unsynch_mpq_manager qm; anum_manager am(rl, qm); small_object_allocator allocator; nlsat::interval_set_manager ism(am, allocator); scoped_anum sqrt2(am), m_sqrt2(am), two(am), m_two(am), three(am), one(am), zero(am); am.set(two, 2); am.set(m_two, -2); am.set(one, 1); am.root(two, 2, sqrt2); am.set(m_sqrt2, sqrt2); am.neg(m_sqrt2); am.set(three, 3); nlsat::literal p1(1, false); nlsat::literal p2(2, false); nlsat::literal p3(3, false); nlsat::literal p4(4, false); nlsat::literal np2(2, true); nlsat::interval_set_ref s1(ism), s2(ism), s3(ism), s4(ism); s1 = ism.mk_empty(); std::cout << "s1: " << s1 << "\n"; s2 = ism.mk(true, true, zero, false, false, sqrt2, np2, nullptr); std::cout << "s2: " << s2 << "\n"; s3 = ism.mk(false, false, zero, false, false, two, p1, nullptr); std::cout << "s3: " << s3 << "\n"; s4 = ism.mk_union(s2, s3); std::cout << "s4: " << s4 << "\n"; // Case // s1: [ ... ] // s2: [ ... ] s1 = ism.mk(false, false, zero, false, false, two, p1, nullptr); s2 = ism.mk(false, false, zero, false, false, two, p2, nullptr); tst_interval(s1, s2, 1); // Case // s1: [ ... ] // s2: [ ... ] s1 = ism.mk(false, false, zero, false, false, two, p1, nullptr); s2 = ism.mk(false, false, m_sqrt2, false, false, one, p2, nullptr); s3 = ism.mk_union(s1, s2); tst_interval(s1, s2, 2); // Case // s1: [ ... ] // s2: [ ... ] s1 = ism.mk(false, false, m_sqrt2, false, false, one, p1, nullptr); s2 = ism.mk(false, false, zero, false, false, two, p2, nullptr); tst_interval(s1, s2, 2); // Case // s1: [ ... ] // s2: [ ... ] s1 = ism.mk(false, false, m_sqrt2, false, false, one, p1, nullptr); s2 = ism.mk(false, false, two, false, false, three, p2, nullptr); tst_interval(s1, s2, 2); // Case // s1: [ ... ] // s2: [ ... ] s1 = ism.mk(false, false, m_sqrt2, false, false, three, p1, nullptr); s2 = ism.mk(false, false, zero, false, false, two, p2, nullptr); tst_interval(s1, s2, 1); // Case // s1: [ ... ] // s2: [ ... ] [ ... ] s1 = ism.mk(false, false, m_two, false, false, two, p1, nullptr); s2 = ism.mk(false, false, m_sqrt2, false, false, zero, p2, nullptr); s3 = ism.mk(false, false, one, false, false, three, p2, nullptr); s2 = ism.mk_union(s2, s3); tst_interval(s1, s2, 2); // Case // s1: [ ... ] // s2: [ ... ] s1 = ism.mk(false, false, m_two, false, false, two, p1, nullptr); s2 = ism.mk(false, false, two, false, false, three, p2, nullptr); tst_interval(s1, s2, 2); s2 = ism.mk(true, false, two, false, false, three, p2, nullptr); tst_interval(s1, s2, 2); s2 = ism.mk(true, false, two, false, false, three, p1, nullptr); tst_interval(s1, s2, 1); s1 = ism.mk(false, false, m_two, true, false, two, p1, nullptr); tst_interval(s1, s2, 2); s1 = ism.mk(false, false, two, false, false, two, p1, nullptr); s2 = ism.mk(false, false, two, false, false, three, p2, nullptr); tst_interval(s1, s2, 1); // Case // s1: [ ... ] [ ... ] // s2: [ .. ] [ ... ] [ ... ] s1 = ism.mk(false, false, m_two, false, false, zero, p1, nullptr); s3 = ism.mk(false, false, one, false, false, three, p1, nullptr); s1 = ism.mk_union(s1, s3); s2 = ism.mk(true, true, zero, false, false, m_sqrt2, p2, nullptr); tst_interval(s1, s2, 3); s3 = ism.mk(false, false, one, false, false, sqrt2, p2, nullptr); s2 = ism.mk_union(s2, s3); s3 = ism.mk(false, false, two, true, true, zero, p2, nullptr); s2 = ism.mk_union(s2, s3); tst_interval(s1, s2, 4); // Case s1 = ism.mk(true, true, zero, false, false, one, p1, nullptr); s2 = ism.mk(true, false, one, true, true, zero, p2, nullptr); tst_interval(s1, s2, 2); s2 = ism.mk(true, false, one, false, false, two, p2, nullptr); s3 = ism.mk(false, false, two, true, true, zero, p1, nullptr); s2 = ism.mk_union(s2, s3); tst_interval(s1, s2, 3); } static nlsat::interval_set_ref mk_random(nlsat::interval_set_manager & ism, anum_manager & am, int range, int space, int tries, bool minus_inf, bool plus_inf, nlsat::literal lit) { static random_gen gen; ENSURE(range > 0); ENSURE(space > 0); nlsat::interval_set_ref r(ism), curr(ism); scoped_anum lower(am); scoped_anum upper(am); int prev = -range + (gen() % (space*4)); if (gen() % 3 == 0 && minus_inf) { int next = prev + (gen() % space); bool open = gen() % 2 == 0; am.set(upper, next); r = ism.mk(true, true, lower, open, false, upper, lit, nullptr); prev = next; } for (int i = 0; i < tries; ++i) { int l = prev + (gen() % space); int u = l + (gen() % space); bool lower_open = gen() % 2 == 0; bool upper_open = gen() % 2 == 0; if ((lower_open || upper_open) && l == u) u++; am.set(lower, l); am.set(upper, u); curr = ism.mk(lower_open, false, lower, upper_open, false, upper, lit, nullptr); r = ism.mk_union(r, curr); prev = u; } if (gen() % 3 == 0 && plus_inf) { int next = prev + (gen() % space); bool open = gen() % 2 == 0; am.set(lower, next); curr = ism.mk(open, false, lower, true, true, upper, lit, nullptr); r = ism.mk_union(r, curr); } return r; } static void check_subset_result(nlsat::interval_set_ref const & s1, nlsat::interval_set_ref const & s2, nlsat::interval_set_ref const & r, nlsat::literal l1, nlsat::literal l2) { nlsat::interval_set_manager ism(s1.m()); nlsat::interval_set_ref tmp(ism); unsigned num = ism.num_intervals(r); nlsat::literal_vector lits; ptr_vector clauses; ism.get_justifications(r, lits, clauses); ENSURE(lits.size() <= 2); for (unsigned i = 0; i < num; ++i) { tmp = ism.get_interval(r, i); ism.get_justifications(tmp, lits, clauses); ENSURE(lits.size() == 1); if (lits[0] == l1) { ENSURE(ism.subset(tmp, s1)); } else { ENSURE(lits[0] == l2); ENSURE(ism.subset(tmp, s2)); } } } static void tst4() { enable_trace("nlsat_interval"); reslimit rl; unsynch_mpq_manager qm; anum_manager am(rl, qm); small_object_allocator allocator; nlsat::interval_set_manager ism(am, allocator); nlsat::interval_set_ref s1(ism), s2(ism), r(ism); nlsat::literal l1(1, false); nlsat::literal l2(2, false); for (unsigned i = 0; i < 100; ++i) { s1 = mk_random(ism, am, 20, 3, 10, true, true, l1); s2 = mk_random(ism, am, 20, 3, 10, true, true, l2); r = tst_interval(s1, s2, 0, false); check_subset_result(s1, s2, r, l1, l2); } for (unsigned i = 0; i < 100; ++i) { s1 = mk_random(ism, am, 200, 100, 20, true, true, l1); s2 = mk_random(ism, am, 200, 100, 20, true, true, l2); r = tst_interval(s1, s2, 0, false); check_subset_result(s1, s2, r, l1, l2); } } static void tst5() { params_ref ps; reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment as(am); small_object_allocator allocator; nlsat::interval_set_manager ism(am, allocator); nlsat::evaluator ev(s, as, pm, allocator); nlsat::var x0, x1; x0 = pm.mk_var(); x1 = pm.mk_var(); polynomial_ref p(pm); polynomial_ref _x0(pm), _x1(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); p = (_x0^2) + (_x1^2) - 2; nlsat::poly * _p[1] = { p.get() }; bool is_even[1] = { false }; nlsat::bool_var b = s.mk_ineq_atom(nlsat::atom::GT, 1, _p, is_even); nlsat::atom * a = s.bool_var2atom(b); ENSURE(a != nullptr); scoped_anum zero(am); am.set(zero, 0); as.set(0, zero); auto i = ev.infeasible_intervals(a, true, nullptr); std::cout << "1) " << i << "\n"; as.set(1, zero); auto i2 = ev.infeasible_intervals(a, true, nullptr); std::cout << "2) " << i2 << "\n"; } static void project(nlsat::solver& s, nlsat::explain& ex, nlsat::var x, unsigned num, nlsat::literal const* lits) { std::cout << "Project "; s.display(std::cout, num, lits); nlsat::scoped_literal_vector result(s); ex.project(x, num, lits, result); s.display(std::cout << "\n==>\n", result.size(), result.data()); std::cout << "\n"; } static void project_fa(nlsat::solver& s, nlsat::explain& ex, nlsat::var x, unsigned num, nlsat::literal const* lits) { std::cout << "Project "; nlsat::scoped_literal_vector result(s); ex.compute_conflict_explanation(num, lits, result); std::cout << "(or"; for (auto l : result) { s.display(std::cout << " ", l); } for (unsigned i = 0; i < num; ++i) { s.display(std::cout << " ", ~lits[i]); } std::cout << ")\n"; } static bool literal_holds(nlsat::solver& s, nlsat::evaluator& eval, nlsat::literal l) { if (l == nlsat::true_literal) return true; if (l == nlsat::false_literal) return false; nlsat::atom* a = s.bool_var2atom(l.var()); ENSURE(a != nullptr); return eval.eval(a, l.sign()); } static nlsat::literal mk_gt(nlsat::solver& s, nlsat::poly* p) { nlsat::poly * _p[1] = { p }; bool is_even[1] = { false }; return s.mk_ineq_literal(nlsat::atom::GT, 1, _p, is_even); } static nlsat::literal mk_lt(nlsat::solver& s, nlsat::poly* p) { nlsat::poly * _p[1] = { p }; bool is_even[1] = { false }; return s.mk_ineq_literal(nlsat::atom::LT, 1, _p, is_even); } static nlsat::literal mk_eq(nlsat::solver& s, nlsat::poly* p) { nlsat::poly * _p[1] = { p }; bool is_even[1] = { false }; return s.mk_ineq_literal(nlsat::atom::EQ, 1, _p, is_even); } static void set_assignment_value(nlsat::assignment& as, anum_manager& am, nlsat::var v, rational const& val) { scoped_anum tmp(am); am.set(tmp, val.to_mpq()); as.set(v, tmp); } static void tst_vandermond() { params_ref ps; reslimit rlim; nlsat::solver s(rlim, ps, false); nlsat::pmanager& pm = s.pm(); anum_manager & am = s.am(); nlsat::assignment as(am); scoped_anum zero(am), one(am), two(am), three(am); nlsat::explain& ex = s.get_explain(); nlsat::var x0 = s.mk_var(false); nlsat::var x1 = s.mk_var(false); nlsat::var x2 = s.mk_var(false); nlsat::var x3 = s.mk_var(false); am.set(one, 1); am.set(two, 2); as.set(x0, one); as.set(x1, two); as.set(x2, three); polynomial_ref _x0(pm), _x1(pm), _x2(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); _x2 = pm.mk_polynomial(x2); polynomial_ref x0_sq(pm), x1_sq(pm), x2_sq(pm); x0_sq = _x0 * _x0; x1_sq = _x1 * _x1; x2_sq = _x2 * _x2; polynomial_ref vandermonde_flat(pm); vandermonde_flat = (_x1 * x2_sq) - (x1_sq * _x2) + (_x0 * x1_sq) - (x0_sq * _x1) + (x0_sq * _x2) - (_x0 * x2_sq); polynomial_ref vandermonde_factored(pm); vandermonde_factored = (_x1 - _x0) * (_x2 - _x0) * (_x2 - _x1); std::cout << "vandermonde_factored:" << vandermonde_factored << "\n"; polynomial_ref diff(pm); diff = vandermonde_flat - vandermonde_factored; ENSURE(pm.is_zero(diff.get())); pm.display(std::cout << "vandermonde(flat): ", vandermonde_flat); std::cout << "\n"; nlsat::scoped_literal_vector lits(s); lits.push_back(mk_gt(s, vandermonde_flat)); s.set_rvalues(as); project(s, ex, x2, lits.size(), lits.data()); as.set(x2, (one + two)/2); std::cout << am.eval_sign_at(vandermonde_flat, as) << "\n"; ;} static void tst6() { params_ref ps; reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment as(am); nlsat::explain& ex = s.get_explain(); nlsat::var x0, x1, x2, a, b, c, d; a = s.mk_var(false); b = s.mk_var(false); c = s.mk_var(false); d = s.mk_var(false); x0 = s.mk_var(false); x1 = s.mk_var(false); x2 = s.mk_var(false); polynomial_ref p1(pm), p2(pm), p3(pm), p4(pm), p5(pm); polynomial_ref _x0(pm), _x1(pm), _x2(pm); polynomial_ref _a(pm), _b(pm), _c(pm), _d(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); _x2 = pm.mk_polynomial(x2); _a = pm.mk_polynomial(a); _b = pm.mk_polynomial(b); _c = pm.mk_polynomial(c); _d = pm.mk_polynomial(d); p1 = (_a*(_x0^2)) + _x2 + 2; p2 = (_b*_x1) - (2*_x2) - _x0 + 8; nlsat::scoped_literal_vector lits(s); lits.push_back(mk_gt(s, p1)); lits.push_back(mk_gt(s, p2)); lits.push_back(mk_gt(s, (_c*_x0) + _x2 + 1)); lits.push_back(mk_gt(s, (_d*_x0) - _x1 + 5*_x2)); scoped_anum zero(am), one(am), two(am); am.set(zero, 0); am.set(one, 1); am.set(two, 2); as.set(0, one); as.set(1, one); as.set(2, two); as.set(3, two); as.set(4, two); as.set(5, one); as.set(6, one); s.set_rvalues(as); project(s, ex, x0, 2, lits.data()); project(s, ex, x1, 3, lits.data()); project(s, ex, x2, 3, lits.data()); project(s, ex, x2, 2, lits.data()); project(s, ex, x2, 4, lits.data()); project(s, ex, x2, 3, lits.data()+1); } static void tst7() { params_ref ps; reslimit rlim; nlsat::solver s(rlim, ps, false); nlsat::pmanager & pm = s.pm(); nlsat::var x0, x1, x2, a, b, c, d; a = s.mk_var(false); b = s.mk_var(false); c = s.mk_var(false); d = s.mk_var(false); x0 = s.mk_var(false); x1 = s.mk_var(false); x2 = s.mk_var(false); polynomial_ref p1(pm), p2(pm), p3(pm), p4(pm), p5(pm); polynomial_ref _x0(pm), _x1(pm), _x2(pm); polynomial_ref _a(pm), _b(pm), _c(pm), _d(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); _x2 = pm.mk_polynomial(x2); _a = pm.mk_polynomial(a); _b = pm.mk_polynomial(b); _c = pm.mk_polynomial(c); _d = pm.mk_polynomial(d); p1 = _x0 + _x1; p2 = _x2 - _x0; p3 = (-1*_x0) - _x1; nlsat::scoped_literal_vector lits(s); lits.push_back(mk_gt(s, p1)); lits.push_back(mk_gt(s, p2)); lits.push_back(mk_gt(s, p3)); nlsat::literal_vector litsv(lits.size(), lits.data()); lbool res = s.check(litsv); VERIFY(res == l_false); for (unsigned i = 0; i < litsv.size(); ++i) { s.display(std::cout, litsv[i]); std::cout << " "; } std::cout << "\n"; litsv.reset(); litsv.append(2, lits.data()); res = s.check(litsv); ENSURE(res == l_true); s.display(std::cout); s.am().display(std::cout, s.value(x0)); std::cout << "\n"; s.am().display(std::cout, s.value(x1)); std::cout << "\n"; s.am().display(std::cout, s.value(x2)); std::cout << "\n"; } static void tst8() { params_ref ps; reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment as(am); nlsat::explain& ex = s.get_explain(); nlsat::var x0, x1, x2, a, b, c, d; a = s.mk_var(false); b = s.mk_var(false); c = s.mk_var(false); d = s.mk_var(false); x0 = s.mk_var(false); x1 = s.mk_var(false); x2 = s.mk_var(false); polynomial_ref p1(pm), p2(pm), p3(pm), p4(pm), p5(pm); polynomial_ref _x0(pm), _x1(pm), _x2(pm); polynomial_ref _a(pm), _b(pm), _c(pm), _d(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); _x2 = pm.mk_polynomial(x2); _a = pm.mk_polynomial(a); _b = pm.mk_polynomial(b); _c = pm.mk_polynomial(c); _d = pm.mk_polynomial(d); scoped_anum zero(am), one(am), two(am), six(am); am.set(zero, 0); am.set(one, 1); am.set(two, 2); am.set(six, 6); as.set(0, two); // a as.set(1, one); // b as.set(2, six); // c as.set(3, zero); // d as.set(4, zero); // x0 as.set(5, zero); // x1 as.set(6, two); // x2 s.set_rvalues(as); nlsat::scoped_literal_vector lits(s); lits.push_back(mk_eq(s, (_a*_x2*_x2) - (_b*_x2) - _c)); project(s, ex, x2, 1, lits.data()); } static void tst9() { params_ref ps; reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment as(am); nlsat::explain& ex = s.get_explain(); int num_lo = 4; int num_hi = 5; svector los, his; for (int i = 0; i < num_lo; ++i) { los.push_back(s.mk_var(false)); scoped_anum num(am); am.set(num, - i - 1); as.set(i, num); } for (int i = 0; i < num_hi; ++i) { his.push_back(s.mk_var(false)); scoped_anum num(am); am.set(num, i + 1); as.set(num_lo + i, num); } nlsat::var _z = s.mk_var(false); nlsat::var _x = s.mk_var(false); polynomial_ref x(pm), z(pm); x = pm.mk_polynomial(_x); scoped_anum val(am); am.set(val, 0); as.set(num_lo + num_hi, val); as.set(num_lo + num_hi + 1, val); s.set_rvalues(as); nlsat::scoped_literal_vector lits(s); for (int i = 0; i < num_lo; ++i) { polynomial_ref y(pm); y = pm.mk_polynomial(los[i]); lits.push_back(mk_gt(s, x - y)); } for (int i = 0; i < num_hi; ++i) { polynomial_ref y(pm); y = pm.mk_polynomial(his[i]); lits.push_back(mk_gt(s, y - x)); } z = pm.mk_polynomial(_z); lits.push_back(mk_eq(s, x - z)); #define TEST_ON_OFF() \ std::cout << "Off "; \ project(s, ex, _x, lits.size()-1, lits.data()); \ std::cout << "On "; \ project(s, ex, _x, lits.size()-1, lits.data()); \ std::cout << "Off "; \ project(s, ex, _x, lits.size(), lits.data()); \ std::cout << "On "; \ project(s, ex, _x, lits.size(), lits.data()) \ TEST_ON_OFF(); lits.reset(); polynomial_ref u(pm); u = pm.mk_polynomial(his[1]); for (int i = 0; i < num_lo; ++i) { polynomial_ref y(pm); y = pm.mk_polynomial(los[i]); lits.push_back(mk_gt(s, u*x - y)); } for (int i = 0; i < num_hi; ++i) { polynomial_ref y(pm); y = pm.mk_polynomial(his[i]); lits.push_back(mk_gt(s, y - u*x)); } z = pm.mk_polynomial(_z); lits.push_back(mk_eq(s, u*x - z)); TEST_ON_OFF(); lits.reset(); u = pm.mk_polynomial(los[1]); for (int i = 0; i < num_lo; ++i) { polynomial_ref y(pm); y = pm.mk_polynomial(los[i]); lits.push_back(mk_gt(s, u*x - y)); } for (int i = 0; i < num_hi; ++i) { polynomial_ref y(pm); y = pm.mk_polynomial(his[i]); lits.push_back(mk_gt(s, y - u*x)); } z = pm.mk_polynomial(_z); lits.push_back(mk_eq(s, x - z)); TEST_ON_OFF(); } #if 0 #endif static void test_root_literal(nlsat::solver& s, nlsat::explain& ex, nlsat::var x, nlsat::atom::kind k, unsigned i, nlsat::poly* p) { nlsat::scoped_literal_vector result(s); ex.test_root_literal(k, x, 1, p, result); nlsat::bool_var b = s.mk_root_atom(k, x, i, p); s.display(std::cout, nlsat::literal(b, false)); s.display(std::cout << " ==> ", result.size(), result.data()); std::cout << "\n"; } static bool satisfies_root(nlsat::solver& s, nlsat::atom::kind k, nlsat::poly* p) { nlsat::pmanager & pm = s.pm(); anum_manager & am = s.am(); nlsat::assignment as(am); s.get_rvalues(as); polynomial_ref pr(p, pm); switch (k) { case nlsat::atom::ROOT_EQ: return am.eval_sign_at(pr, as) == 0; case nlsat::atom::ROOT_LE: return am.eval_sign_at(pr, as) <= 0; case nlsat::atom::ROOT_LT: return am.eval_sign_at(pr, as) < 0; case nlsat::atom::ROOT_GE: return am.eval_sign_at(pr, as) >= 0; case nlsat::atom::ROOT_GT: return am.eval_sign_at(pr, as) > 0; default: UNREACHABLE(); return false; } } static void tst10() { params_ref ps; reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment as(am); nlsat::explain& ex = s.get_explain(); nlsat::var _a = s.mk_var(false); nlsat::var _b = s.mk_var(false); nlsat::var _c = s.mk_var(false); nlsat::var _x = s.mk_var(false); polynomial_ref x(pm), a(pm), b(pm), c(pm), p(pm); x = pm.mk_polynomial(_x); a = pm.mk_polynomial(_a); b = pm.mk_polynomial(_b); c = pm.mk_polynomial(_c); p = a*x*x + b*x + c; scoped_anum one(am), two(am), three(am), mone(am), mtwo(am), mthree(am), zero(am), one_a_half(am); am.set(zero, 0); am.set(one, 1); am.set(two, 2); am.set(three, 3); am.set(mone, -1); am.set(mtwo, -2); am.set(mthree, -3); rational oah(1,2); am.set(one_a_half, oah.to_mpq()); scoped_anum_vector nums(am); nums.push_back(one); nums.push_back(two); nums.push_back(one_a_half); nums.push_back(mone); nums.push_back(three); // a = 1, b = -3, c = 2: // has roots x = 2, x = 1: // 2^2 - 3*2 + 2 = 0 // 1 - 3 + 2 = 0 as.set(_a, one); as.set(_b, mthree); as.set(_c, two); for (unsigned i = 0; i < nums.size(); ++i) { as.set(_x, nums[i]); s.set_rvalues(as); std::cout << p << "\n"; as.display(std::cout); for (unsigned k = nlsat::atom::ROOT_EQ; k <= nlsat::atom::ROOT_GE; ++k) { if (satisfies_root(s, (nlsat::atom::kind) k, p)) { test_root_literal(s, ex, _x, (nlsat::atom::kind) k, 1, p); } } } as.set(_a, mone); as.set(_b, three); as.set(_c, mtwo); for (unsigned i = 0; i < nums.size(); ++i) { as.set(_x, nums[i]); s.set_rvalues(as); std::cout << p << "\n"; as.display(std::cout); for (unsigned k = nlsat::atom::ROOT_EQ; k <= nlsat::atom::ROOT_GE; ++k) { if (satisfies_root(s, (nlsat::atom::kind) k, p)) { test_root_literal(s, ex, _x, (nlsat::atom::kind) k, 1, p); } } } std::cout << "\n"; } void tst_nlsat_mv() { params_ref ps; reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment assignment(am); nlsat::explain& ex = s.get_explain(); tst_vandermond(); return; // Regression: reproduce lemma 114 where main_operator adds spurious bounds. nlsat::var x0 = s.mk_var(false); nlsat::var x1 = s.mk_var(false); polynomial_ref _x0(pm), _x1(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); polynomial_ref x0_sq(pm), x0_cu(pm), x0_4(pm), x0_5(pm); x0_sq = _x0 * _x0; x0_cu = x0_sq * _x0; x0_4 = x0_cu * _x0; x0_5 = x0_4 * _x0; polynomial_ref x1_sq(pm), x1_cu(pm), x1_4(pm), x1_5(pm); x1_sq = _x1 * _x1; x1_cu = x1_sq * _x1; x1_4 = x1_cu * _x1; x1_5 = x1_4 * _x1; polynomial_ref root_arg(pm); root_arg = x1_5 + (_x0 * x1_4) - (18 * x1_4) - (2 * x0_sq * x1_cu) - (2 * x0_cu * x1_sq) + (36 * x0_sq * x1_sq) + (1296 * _x0 * x1_sq) + (864 * x1_sq) + (x0_4 * _x1) + (1296 * x0_sq * _x1) + (6048 * _x0 * _x1) + x0_5 - (18 * x0_4) + (864 * x0_sq); // should be (x1^5 + x0 x1^4 - 18 x1^4 - 2 x0^2 x1^3 - 2 x0^3 x1^2 + 36 x0^2 x1^2 + 1296 x0 x1^2 + 864 x1^2 + x0^4 x1 + 1296 x0^2 x1 + 6048 x0 x1 + x0^5 - 18 x0^4 + 864 x0^2) std::cout << "big poly:" << root_arg << std::endl; nlsat::literal x1_gt_0 = mk_gt(s, _x1); nlsat::bool_var root_gt = s.mk_root_atom(nlsat::atom::ROOT_GT, x1, 3, root_arg.get()); nlsat::literal x1_gt_root(root_gt, false); nlsat::scoped_literal_vector lits(s); lits.push_back(x1_gt_0); lits.push_back(~x1_gt_root); // !(x1 > root[3](root_arg)) scoped_anum one(am), one_dup(am); am.set(one, 1); assignment.set(x0, one); s.set_rvalues(assignment); nlsat::scoped_literal_vector result(s); ex.compute_conflict_explanation(lits.size(), lits.data(), result); std::cout << "main_operator root regression core:\n"; s.display(std::cout, lits.size(), lits.data()); s.display(std::cout << "\n==>\n", result.size(), result.data()); std::cout << "\n"; // Assign x1 only after the lemma is produced. am.set(one_dup, 1); assignment.set(x1, one_dup); s.set_rvalues(assignment); small_object_allocator allocator; nlsat::evaluator eval(s, assignment, pm, allocator); std::cout << "input literal values at x0 = 1, x1 = 1:\n"; for (nlsat::literal l : lits) { nlsat::atom* a = s.bool_var2atom(l.var()); if (!a) { std::cout << "conversion bug\n"; } bool value = a ? eval.eval(a, l.sign()) : false; s.display(std::cout << " ", l); std::cout << " -> " << (value ? "true" : "false") << "\n"; } std::cout << "new literal values at x0 = 1, x1 = 1:\n"; for (nlsat::literal l : result) { nlsat::atom* a = s.bool_var2atom(l.var()); bool value = a ? eval.eval(a, l.sign()) : false; if (!a) { std::cout << "conversion bug\n"; } s.display(std::cout << " ", l); std::cout << " -> " << (value ? "true" : "false") << "\n"; } std::cout << "\n"; } static void tst11() { params_ref ps; reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment as(am); nlsat::explain& ex = s.get_explain(); nlsat::var x, y, z; y = s.mk_var(false); z = s.mk_var(false); x = s.mk_var(false); polynomial_ref p1(pm), p2(pm), _x(pm), _y(pm), _z(pm); _x = pm.mk_polynomial(x); _y = pm.mk_polynomial(y); _z = pm.mk_polynomial(z); nlsat::scoped_literal_vector lits(s); scoped_anum zero(am), one(am), five(am); am.set(zero, 0); am.set(one, 1); am.set(five, 5); as.set(z, zero); as.set(y, five); as.set(x, five); s.set_rvalues(as); p1 = (_x - _y); p2 = ((_x*_x) - (_x*_y) - _z); lits.reset(); lits.push_back(mk_gt(s, p1)); lits.push_back(mk_eq(s, p2)); project_fa(s, ex, x, 2, lits.data()); // return; p1 = ((_x * _x) - (2 * _y * _x) - _z + (_y *_y)); p2 = _x + _y; as.set(_x, one); as.set(_y, zero); as.set(_z, one); lits.reset(); lits.push_back(mk_lt(s, p1)); lits.push_back(mk_eq(s, p2)); project_fa(s, ex, x, 2, lits.data()); return; as.set(z, zero); as.set(y, five); as.set(x, five); p1 = (_x - _y); p2 = ((_x*_x) - (_x*_y)); lits.reset(); lits.push_back(mk_gt(s, p1)); lits.push_back(mk_eq(s, p2)); project_fa(s, ex, x, 2, lits.data()); #if 0 !(x5^4 - 2 x3^2 x5^2 - 2 x1^2 x5^2 + 4 x0 x1 x5^2 - 2 x0^2 x5^2 + x3^4 - 2 x1^2 x3^2 + 4 x0 x1 x3^2 - 2 x0^2 x3^2 + x1^4 - 4 x0 x1^3 + 6 x0^2 x1^2 - 4 x0^3 x1 + x0^4 = 0) or !(x5 < 0) or !(x4 > root[1](x1 x4 - x0 x4 + x3)) or !(x3 + x1 - x0 > 0) or !(x1 - x0 < 0) or !(x7 > root[1](x1^2 x7 - 2 x0 x1 x7 + x0^2 x7 + x1 x3 - x0 x3)) or x7 - x4 = 0 or !(x1 x3 x7^2 - x0 x3 x7^2 - x5^2 x7 + x3^2 x7 + x1^2 x7 - 2 x0 x1 x7 + x0^2 x7 + x1 x3 - x0 x3 = 0) x0 := -1 x1 := -21.25 x2 := 0.0470588235? x3 := 2 x4 := -0.03125 x5 := -18.25 x6 := -0.5 x7 := 1 #endif } static void tst_polynomial_cache_mk_unique() { params_ref ps; reslimit rlim; nlsat::solver s(rlim, ps, false); nlsat::pmanager& pm = s.pm(); polynomial::cache cache(pm); nlsat::var x = s.mk_var(false); polynomial_ref x_poly(pm); x_poly = pm.mk_polynomial(x); polynomial_ref p(pm); p = 2 * x_poly; pm.display(std::cout, p); std::cout << "\n"; ENSURE(!cache.contains(p.get())); polynomial::polynomial* unique_p = cache.mk_unique(p.get()); ENSURE(unique_p != nullptr); ENSURE(cache.contains(unique_p)); pm.display(std::cout, unique_p); std::cout << "\n"; polynomial_ref p_again(pm); p_again = 2 * x_poly; ENSURE(cache.mk_unique(p_again.get()) == unique_p); polynomial_ref p_neg(pm); p_neg = -2 * x_poly; ENSURE(!cache.contains(p_neg.get())); polynomial::polynomial* unique_p_neg = cache.mk_unique(p_neg.get()); ENSURE(unique_p_neg != nullptr); ENSURE(unique_p_neg != unique_p); ENSURE(cache.contains(unique_p_neg)); polynomial_ref p_neg_again(pm); p_neg_again = -2 * x_poly; ENSURE(cache.mk_unique(p_neg_again.get()) == unique_p_neg); polynomial_ref ca(p, pm), cb(p_neg, pm); pm.primitive(ca, x, ca); pm.primitive(cb, x, cb); pm.display(std::cout << "ca:", ca) << "\n"; pm.display(std::cout << "cb:", cb) << "\n"; } static void tst_nullified_polynomial() { params_ref ps; reslimit rlim; nlsat::solver s(rlim, ps, false); nlsat::pmanager & pm = s.pm(); anum_manager & am = s.am(); polynomial::cache cache(pm); nlsat::var x0 = s.mk_var(false); nlsat::var x1 = s.mk_var(false); nlsat::var x2 = s.mk_var(false); nlsat::var x3 = s.mk_var(false); ENSURE(x0 < x1 && x1 < x2); polynomial_ref _x0(pm), _x1(pm), _x2(pm), _x3(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); _x2 = pm.mk_polynomial(x2); _x3 = pm.mk_polynomial(x3); polynomial_ref p1(pm), p2(pm); p1 = _x2 * _x1; p2 = _x0; p1 = p1 + p2; p2 = _x3; polynomial_ref_vector polys(pm); polys.push_back(p1); polys.push_back(p2); nlsat::assignment as(am); scoped_anum zero(am); am.set(zero, 0); as.set(x0, zero); as.set(x1, zero); as.set(x2, zero); as.set(x3, zero); s.set_rvalues(as); unsigned max_x = 0; for (unsigned i = 0; i < polys.size(); ++i) { unsigned lvl = pm.max_var(polys.get(i)); if (lvl > max_x) max_x = lvl; } ENSURE(max_x == x3); nlsat::levelwise lws(s, polys, max_x, s.sample(), pm, am, cache); auto cell = lws.single_cell(); ENSURE(lws.failed()); } // Test case for unsound lemma lws2380 - comparing standard projection vs levelwise // The issue: x7 is unconstrained in levelwise output but affects the section polynomial static void tst_unsound_lws2380() { enable_trace("nlsat_explain"); auto run_test = [](bool use_lws) { std::cout << "=== tst_unsound_lws2380: " << (use_lws ? "Levelwise" : "Standard") << " projection (lws=" << use_lws << ") ===\n"; params_ref ps; ps.set_bool("lws", use_lws); reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment as(am); nlsat::explain& ex = s.get_explain(); // Create 14 variables x0-x13 nlsat::var x0 = s.mk_var(false); nlsat::var x1 = s.mk_var(false); nlsat::var x2 = s.mk_var(false); nlsat::var x3 = s.mk_var(false); nlsat::var x4 = s.mk_var(false); nlsat::var x5 = s.mk_var(false); nlsat::var x6 = s.mk_var(false); nlsat::var x7 = s.mk_var(false); nlsat::var x8 = s.mk_var(false); nlsat::var x9 = s.mk_var(false); nlsat::var x10 = s.mk_var(false); nlsat::var x11 = s.mk_var(false); nlsat::var x12 = s.mk_var(false); nlsat::var x13 = s.mk_var(false); polynomial_ref _x0(pm), _x1(pm), _x2(pm), _x3(pm), _x4(pm), _x5(pm), _x6(pm); polynomial_ref _x7(pm), _x8(pm), _x9(pm), _x10(pm), _x11(pm), _x12(pm), _x13(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); _x2 = pm.mk_polynomial(x2); _x3 = pm.mk_polynomial(x3); _x4 = pm.mk_polynomial(x4); _x5 = pm.mk_polynomial(x5); _x6 = pm.mk_polynomial(x6); _x7 = pm.mk_polynomial(x7); _x8 = pm.mk_polynomial(x8); _x9 = pm.mk_polynomial(x9); _x10 = pm.mk_polynomial(x10); _x11 = pm.mk_polynomial(x11); _x12 = pm.mk_polynomial(x12); _x13 = pm.mk_polynomial(x13); // p[0]: x13 polynomial_ref p0(pm); p0 = _x13; // p[1]: 170*x8*x13 + x10*x11*x12 - x11*x12 - x7*x8*x12 + x5*x10*x11 + 184*x1*x10*x11 // - x0*x10*x11 - x5*x11 - 184*x1*x11 + x0*x11 - x3*x8*x10 + x2*x8*x10 // - 2*x10 - 184*x1*x7*x8 - x2*x8 + 2 polynomial_ref p1(pm); p1 = (170 * _x8 * _x13) + (_x10 * _x11 * _x12) - (_x11 * _x12) - (_x7 * _x8 * _x12) + (_x5 * _x10 * _x11) + (184 * _x1 * _x10 * _x11) - (_x0 * _x10 * _x11) - (_x5 * _x11) - (184 * _x1 * _x11) + (_x0 * _x11) - (_x3 * _x8 * _x10) + (_x2 * _x8 * _x10) - (2 * _x10) - (184 * _x1 * _x7 * _x8) - (_x2 * _x8) + 2; std::cout << "p0: " << p0 << "\n"; std::cout << "p1: " << p1 << "\n"; // Set sample: x0=-1, x1=-1, x2=0, x3=-1, x5=0, x7=0, x8=2, x10=0, x11=0, x12=2 scoped_anum val(am); am.set(val, -1); as.set(x0, val); am.set(val, -1); as.set(x1, val); am.set(val, 0); as.set(x2, val); am.set(val, -1); as.set(x3, val); am.set(val, 0); as.set(x4, val); am.set(val, 0); as.set(x5, val); am.set(val, 0); as.set(x6, val); am.set(val, 0); as.set(x7, val); am.set(val, 2); as.set(x8, val); am.set(val, 0); as.set(x9, val); am.set(val, 0); as.set(x10, val); am.set(val, 0); as.set(x11, val); am.set(val, 2); as.set(x12, val); am.set(val, 1); as.set(x13, val); s.set_rvalues(as); // Create literals for the two polynomials nlsat::scoped_literal_vector lits(s); lits.push_back(mk_gt(s, p0.get())); // x13 > 0 lits.push_back(mk_gt(s, p1.get())); // p1 > 0 project_fa(s, ex, x13, lits.size(), lits.data()); std::cout << "\n"; }; run_test(false); // Standard projection run_test(true); // Levelwise projection } // Test case for unsound lemma - levelwise produces cell that's too large // Input: 5 polynomials with max_var=x3, sample x0=-7, x1=-1, x2=1 // Counterexample: x0=-4, x1=-8, x2=5, x3=6 static void tst_unsound_lws_x3() { std::cout << "=== tst_unsound_lws_x3 ===\n"; params_ref ps; ps.set_bool("lws", true); reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment sample_as(am); nlsat::assignment counter_as(am); polynomial::cache cache(pm); // Create 4 variables x0, x1, x2, x3 nlsat::var x0 = s.mk_var(false); nlsat::var x1 = s.mk_var(false); nlsat::var x2 = s.mk_var(false); nlsat::var x3 = s.mk_var(false); polynomial_ref _x0(pm), _x1(pm), _x2(pm), _x3(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); _x2 = pm.mk_polynomial(x2); _x3 = pm.mk_polynomial(x3); // p[0]: x3 + x0 polynomial_ref p0(pm); p0 = _x3 + _x0; // p[1]: x1 polynomial_ref p1(pm); p1 = _x1; // p[2]: 9 x1^2 x3^2 - 6 x0 x1 x2 x3 + 3 x0 x1^2 x3 - 12 x1^2 x3 + x0^2 x2^2 - x0^2 x1 x2 - 4 x0 x1 x2 + 2 x0 x1^2 + 4 x1^2 polynomial_ref p2(pm); p2 = 9 * (_x1^2) * (_x3^2) - 6 * _x0 * _x1 * _x2 * _x3 + 3 * _x0 * (_x1^2) * _x3 - 12 * (_x1^2) * _x3 + (_x0^2) * (_x2^2) - (_x0^2) * _x1 * _x2 - 4 * _x0 * _x1 * _x2 + 2 * _x0 * (_x1^2) + 4 * (_x1^2); // p[3]: 9 x1^2 x3^2 - 6 x0 x1 x2 x3 + 6 x0 x1^2 x3 - 12 x1^2 x3 + x0^2 x2^2 - 2 x0^2 x1 x2 - 4 x0 x1 x2 + x0^2 x1^2 + 4 x0 x1^2 + 4 x1^2 polynomial_ref p3(pm); p3 = 9 * (_x1^2) * (_x3^2) - 6 * _x0 * _x1 * _x2 * _x3 + 6 * _x0 * (_x1^2) * _x3 - 12 * (_x1^2) * _x3 + (_x0^2) * (_x2^2) - 2 * (_x0^2) * _x1 * _x2 - 4 * _x0 * _x1 * _x2 + (_x0^2) * (_x1^2) + 4 * _x0 * (_x1^2) + 4 * (_x1^2); // p[4]: x3 + x1 + x0 polynomial_ref p4(pm); p4 = _x3 + _x1 + _x0; std::cout << "p0: " << p0 << "\n"; std::cout << "p1: " << p1 << "\n"; std::cout << "p2: " << p2 << "\n"; std::cout << "p3: " << p3 << "\n"; std::cout << "p4: " << p4 << "\n\n"; // Set sample: x0=-7, x1=-1, x2=1, x3=? (need to pick a value in the cell) // For the sample, we need an x3 value. Let's use x3=8 (which is > -x0 = 7, so p0 > 0) scoped_anum val(am); am.set(val, -7); sample_as.set(x0, val); am.set(val, -1); sample_as.set(x1, val); am.set(val, 1); sample_as.set(x2, val); am.set(val, 8); sample_as.set(x3, val); // Counterexample: x0=-4, x1=-8, x2=5, x3=6 am.set(val, -4); counter_as.set(x0, val); am.set(val, -8); counter_as.set(x1, val); am.set(val, 5); counter_as.set(x2, val); am.set(val, 6); counter_as.set(x3, val); std::cout << "Sample point: x0=-7, x1=-1, x2=1, x3=8\n"; std::cout << "Counterexample: x0=-4, x1=-8, x2=5, x3=6\n\n"; // Evaluate polynomials at sample std::cout << "Polynomial signs at SAMPLE:\n"; std::cout << " p0 sign: " << am.eval_sign_at(p0, sample_as) << "\n"; std::cout << " p1 sign: " << am.eval_sign_at(p1, sample_as) << "\n"; std::cout << " p2 sign: " << am.eval_sign_at(p2, sample_as) << "\n"; std::cout << " p3 sign: " << am.eval_sign_at(p3, sample_as) << "\n"; std::cout << " p4 sign: " << am.eval_sign_at(p4, sample_as) << "\n\n"; // Evaluate polynomials at counterexample std::cout << "Polynomial signs at COUNTEREXAMPLE:\n"; std::cout << " p0 sign: " << am.eval_sign_at(p0, counter_as) << "\n"; std::cout << " p1 sign: " << am.eval_sign_at(p1, counter_as) << "\n"; std::cout << " p2 sign: " << am.eval_sign_at(p2, counter_as) << "\n"; std::cout << " p3 sign: " << am.eval_sign_at(p3, counter_as) << "\n"; std::cout << " p4 sign: " << am.eval_sign_at(p4, counter_as) << "\n\n"; // Set solver assignment for levelwise (without x3) am.set(val, -7); sample_as.set(x0, val); am.set(val, -1); sample_as.set(x1, val); am.set(val, 1); sample_as.set(x2, val); s.set_rvalues(sample_as); // Build polynomial vector polynomial_ref_vector polys(pm); polys.push_back(p0); polys.push_back(p1); polys.push_back(p2); polys.push_back(p3); polys.push_back(p4); unsigned max_x = x3; // Print roots of each polynomial at sample std::cout << "Roots of polynomials at sample (in x3):\n"; for (unsigned i = 0; i < polys.size(); ++i) { polynomial_ref p(polys.get(i), pm); if (pm.max_var(p) != x3) { std::cout << " p" << i << ": max_var is not x3, skipping\n"; continue; } scoped_anum_vector roots(am); am.isolate_roots(p, nlsat::undef_var_assignment(sample_as, x3), roots); std::cout << " p" << i << " roots: "; if (roots.empty()) { std::cout << "(none)"; } else { for (unsigned j = 0; j < roots.size(); ++j) { if (j > 0) std::cout << ", "; am.display_decimal(std::cout, roots[j], 5); } } std::cout << "\n"; } std::cout << "\n"; // Compute and evaluate resultant of p3 and p4 std::cout << "Resultant of p3 and p4 (in x3):\n"; polynomial_ref res_p3_p4(pm); { pm.resultant(p3, p4, x3, res_p3_p4); std::cout << " Res(p3, p4) = "; pm.display(std::cout, res_p3_p4); std::cout << "\n"; std::cout << " Sign at sample (x0=-7, x1=-1, x2=1): " << am.eval_sign_at(res_p3_p4, sample_as) << "\n"; std::cout << " Sign at counter (x0=-4, x1=-8, x2=5): " << am.eval_sign_at(res_p3_p4, counter_as) << "\n"; // Check roots of the resultant at x2 level (parametric in x0, x1) std::cout << " Roots at sample x0,x1 (in x2): "; scoped_anum_vector res_roots(am); nlsat::assignment partial_sample(am); scoped_anum val(am); am.set(val, -7); partial_sample.set(x0, val); am.set(val, -1); partial_sample.set(x1, val); am.isolate_roots(res_p3_p4, nlsat::undef_var_assignment(partial_sample, x2), res_roots); for (unsigned j = 0; j < res_roots.size(); ++j) { if (j > 0) std::cout << ", "; am.display_decimal(std::cout, res_roots[j], 5); } std::cout << "\n"; // Check roots at counterexample x0,x1 std::cout << " Roots at counter x0,x1 (in x2): "; nlsat::assignment partial_counter(am); am.set(val, -4); partial_counter.set(x0, val); am.set(val, -8); partial_counter.set(x1, val); scoped_anum_vector res_roots_counter(am); am.isolate_roots(res_p3_p4, nlsat::undef_var_assignment(partial_counter, x2), res_roots_counter); for (unsigned j = 0; j < res_roots_counter.size(); ++j) { if (j > 0) std::cout << ", "; am.display_decimal(std::cout, res_roots_counter[j], 5); } std::cout << "\n"; // Compute and check discriminant of Res(p3,p4) in x2 std::cout << "\n Discriminant of Res(p3,p4) in x2:\n"; polynomial_ref disc_res(pm); pm.discriminant(res_p3_p4, x2, disc_res); std::cout << " Disc = "; pm.display(std::cout, disc_res); std::cout << "\n"; std::cout << " Sign at sample (x0=-7, x1=-1): " << am.eval_sign_at(disc_res, sample_as) << "\n"; std::cout << " Sign at counter (x0=-4, x1=-8): " << am.eval_sign_at(disc_res, counter_as) << "\n"; } std::cout << "\n"; std::cout << "Running levelwise with max_x = x3\n"; // Run levelwise nlsat::levelwise lws(s, polys, max_x, s.sample(), pm, am, cache); auto cell = lws.single_cell(); std::cout << "Levelwise " << (lws.failed() ? "FAILED" : "succeeded") << "\n"; std::cout << "Cell intervals (count=" << cell.size() << "):\n"; for (auto const& interval : cell) { nlsat::display(std::cout << " ", s, interval) << "\n"; } // Evaluate cell bounds at counterexample to check if counterexample is in cell std::cout << "\n--- Checking if counterexample is in cell ---\n"; std::cout << "For a SECTOR (lower_root, upper_root), variable x satisfies:\n"; std::cout << " x > lower_root AND x < upper_root\n\n"; // For univariate evaluation, we need to substitute lower vars // Level 0: x0 interval, evaluate at x0=-4 // Level 1: x1 interval (parametric in x0), evaluate at (x0=-4, x1=-8) // Level 2: x2 interval (parametric in x0,x1), evaluate at (x0=-4,x1=-8,x2=5) bool counterexample_outside_cell = false; for (unsigned i = 0; i < cell.size(); ++i) { auto const& interval = cell[i]; nlsat::var level = i; std::cout << "Level " << level << ":\n"; // Build assignment up to this level (exclusive) for root isolation nlsat::assignment partial_as(am); scoped_anum val(am); if (level > 0) { am.set(val, -4); partial_as.set(x0, val); } if (level > 1) { am.set(val, -8); partial_as.set(x1, val); } if (level > 2) { am.set(val, 5); partial_as.set(x2, val); } scoped_anum counter_val(am); if (level == 0) am.set(counter_val, -4); else if (level == 1) am.set(counter_val, -8); else if (level == 2) am.set(counter_val, 5); if (interval.is_section()) { std::cout << " Section case\n"; } else { // Isolate roots and check bounds if (!interval.l_inf()) { polynomial_ref lower_p(interval.l, pm); scoped_anum_vector lower_roots(am); am.isolate_roots(lower_p, nlsat::undef_var_assignment(partial_as, level), lower_roots); if (lower_roots.size() >= interval.l_index) { std::cout << " Lower root (root[" << interval.l_index << "]): "; am.display_decimal(std::cout, lower_roots[interval.l_index - 1], 10); std::cout << "\n"; std::cout << " Counter x" << level << " = "; am.display_decimal(std::cout, counter_val, 10); int cmp = am.compare(counter_val, lower_roots[interval.l_index - 1]); std::cout << " -> " << (cmp > 0 ? "ABOVE" : (cmp < 0 ? "BELOW" : "EQUAL")) << " lower bound\n"; if (cmp <= 0) counterexample_outside_cell = true; } } if (!interval.u_inf()) { polynomial_ref upper_p(interval.u, pm); scoped_anum_vector upper_roots(am); am.isolate_roots(upper_p, nlsat::undef_var_assignment(partial_as, level), upper_roots); if (upper_roots.size() >= interval.u_index) { std::cout << " Upper root (root[" << interval.u_index << "]): "; am.display_decimal(std::cout, upper_roots[interval.u_index - 1], 10); std::cout << "\n"; std::cout << " Counter x" << level << " = "; am.display_decimal(std::cout, counter_val, 10); int cmp = am.compare(counter_val, upper_roots[interval.u_index - 1]); std::cout << " -> " << (cmp > 0 ? "ABOVE" : (cmp < 0 ? "BELOW" : "EQUAL")) << " upper bound\n"; if (cmp >= 0) counterexample_outside_cell = true; } } } std::cout << "\n"; } // The counterexample has different polynomial signs than the sample. // For a sound cell, the counterexample must be OUTSIDE the cell. ENSURE(counterexample_outside_cell); std::cout << "SUCCESS: Counterexample is OUTSIDE the cell (cell is sound)\n"; std::cout << "=== END tst_unsound_lws_x3 ===\n\n"; } // Test case for unsound lemma from From_T2__n-46.t2__p4432_terminationG_0.smt2 // This test calls levelwise with the input polynomials and analyzes what was missed. // // Input polynomials passed to levelwise: // p[0]: x2 // p[1]: x2 x6^2 + x0 x5 x6 + x2 x4 x6 + x2 x3 x6 - x0 x6 - x0 x4 // p[2]: x2 x6^2 x7 + x0 x5 x6 x7 + x2 x4 x6 x7 + x2 x3 x6 x7 - x0 x6 x7 - x0 x4 x7 + 2 x6 + 2 x4 // p[3]: x6 // p[4]: x2 x6 x7 - 2 // // Sample: x0=1, x1=2, x2=1, x3=-1, x4=-1, x5=1, x6=7/8 // Counterexample: x0=1, x2=1, x3=0, x4=-9, x5=0, x6=5, x7=0 // // Unsound lemma produced: // !(x0 > 0) or !(x2 > 0) or !(x4 < root[1](2 x2 x4 + x0)) or // !(x5 = root[1](x0 x5 + x2 x3)) or // !(x0^2 x5^2 + ... > 0) or !(2 x2 > 0) or // !(4 x2 x6 + x0 x5 + 2 x2 x4 + x2 x3 - x0 > 0) or // !(2 x2 x6^2 + x0 x5 x6 + 2 x2 x4 x6 + x2 x3 x6 - x0 x6 - x0 x4 < 0) or // x7 < root[1](x2 x6^2 x7 + ... + 2 x6 + 2 x4) or // !(x7 < root[1](x2 x6 x7 - 2)) static void tst_unsound_lws_n46() { std::cout << "=== tst_unsound_lws_n46 ===\n"; params_ref ps; ps.set_bool("lws", true); reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment sample_as(am); nlsat::assignment counter_as(am); polynomial::cache cache(pm); // Create 8 variables x0-x7 nlsat::var x0 = s.mk_var(false); nlsat::var x1 = s.mk_var(false); nlsat::var x2 = s.mk_var(false); nlsat::var x3 = s.mk_var(false); nlsat::var x4 = s.mk_var(false); nlsat::var x5 = s.mk_var(false); nlsat::var x6 = s.mk_var(false); nlsat::var x7 = s.mk_var(false); polynomial_ref _x0(pm), _x1(pm), _x2(pm), _x3(pm), _x4(pm), _x5(pm), _x6(pm), _x7(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); _x2 = pm.mk_polynomial(x2); _x3 = pm.mk_polynomial(x3); _x4 = pm.mk_polynomial(x4); _x5 = pm.mk_polynomial(x5); _x6 = pm.mk_polynomial(x6); _x7 = pm.mk_polynomial(x7); (void)_x1; // unused // Input polynomials passed to levelwise (from unsound_log) // p[0]: x2 polynomial_ref p0(pm); p0 = _x2; // p[1]: x2 x6^2 + x0 x5 x6 + x2 x4 x6 + x2 x3 x6 - x0 x6 - x0 x4 polynomial_ref p1(pm); p1 = _x2 * (_x6^2) + _x0 * _x5 * _x6 + _x2 * _x4 * _x6 + _x2 * _x3 * _x6 - _x0 * _x6 - _x0 * _x4; // p[2]: x2 x6^2 x7 + x0 x5 x6 x7 + x2 x4 x6 x7 + x2 x3 x6 x7 - x0 x6 x7 - x0 x4 x7 + 2 x6 + 2 x4 polynomial_ref p2(pm); p2 = _x2 * (_x6^2) * _x7 + _x0 * _x5 * _x6 * _x7 + _x2 * _x4 * _x6 * _x7 + _x2 * _x3 * _x6 * _x7 - _x0 * _x6 * _x7 - _x0 * _x4 * _x7 + 2 * _x6 + 2 * _x4; // p[3]: x6 polynomial_ref p3(pm); p3 = _x6; // p[4]: x2 x6 x7 - 2 polynomial_ref p4(pm); p4 = _x2 * _x6 * _x7 - 2; std::cout << "Input polynomials:\n"; std::cout << " p0: " << p0 << "\n"; std::cout << " p1: " << p1 << "\n"; std::cout << " p2: " << p2 << "\n"; std::cout << " p3: " << p3 << "\n"; std::cout << " p4: " << p4 << "\n\n"; // Set sample point: x0=1, x1=2, x2=1, x3=-1, x4=-1, x5=1, x6=7/8 scoped_anum val(am); rational q(7, 8); // 0.875 = 7/8 am.set(val, 1); sample_as.set(x0, val); am.set(val, 2); sample_as.set(x1, val); am.set(val, 1); sample_as.set(x2, val); am.set(val, -1); sample_as.set(x3, val); am.set(val, -1); sample_as.set(x4, val); am.set(val, 1); sample_as.set(x5, val); am.set(val, q.to_mpq()); sample_as.set(x6, val); std::cout << "Sample point: x0=1, x1=2, x2=1, x3=-1, x4=-1, x5=1, x6=7/8\n"; // Set counterexample: x0=1, x2=1, x3=0, x4=-9, x5=0, x6=5, x7=0 am.set(val, 1); counter_as.set(x0, val); am.set(val, 0); counter_as.set(x1, val); am.set(val, 1); counter_as.set(x2, val); am.set(val, 0); counter_as.set(x3, val); am.set(val, -9); counter_as.set(x4, val); am.set(val, 0); counter_as.set(x5, val); am.set(val, 5); counter_as.set(x6, val); am.set(val, 0); counter_as.set(x7, val); std::cout << "Counterexample: x0=1, x2=1, x3=0, x4=-9, x5=0, x6=5, x7=0\n\n"; // Set solver assignment for levelwise s.set_rvalues(sample_as); // Build polynomial vector polynomial_ref_vector polys(pm); polys.push_back(p0); polys.push_back(p1); polys.push_back(p2); polys.push_back(p3); polys.push_back(p4); nlsat::var max_x = x7; // Run levelwise std::cout << "Running levelwise with max_x = x7...\n"; nlsat::levelwise lws(s, polys, max_x, s.sample(), pm, am, cache); auto cell = lws.single_cell(); std::cout << "Levelwise " << (lws.failed() ? "FAILED" : "succeeded") << "\n"; std::cout << "Cell intervals:\n"; for (unsigned i = 0; i < cell.size(); ++i) { std::cout << " Level " << i << ": "; nlsat::display(std::cout, s, cell[i]) << "\n"; } // Print the lemma produced by levelwise std::cout << "\n--- LEMMA from levelwise ---\n"; for (unsigned i = 0; i < cell.size(); ++i) { auto const& interval = cell[i]; if (interval.section) { std::cout << "!(x" << i << " = root[" << interval.l_index << "]("; pm.display(std::cout, interval.l) << "))\n"; } else { if (!interval.l_inf()) { std::cout << "!(x" << i << " > root[" << interval.l_index << "]("; pm.display(std::cout, interval.l) << "))\n"; } if (!interval.u_inf()) { std::cout << "!(x" << i << " < root[" << interval.u_index << "]("; pm.display(std::cout, interval.u) << "))\n"; } } } std::cout << "--- END LEMMA ---\n\n"; // Test for the discriminant projection fix: // // BUG: When p1 = (x6-1)^2 at the sample (a double root), the discriminant of p1 // is zero. The function compute_omit_disc_for_same_boundary() incorrectly omitted // this discriminant because it only checked if p1(sample) != 0, not if disc(p1) = 0. // // FIX: Now we also check if disc(p) = 0 at sample, and if so, we keep the discriminant. // This causes the discriminant's root polynomial (x2*x4 + x0) to be projected, // creating a section at level 4 that excludes the counterexample. std::cout << "=== Verifying discriminant projection fix ===\n"; // Check 1: Level 4 should now be a SECTION (not a sector as before the fix) // The discriminant of p1 w.r.t. x6 has a factor (x2*x4 + x0) that becomes the section ENSURE(cell.size() > 4); ENSURE(cell[4].section); // Level 4 must be a section after the fix std::cout << "Level 4 is a section: " << (cell[4].section ? "YES (FIX WORKING)" : "NO (BUG!)") << "\n"; // Check 2: The section polynomial at level 4 should be x2*x4 + x0 (or equivalent) // At sample: x2=1, x0=1, so root is x4 = -x0/x2 = -1 (matches sample x4=-1) polynomial_ref section_poly(cell[4].l, pm); std::cout << "Level 4 section polynomial: " << section_poly << "\n"; // Check 3: Verify the counterexample is OUTSIDE the cell // At counterexample: x2=1, x0=1, so section root is x4 = -1 // But counterexample has x4 = -9, which is NOT equal to -1 // Therefore the literal !(x4 = root[1](...)) is TRUE, making the lemma sound polynomial_ref x4_section(pm); x4_section = _x2 * _x4 + _x0; // Expected section polynomial scoped_anum_vector roots_x4(am); am.isolate_roots(x4_section, nlsat::undef_var_assignment(counter_as, x4), roots_x4); std::cout << "At counterexample:\n"; std::cout << " Section polynomial: x2*x4 + x0 = x4 + 1\n"; std::cout << " Section root: x4 = "; if (!roots_x4.empty()) am.display_decimal(std::cout, roots_x4[0], 6); std::cout << "\n"; std::cout << " Counterexample x4 = -9\n"; bool x4_at_section = !roots_x4.empty() && am.eq(counter_as.value(x4), roots_x4[0]); std::cout << " Is x4=-9 equal to section root? " << (x4_at_section ? "YES" : "NO") << "\n"; // The fix ensures x4_at_section is FALSE, meaning the counterexample is OUTSIDE the cell ENSURE(!x4_at_section); // Counterexample must NOT satisfy the section constraint std::cout << "\n=== FIX VERIFIED: Counterexample is outside the cell ===\n"; std::cout << "The lemma literal !(x4 = root[1](x2*x4 + x0)) is TRUE at counterexample.\n"; std::cout << "Therefore the lemma is SOUND (disjunction has a true literal).\n"; std::cout << "=== END tst_unsound_lws_n46 ===\n\n"; } // Test case for unsound lemma from From_AProVE_2014__Et4-rec.jar-obl-8__p28996_terminationG_0.smt2 // Sample: x0=4, x1=5, x2=3.5, x3=-8, x4=5 // Counterexample: x0=5, x3=3, x4=0, x5=0 // Polynomials: // p[0]: x0 // p[1]: 2 x0 x4^2 + 2 x3 x4 - x0 x4 - 2 x3 // p[2]: 2 x0 x4^2 x5 + 2 x3 x4 x5 - x0 x4 x5 - 2 x3 x5 + 4 x3 x4^2 + 9 x0 x3 x4 - 26 x3 x4 - 3 x0 x4 // p[3]: x5 - 9 static void tst_unsound_lws_et4() { std::cout << "=== tst_unsound_lws_et4 ===\n"; params_ref ps; ps.set_bool("lws", true); reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment sample_as(am); nlsat::assignment counter_as(am); polynomial::cache cache(pm); // Create 6 variables x0, x1, x2, x3, x4, x5 nlsat::var x0 = s.mk_var(false); nlsat::var x1 = s.mk_var(false); nlsat::var x2 = s.mk_var(false); nlsat::var x3 = s.mk_var(false); nlsat::var x4 = s.mk_var(false); nlsat::var x5 = s.mk_var(false); polynomial_ref _x0(pm), _x1(pm), _x2(pm), _x3(pm), _x4(pm), _x5(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); _x2 = pm.mk_polynomial(x2); _x3 = pm.mk_polynomial(x3); _x4 = pm.mk_polynomial(x4); _x5 = pm.mk_polynomial(x5); // p[0]: x0 polynomial_ref p0(pm); p0 = _x0; // p[1]: 2 x0 x4^2 + 2 x3 x4 - x0 x4 - 2 x3 polynomial_ref p1(pm); p1 = 2 * _x0 * (_x4^2) + 2 * _x3 * _x4 - _x0 * _x4 - 2 * _x3; // p[2]: 2 x0 x4^2 x5 + 2 x3 x4 x5 - x0 x4 x5 - 2 x3 x5 + 4 x3 x4^2 + 9 x0 x3 x4 - 26 x3 x4 - 3 x0 x4 polynomial_ref p2(pm); p2 = 2 * _x0 * (_x4^2) * _x5 + 2 * _x3 * _x4 * _x5 - _x0 * _x4 * _x5 - 2 * _x3 * _x5 + 4 * _x3 * (_x4^2) + 9 * _x0 * _x3 * _x4 - 26 * _x3 * _x4 - 3 * _x0 * _x4; // p[3]: x5 - 9 polynomial_ref p3(pm); p3 = _x5 - 9; std::cout << "p0: " << p0 << "\n"; std::cout << "p1: " << p1 << "\n"; std::cout << "p2: " << p2 << "\n"; std::cout << "p3: " << p3 << "\n\n"; // Sample: x0=4, x1=5, x2=3.5, x3=-8, x4=5 scoped_anum val(am); am.set(val, 4); sample_as.set(x0, val); am.set(val, 5); sample_as.set(x1, val); rational q(7, 2); // 3.5 am.set(val, q.to_mpq()); sample_as.set(x2, val); am.set(val, -8); sample_as.set(x3, val); am.set(val, 5); sample_as.set(x4, val); // x5 not assigned (top level) // Counterexample: x0=5, x3=3, x4=0, x5=0 am.set(val, 5); counter_as.set(x0, val); am.set(val, 5); counter_as.set(x1, val); // use same as sample am.set(val, q.to_mpq()); counter_as.set(x2, val); // use same as sample am.set(val, 3); counter_as.set(x3, val); am.set(val, 0); counter_as.set(x4, val); am.set(val, 0); counter_as.set(x5, val); std::cout << "Sample point: x0=4, x1=5, x2=3.5, x3=-8, x4=5\n"; std::cout << "Counterexample: x0=5, x3=3, x4=0, x5=0\n\n"; // Evaluate polynomials at sample (need to set x5 for evaluation) scoped_anum sample_x5(am); am.set(sample_x5, 0); // pick some value in the cell nlsat::assignment sample_full(am); am.set(val, 4); sample_full.set(x0, val); am.set(val, 5); sample_full.set(x1, val); am.set(val, q.to_mpq()); sample_full.set(x2, val); am.set(val, -8); sample_full.set(x3, val); am.set(val, 5); sample_full.set(x4, val); am.set(val, 0); sample_full.set(x5, val); std::cout << "Polynomial signs at SAMPLE (with x5=0):\n"; std::cout << " p0 sign: " << am.eval_sign_at(p0, sample_full) << "\n"; std::cout << " p1 sign: " << am.eval_sign_at(p1, sample_full) << "\n"; std::cout << " p2 sign: " << am.eval_sign_at(p2, sample_full) << "\n"; std::cout << " p3 sign: " << am.eval_sign_at(p3, sample_full) << "\n\n"; // Evaluate polynomials at counterexample std::cout << "Polynomial signs at COUNTEREXAMPLE:\n"; std::cout << " p0 sign: " << am.eval_sign_at(p0, counter_as) << "\n"; std::cout << " p1 sign: " << am.eval_sign_at(p1, counter_as) << "\n"; std::cout << " p2 sign: " << am.eval_sign_at(p2, counter_as) << "\n"; std::cout << " p3 sign: " << am.eval_sign_at(p3, counter_as) << "\n\n"; // Set solver assignment for levelwise (without x5) s.set_rvalues(sample_as); // Build polynomial vector polynomial_ref_vector polys(pm); polys.push_back(p0); polys.push_back(p1); polys.push_back(p2); polys.push_back(p3); unsigned max_x = x5; // Print roots of each polynomial at sample std::cout << "Roots of polynomials at sample (in x5):\n"; for (unsigned i = 0; i < polys.size(); ++i) { polynomial_ref p(polys.get(i), pm); if (pm.max_var(p) != x5) { std::cout << " p" << i << ": max_var is not x5, skipping\n"; continue; } scoped_anum_vector roots(am); am.isolate_roots(p, nlsat::undef_var_assignment(sample_as, x5), roots); std::cout << " p" << i << " roots: "; if (roots.empty()) { std::cout << "(none)"; } else { for (unsigned j = 0; j < roots.size(); ++j) { if (j > 0) std::cout << ", "; am.display_decimal(std::cout, roots[j], 5); } } std::cout << "\n"; } std::cout << "\n"; std::cout << "Running levelwise with max_x = x5\n"; // Run levelwise nlsat::levelwise lws(s, polys, max_x, s.sample(), pm, am, cache); auto cell = lws.single_cell(); std::cout << "Levelwise " << (lws.failed() ? "FAILED" : "succeeded") << "\n"; std::cout << "Cell intervals (count=" << cell.size() << "):\n"; for (auto const& interval : cell) { nlsat::display(std::cout << " ", s, interval) << "\n"; } // Evaluate cell bounds at counterexample to check if counterexample is in cell std::cout << "\n--- Checking if counterexample is in cell ---\n"; bool counterexample_outside_cell = false; for (unsigned i = 0; i < cell.size(); ++i) { auto const& interval = cell[i]; nlsat::var level = i; std::cout << "Level " << level << " (x" << level << "):\n"; // Build assignment up to this level (exclusive) for root isolation nlsat::assignment partial_as(am); scoped_anum val(am); if (level > 0) { am.set(val, 5); partial_as.set(x0, val); } // counter x0 if (level > 1) { am.set(val, 5); partial_as.set(x1, val); } if (level > 2) { am.set(val, q.to_mpq()); partial_as.set(x2, val); } if (level > 3) { am.set(val, 3); partial_as.set(x3, val); } // counter x3 if (level > 4) { am.set(val, 0); partial_as.set(x4, val); } // counter x4 scoped_anum counter_val(am); if (level == 0) am.set(counter_val, 5); // x0 else if (level == 1) am.set(counter_val, 5); else if (level == 2) am.set(counter_val, q.to_mpq()); else if (level == 3) am.set(counter_val, 3); // x3 else if (level == 4) am.set(counter_val, 0); // x4 else if (level == 5) am.set(counter_val, 0); // x5 if (interval.is_section()) { std::cout << " Section case\n"; } else { // Isolate roots and check bounds if (!interval.l_inf()) { polynomial_ref lower_p(interval.l, pm); scoped_anum_vector lower_roots(am); am.isolate_roots(lower_p, nlsat::undef_var_assignment(partial_as, level), lower_roots); if (lower_roots.size() >= interval.l_index) { std::cout << " Lower root (root[" << interval.l_index << "]): "; am.display_decimal(std::cout, lower_roots[interval.l_index - 1], 10); std::cout << "\n"; std::cout << " Counter x" << level << " = "; am.display_decimal(std::cout, counter_val, 10); int cmp = am.compare(counter_val, lower_roots[interval.l_index - 1]); std::cout << " -> " << (cmp > 0 ? "ABOVE" : (cmp < 0 ? "BELOW" : "EQUAL")) << " lower bound\n"; if (cmp <= 0) counterexample_outside_cell = true; } } if (!interval.u_inf()) { polynomial_ref upper_p(interval.u, pm); scoped_anum_vector upper_roots(am); am.isolate_roots(upper_p, nlsat::undef_var_assignment(partial_as, level), upper_roots); if (upper_roots.size() >= interval.u_index) { std::cout << " Upper root (root[" << interval.u_index << "]): "; am.display_decimal(std::cout, upper_roots[interval.u_index - 1], 10); std::cout << "\n"; std::cout << " Counter x" << level << " = "; am.display_decimal(std::cout, counter_val, 10); int cmp = am.compare(counter_val, upper_roots[interval.u_index - 1]); std::cout << " -> " << (cmp > 0 ? "ABOVE" : (cmp < 0 ? "BELOW" : "EQUAL")) << " upper bound\n"; if (cmp >= 0) counterexample_outside_cell = true; } } } std::cout << "\n"; } // The counterexample has different polynomial signs than the sample. // For a sound cell, the counterexample must be OUTSIDE the cell. ENSURE(counterexample_outside_cell); std::cout << "SUCCESS: Counterexample is OUTSIDE the cell (cell is sound)\n"; std::cout << "=== END tst_unsound_lws_et4 ===\n\n"; } // Test case for unsound lemma with disc=0 at sample for same_boundary_poly sector case // Polynomials: // p[0]: - x2^3 + x1^3 x2 - x1^4 // p[1]: - x2^3 x3 + x1^3 x2 x3 - x1^4 x3 - x2^3 + x1^3 x2^2 + 4 x1^4 x2 - x1^3 x2 - x1^5 - x1^4 // p[2]: x3 // Sample: x0=1, x1=1, x2=1 // Counterexample: x1=12, x2=16, x3=0 static void tst_unsound_lws_disc_zero() { std::cout << "=== tst_unsound_lws_disc_zero ===\n"; params_ref ps; ps.set_bool("lws", true); reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); nlsat::assignment sample_as(am); nlsat::assignment counter_as(am); polynomial::cache cache(pm); // Create 4 variables x0-x3 nlsat::var x0 = s.mk_var(false); nlsat::var x1 = s.mk_var(false); nlsat::var x2 = s.mk_var(false); nlsat::var x3 = s.mk_var(false); polynomial_ref _x0(pm), _x1(pm), _x2(pm), _x3(pm); _x0 = pm.mk_polynomial(x0); _x1 = pm.mk_polynomial(x1); _x2 = pm.mk_polynomial(x2); _x3 = pm.mk_polynomial(x3); (void)_x0; // unused // p[0]: - x2^3 + x1^3 x2 - x1^4 polynomial_ref p0(pm); p0 = -(_x2^3) + (_x1^3) * _x2 - (_x1^4); // p[1]: - x2^3 x3 + x1^3 x2 x3 - x1^4 x3 - x2^3 + x1^3 x2^2 + 4 x1^4 x2 - x1^3 x2 - x1^5 - x1^4 polynomial_ref p1(pm); p1 = -(_x2^3) * _x3 + (_x1^3) * _x2 * _x3 - (_x1^4) * _x3 - (_x2^3) + (_x1^3) * (_x2^2) + 4 * (_x1^4) * _x2 - (_x1^3) * _x2 - (_x1^5) - (_x1^4); // p[2]: x3 polynomial_ref p2(pm); p2 = _x3; std::cout << "Input polynomials:\n"; std::cout << " p0: " << p0 << "\n"; std::cout << " p1: " << p1 << "\n"; std::cout << " p2: " << p2 << "\n\n"; // Set sample point: x0=1, x1=1, x2=1 scoped_anum val(am); am.set(val, 1); sample_as.set(x0, val); am.set(val, 1); sample_as.set(x1, val); am.set(val, 1); sample_as.set(x2, val); std::cout << "Sample point: x0=1, x1=1, x2=1\n"; // Set counterexample: x1=12, x2=16, x3=0 am.set(val, 1); counter_as.set(x0, val); am.set(val, 12); counter_as.set(x1, val); am.set(val, 16); counter_as.set(x2, val); am.set(val, 0); counter_as.set(x3, val); std::cout << "Counterexample: x1=12, x2=16, x3=0\n\n"; // Set solver assignment for levelwise s.set_rvalues(sample_as); // Build polynomial vector polynomial_ref_vector polys(pm); polys.push_back(p0); polys.push_back(p1); polys.push_back(p2); nlsat::var max_x = x3; // Run levelwise std::cout << "Running levelwise with max_x = x3...\n"; nlsat::levelwise lws(s, polys, max_x, s.sample(), pm, am, cache); auto cell = lws.single_cell(); std::cout << "Levelwise " << (lws.failed() ? "FAILED" : "succeeded") << "\n"; std::cout << "Cell intervals:\n"; for (unsigned i = 0; i < cell.size(); ++i) { std::cout << " Level " << i << ": "; nlsat::display(std::cout, s, cell[i]) << "\n"; } // Print the lemma produced by levelwise std::cout << "\n--- LEMMA from levelwise ---\n"; for (unsigned i = 0; i < cell.size(); ++i) { auto const& interval = cell[i]; if (interval.section) { std::cout << "!(x" << i << " = root[" << interval.l_index << "]("; pm.display(std::cout, interval.l) << "))\n"; } else { if (!interval.l_inf()) { std::cout << "!(x" << i << " > root[" << interval.l_index << "]("; pm.display(std::cout, interval.l) << "))\n"; } if (!interval.u_inf()) { std::cout << "!(x" << i << " < root[" << interval.u_index << "]("; pm.display(std::cout, interval.u) << "))\n"; } } } std::cout << "--- END LEMMA ---\n\n"; // Check sign of p0 at sample vs counterexample std::cout << "=== Checking sign of p0 (projection poly) ===\n"; sign p0_sample = am.eval_sign_at(p0, sample_as); sign p0_counter = am.eval_sign_at(p0, counter_as); std::cout << " p0 at sample (x1=1, x2=1): " << p0_sample << "\n"; std::cout << " p0 at counter (x1=12, x2=16): " << p0_counter << "\n"; std::cout << " Signs " << (p0_sample == p0_counter ? "match" : "DIFFER") << "\n"; // Check if counterexample is inside the cell at each level // For soundness: if counter has different poly sign, it MUST be outside the cell std::cout << "\n=== Checking if counterexample is in the cell ===\n"; bool counter_outside = false; // Level 0: (-oo, +oo) - always inside std::cout << "Level 0: (-oo, +oo) -> counter inside\n"; // Level 1: check if x1=12 is in the cell { auto const& interval = cell[1]; if (!interval.l_inf()) { polynomial_ref lower_p(interval.l, pm); scoped_anum_vector lower_roots(am); // Partial assignment for level 1 (just x0) nlsat::assignment partial_as(am); scoped_anum val0(am); am.set(val0, 1); // counter x0 = 1 partial_as.set(x0, val0); am.isolate_roots(lower_p, nlsat::undef_var_assignment(partial_as, 1), lower_roots); if (lower_roots.size() >= interval.l_index) { scoped_anum counter_x1(am); am.set(counter_x1, 12); int cmp = am.compare(counter_x1, lower_roots[interval.l_index - 1]); std::cout << "Level 1 lower bound: root[" << interval.l_index << "] of poly, counter x1=12 is " << (cmp > 0 ? "ABOVE" : (cmp < 0 ? "BELOW" : "AT")) << " lower bound\n"; if (cmp <= 0) counter_outside = true; } } if (!interval.u_inf()) { polynomial_ref upper_p(interval.u, pm); scoped_anum_vector upper_roots(am); // Partial assignment for level 1 (just x0) nlsat::assignment partial_as(am); scoped_anum val0(am); am.set(val0, 1); // counter x0 = 1 partial_as.set(x0, val0); am.isolate_roots(upper_p, nlsat::undef_var_assignment(partial_as, 1), upper_roots); if (upper_roots.size() >= interval.u_index) { scoped_anum counter_x1(am); am.set(counter_x1, 12); int cmp = am.compare(counter_x1, upper_roots[interval.u_index - 1]); std::cout << "Level 1 upper bound: root[" << interval.u_index << "] of poly, counter x1=12 is " << (cmp > 0 ? "ABOVE" : (cmp < 0 ? "BELOW" : "AT")) << " upper bound\n"; if (cmp >= 0) counter_outside = true; } } } // For a sound cell, if polynomial signs differ, counter MUST be outside the cell // The fix (projecting p0's discriminant) should create bounds that exclude the counterexample if (p0_sample != p0_counter) { std::cout << "\nPoly signs differ between sample and counter.\n"; std::cout << "For cell to be sound, counter must be OUTSIDE the cell.\n"; std::cout << "Counter is " << (counter_outside ? "OUTSIDE" : "INSIDE") << " the cell.\n"; ENSURE(counter_outside); // Cell is sound if counter is outside } else { std::cout << "\nPoly signs match - cell is trivially sound.\n"; } std::cout << "\n=== END tst_unsound_lws_disc_zero ===\n\n"; } // Test case for unsound lemma from ppblockterm.t2__p7867_terminationG_0.smt2 // Issue z3-76w: levelwise produces unsound cell static void tst_unsound_lws_ppblockterm() { std::cout << "=== tst_unsound_lws_ppblockterm ===\n"; params_ref ps; ps.set_bool("lws", true); reslimit rlim; nlsat::solver s(rlim, ps, false); anum_manager & am = s.am(); nlsat::pmanager & pm = s.pm(); polynomial::cache cache(pm); // Create 25 variables x0 to x24 nlsat::var vars[25]; polynomial_ref xvars[25] = { polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm), polynomial_ref(pm) }; for (unsigned i = 0; i < 25; i++) { vars[i] = s.mk_var(false); xvars[i] = pm.mk_polynomial(vars[i]); } // Aliases for readability polynomial_ref &x2 = xvars[2], &x4 = xvars[4], &x5 = xvars[5]; polynomial_ref &x9 = xvars[9], &x10 = xvars[10], &x11 = xvars[11]; polynomial_ref &x12 = xvars[12], &x13 = xvars[13], &x15 = xvars[15]; polynomial_ref &x16 = xvars[16], &x19 = xvars[19], &x24 = xvars[24]; // p[0]: x16 + x9 polynomial_ref p0(pm); p0 = x16 + x9; // p[1]: x16 x24 + x9 x24 + x13 x19 + x5 x19 + x12 x15 + x10 x15 - 2 polynomial_ref p1(pm); p1 = x16 * x24 + x9 * x24 + x13 * x19 + x5 * x19 + x12 * x15 + x10 * x15 - 2; // p[2]: x4 polynomial_ref p2(pm); p2 = x4; // p[3]: x4 x24 + x2 x19 + x11 x15 polynomial_ref p3(pm); p3 = x4 * x24 + x2 * x19 + x11 * x15; std::cout << "Input polynomials:\n"; std::cout << " p0: " << p0 << "\n"; std::cout << " p1: " << p1 << "\n"; std::cout << " p2: " << p2 << "\n"; std::cout << " p3: " << p3 << "\n\n"; // Set sample point values // x0->1, x1->1, x2->-1, x3->-1, x4->1, x5->-1, x6->1, x7->2, x8->1 // x9->1, x10->-1, x11->1, x12->-2, x13->-2, x14->-2, x15->0, x16->2 // x17->0, x18->0, x19->0, x20->0, x21->0, x22->0, x23->0 int sample_vals[24] = {1, 1, -1, -1, 1, -1, 1, 2, 1, 1, -1, 1, -2, -2, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0}; scoped_anum val(am); nlsat::assignment sample_as(am); for (unsigned i = 0; i < 24; i++) { am.set(val, sample_vals[i]); sample_as.set(vars[i], val); } s.set_rvalues(sample_as); std::cout << "Sample point (x0..x23):\n"; for (unsigned i = 0; i < 24; i++) { std::cout << " x" << i << " -> " << sample_vals[i] << "\n"; } std::cout << "\n"; // Evaluate polynomials at sample (with x24 = 0 for checking) am.set(val, 0); sample_as.set(vars[24], val); std::cout << "Polynomial signs at sample (x24=0):\n"; std::cout << " p0 sign: " << am.eval_sign_at(p0, sample_as) << "\n"; std::cout << " p1 sign: " << am.eval_sign_at(p1, sample_as) << "\n"; std::cout << " p2 sign: " << am.eval_sign_at(p2, sample_as) << "\n"; std::cout << " p3 sign: " << am.eval_sign_at(p3, sample_as) << "\n\n"; // Counterexample from the unsound lemma: // x2=-1, x4=1, x5=0, x9=0, x10=0, x11=-1, x12=-1, x13=-2, x15=3, x16=2, x19=0, x24=3 nlsat::assignment counter_as(am); am.set(val, -1); counter_as.set(vars[2], val); am.set(val, 1); counter_as.set(vars[4], val); am.set(val, 0); counter_as.set(vars[5], val); am.set(val, 0); counter_as.set(vars[9], val); am.set(val, 0); counter_as.set(vars[10], val); am.set(val, -1); counter_as.set(vars[11], val); am.set(val, -1); counter_as.set(vars[12], val); am.set(val, -2); counter_as.set(vars[13], val); am.set(val, 3); counter_as.set(vars[15], val); am.set(val, 2); counter_as.set(vars[16], val); am.set(val, 0); counter_as.set(vars[19], val); am.set(val, 3); counter_as.set(vars[24], val); std::cout << "Counterexample point:\n"; std::cout << " x2=-1, x4=1, x5=0, x9=0, x10=0, x11=-1, x12=-1, x13=-2, x15=3, x16=2, x19=0, x24=3\n\n"; std::cout << "Polynomial signs at counterexample:\n"; std::cout << " p0 sign: " << am.eval_sign_at(p0, counter_as) << "\n"; std::cout << " p1 sign: " << am.eval_sign_at(p1, counter_as) << "\n"; std::cout << " p2 sign: " << am.eval_sign_at(p2, counter_as) << "\n"; std::cout << " p3 sign: " << am.eval_sign_at(p3, counter_as) << "\n\n"; // Build polynomial vector polynomial_ref_vector polys(pm); polys.push_back(p0); polys.push_back(p1); polys.push_back(p2); polys.push_back(p3); unsigned max_x = vars[24]; // x24 is the highest variable std::cout << "Running levelwise with max_x = x24...\n"; nlsat::levelwise lws(s, polys, max_x, s.sample(), pm, am, cache); auto cell = lws.single_cell(); if (lws.failed()) { std::cout << "Levelwise FAILED\n"; } else { std::cout << "Levelwise succeeded\n"; std::cout << "--- LEMMA from levelwise ---\n"; for (unsigned i = 0; i < cell.size(); i++) { auto const& interval = cell[i]; std::cout << "Level x" << i << ": "; if (interval.is_section()) { std::cout << "section at root[" << interval.l_index << "] of " << interval.l << "\n"; } else { if (interval.l_inf()) std::cout << "(-oo, "; else std::cout << "(root[" << interval.l_index << "] of " << interval.l << ", "; if (interval.u_inf()) std::cout << "+oo)"; else std::cout << "root[" << interval.u_index << "] of " << interval.u << ")"; std::cout << "\n"; } } std::cout << "--- END LEMMA ---\n\n"; // Check polynomial signs at sample and counterexample int p0_sample = am.eval_sign_at(p0, sample_as); int p1_sample = am.eval_sign_at(p1, sample_as); int p2_sample = am.eval_sign_at(p2, sample_as); int p3_sample = am.eval_sign_at(p3, sample_as); int p0_counter = am.eval_sign_at(p0, counter_as); int p1_counter = am.eval_sign_at(p1, counter_as); int p2_counter = am.eval_sign_at(p2, counter_as); int p3_counter = am.eval_sign_at(p3, counter_as); bool signs_differ = (p0_sample != p0_counter) || (p1_sample != p1_counter) || (p2_sample != p2_counter) || (p3_sample != p3_counter); if (signs_differ) { std::cout << "Polynomial signs DIFFER between sample and counterexample.\n"; } else { std::cout << "Polynomial signs match between sample and counterexample.\n"; } // Verify that the counterexample is OUTSIDE the cell (cell is sound) std::cout << "\nChecking if counterexample is inside cell:\n"; bool inside = is_point_inside_cell(am, pm, cell, counter_as); // For a sound cell with differing signs, counterexample must be OUTSIDE ENSURE(!inside); std::cout << "SUCCESS: Counterexample is OUTSIDE the cell (cell is sound)\n"; } std::cout << "=== END tst_unsound_lws_ppblockterm ===\n\n"; } void tst_nlsat() { // TODO: Fix z3-76w - ppblockterm test fails because counterexample is inside cell // tst_unsound_lws_ppblockterm(); // std::cout << "------------------\n"; tst_unsound_lws_n46(); std::cout << "------------------\n"; tst_unsound_lws_et4(); std::cout << "------------------\n"; tst_unsound_lws_x3(); std::cout << "------------------\n"; tst_unsound_lws2380(); std::cout << "------------------\n"; tst_polynomial_cache_mk_unique(); std::cout << "------------------\n"; tst_nullified_polynomial(); std::cout << "------------------\n"; tst11(); std::cout << "------------------\n"; tst10(); std::cout << "------------------\n"; tst9(); std::cout << "------------------\n"; tst8(); std::cout << "------------------\n"; tst7(); std::cout << "------------------\n"; tst6(); std::cout << "------------------\n"; tst5(); std::cout << "------------------\n"; tst4(); std::cout << "------------------\n"; tst3(); }