/*++ Copyright (c) 2021 Microsoft Corporation Module Name: Conflict explanation / resolution Author: Nikolaj Bjorner (nbjorner) 2021-03-19 Jakob Rath 2021-04-6 --*/ #include "math/polysat/explain.h" #include "math/polysat/log.h" namespace polysat { conflict_explainer::conflict_explainer(solver& s, constraints_and_clauses const& conflict): m_solver(s), m_conflict(conflict) {} clause_ref conflict_explainer::resolve(pvar v, ptr_vector const& cjust) { LOG_H3("Attempting to explain conflict for v" << v); m_var = v; m_cjust_v = cjust; for (auto* c : cjust) m_conflict.push_back(c); for (auto* c : m_conflict.units()) LOG("Constraint: " << show_deref(c)); for (auto* c : m_conflict.clauses()) LOG("Clause: " << show_deref(c)); // TODO: we should share work done for examining constraints between different resolution methods clause_ref lemma; if (!lemma) lemma = by_polynomial_superposition(); if (!lemma) lemma = by_ugt_x(); if (!lemma) lemma = by_ugt_y(); if (!lemma) lemma = by_ugt_z(); if (!lemma) lemma = y_ule_ax_and_x_ule_z(); if (lemma) { LOG("New lemma: " << *lemma); for (auto* c : lemma->new_constraints()) { LOG("New constraint: " << show_deref(c)); } } else { LOG("No lemma"); } m_var = null_var; m_cjust_v.reset(); return lemma; } clause_ref conflict_explainer::by_polynomial_superposition() { if (m_conflict.units().size() != 2 || m_conflict.clauses().size() > 0) return nullptr; constraint* c1 = m_conflict.units()[0]; constraint* c2 = m_conflict.units()[1]; if (c1 == c2) return nullptr; if (!c1->is_eq() || !c2->is_eq()) return nullptr; if (c1->is_positive() && c2->is_positive()) { pdd a = c1->to_eq().p(); pdd b = c2->to_eq().p(); pdd r = a; if (!a.resolve(m_var, b, r) && !b.resolve(m_var, a, r)) return nullptr; p_dependency_ref d(m_solver.m_dm.mk_join(c1->dep(), c2->dep()), m_solver.m_dm); unsigned lvl = std::max(c1->level(), c2->level()); constraint_ref c = m_solver.m_constraints.eq(lvl, pos_t, r, d); c->assign(true); return clause::from_unit(c); } return nullptr; } /// [x] zx > yx ==> Ω*(x,y) \/ z > y /// [x] yx <= zx ==> Ω*(x,y) \/ y <= z clause_ref conflict_explainer::by_ugt_x() { LOG_H3("Try zx > yx where x := v" << m_var); pdd const x = m_solver.var(m_var); unsigned const sz = m_solver.size(m_var); pdd const zero = m_solver.sz2pdd(sz).zero(); // Find constraint of shape: yx <= zx for (auto* c1 : m_conflict.units()) { auto c = c1->as_inequality(); if (c.lhs.degree(m_var) != 1) continue; if (c.rhs.degree(m_var) != 1) continue; pdd y = zero; pdd rest = zero; c.lhs.factor(m_var, 1, y, rest); if (!rest.is_zero()) continue; pdd z = zero; c.rhs.factor(m_var, 1, z, rest); if (!rest.is_zero()) continue; unsigned const lvl = c.src->level(); clause_builder clause(m_solver); // Omega^*(x, y) if (!push_omega_mul(clause, lvl, sz, x, y)) continue; constraint_ref y_le_z; if (c.is_strict) y_le_z = m_solver.m_constraints.ult(lvl, pos_t, y, z, null_dep()); else y_le_z = m_solver.m_constraints.ule(lvl, pos_t, y, z, null_dep()); LOG("z>y: " << show_deref(y_le_z)); clause.push_new_constraint(std::move(y_le_z)); p_dependency_ref dep(c.src->dep(), m_solver.m_dm); return clause.build(lvl, dep); } return nullptr; } /// [y] z' <= y /\ zx > yx ==> Ω*(x,y) \/ zx > z'x /// [y] z' <= y /\ yx <= zx ==> Ω*(x,y) \/ z'x <= zx clause_ref conflict_explainer::by_ugt_y() { LOG_H3("Try z' <= y && zx > yx where y := v" << m_var); pdd const y = m_solver.var(m_var); unsigned const sz = m_solver.size(m_var); pdd const zero = m_solver.sz2pdd(sz).zero(); // Collect constraints of shape "_ <= y" vector ds; for (auto* d1 : m_conflict.units()) { auto d = d1->as_inequality(); // TODO: a*y where 'a' divides 'x' should also be easy to handle (assuming for now they're numbers) // TODO: also z' < y should follow the same pattern. if (d.rhs != y) continue; LOG("z' <= y candidate: " << show_deref(d.src)); ds.push_back(std::move(d)); } if (ds.empty()) return nullptr; // Find constraint of shape: yx <= zx for (auto* c1 : m_conflict.units()) { auto c = c1->as_inequality(); if (c.lhs.degree(m_var) != 1) continue; pdd x = zero; pdd rest = zero; c.lhs.factor(m_var, 1, x, rest); if (!rest.is_zero()) continue; // TODO: in principle, 'x' could be any polynomial. However, we need to divide the lhs by x, and we don't have general polynomial division yet. // so for now we just allow the form 'value*variable'. // (extension to arbitrary monomials for 'x' should be fairly easy too) if (!x.is_unary()) continue; unsigned x_var = x.var(); rational x_coeff = x.hi().val(); pdd xz = zero; if (!c.rhs.try_div(x_coeff, xz)) continue; pdd z = zero; xz.factor(x_var, 1, z, rest); if (!rest.is_zero()) continue; LOG("zx > yx: " << show_deref(c.src)); // TODO: for now, we just try all ds for (auto const& d : ds) { unsigned const lvl = std::max(c.src->level(), d.src->level()); pdd const& z_prime = d.lhs; clause_builder clause(m_solver); // Omega^*(x, y) if (!push_omega_mul(clause, lvl, sz, x, y)) continue; // z'x <= zx constraint_ref zpx_le_zx; if (c.is_strict || d.is_strict) zpx_le_zx = m_solver.m_constraints.ult(lvl, pos_t, z_prime*x, z*x, null_dep()); else zpx_le_zx = m_solver.m_constraints.ule(lvl, pos_t, z_prime*x, z*x, null_dep()); LOG("zx>z'x: " << show_deref(zpx_le_zx)); clause.push_new_constraint(std::move(zpx_le_zx)); p_dependency_ref dep(m_solver.m_dm.mk_join(c.src->dep(), d.src->dep()), m_solver.m_dm); return clause.build(lvl, dep); } } return nullptr; } /// [z] z <= y' /\ zx > yx ==> Ω*(x,y') \/ y'x > yx /// [z] z <= y' /\ yx <= zx ==> Ω*(x,y') \/ yx <= y'x clause_ref conflict_explainer::by_ugt_z() { LOG_H3("Try z <= y' && zx > yx where z := v" << m_var); pdd const z = m_solver.var(m_var); unsigned const sz = m_solver.size(m_var); pdd const zero = m_solver.sz2pdd(sz).zero(); // Collect constraints of shape "z <= _" vector ds; for (auto* d1 : m_conflict.units()) { auto d = d1->as_inequality(); // TODO: a*y where 'a' divides 'x' should also be easy to handle (assuming for now they're numbers) // TODO: also z < y' should follow the same pattern. if (d.lhs != z) continue; LOG("z <= y' candidate: " << show_deref(d.src)); ds.push_back(std::move(d)); } if (ds.empty()) return nullptr; // Find constraint of shape: yx <= zx for (auto* c1 : m_conflict.units()) { auto c = c1->as_inequality(); if (c.rhs.degree(m_var) != 1) continue; pdd x = zero; pdd rest = zero; c.rhs.factor(m_var, 1, x, rest); if (!rest.is_zero()) continue; // TODO: in principle, 'x' could be any polynomial. However, we need to divide the lhs by x, and we don't have general polynomial division yet. // so for now we just allow the form 'value*variable'. // (extension to arbitrary monomials for 'x' should be fairly easy too) if (!x.is_unary()) continue; unsigned x_var = x.var(); rational x_coeff = x.hi().val(); pdd xy = zero; if (!c.lhs.try_div(x_coeff, xy)) continue; pdd y = zero; xy.factor(x_var, 1, y, rest); if (!rest.is_zero()) continue; LOG("zx > yx: " << show_deref(c.src)); // TODO: for now, we just try all ds for (auto const& d : ds) { unsigned const lvl = std::max(c.src->level(), d.src->level()); pdd const& y_prime = d.rhs; clause_builder clause(m_solver); // Omega^*(x, y') if (!push_omega_mul(clause, lvl, sz, x, y_prime)) continue; // yx <= y'x constraint_ref yx_le_ypx; if (c.is_strict || d.is_strict) yx_le_ypx = m_solver.m_constraints.ult(lvl, pos_t, y*x, y_prime*x, null_dep()); else yx_le_ypx = m_solver.m_constraints.ule(lvl, pos_t, y*x, y_prime*x, null_dep()); LOG("y'x>yx: " << show_deref(yx_le_ypx)); clause.push_new_constraint(std::move(yx_le_ypx)); p_dependency_ref dep(m_solver.m_dm.mk_join(c.src->dep(), d.src->dep()), m_solver.m_dm); return clause.build(lvl, dep); } } return nullptr; } /// [x] y <= ax /\ x <= z (non-overflow case) /// ==> Ω*(a, z) \/ y <= az clause_ref conflict_explainer::y_ule_ax_and_x_ule_z() { LOG_H3("Try y <= ax && x <= z where x := v" << m_var); pdd const x = m_solver.var(m_var); unsigned const sz = m_solver.size(m_var); pdd const zero = m_solver.sz2pdd(sz).zero(); // Collect constraints of shape "x <= _" vector ds; for (auto* d1 : m_conflict.units()) { inequality d = d1->as_inequality(); if (d.lhs != x) continue; LOG("x <= z' candidate: " << show_deref(d.src)); ds.push_back(std::move(d)); } if (ds.empty()) return nullptr; // Find constraint of shape: y <= ax for (auto* c1 : m_conflict.units()) { inequality c = c1->as_inequality(); if (c.rhs.degree(m_var) != 1) continue; pdd a = zero; pdd rest = zero; c.rhs.factor(m_var, 1, a, rest); if (!rest.is_zero()) continue; pdd const& y = c.lhs; LOG("y <= ax: " << show_deref(c1)); // TODO: for now, we just try all of the other constraints in order for (auto const& d : ds) { unsigned const lvl = std::max(c1->level(), d.src->level()); pdd const& z = d.rhs; clause_builder clause(m_solver); // Omega^*(a, z) if (!push_omega_mul(clause, lvl, sz, a, z)) continue; // y'x > yx constraint_ref y_ule_az; if (c.is_strict || d.is_strict) y_ule_az = m_solver.m_constraints.ult(lvl, pos_t, y, a*z, null_dep()); else y_ule_az = m_solver.m_constraints.ule(lvl, pos_t, y, a*z, null_dep()); LOG("y<=az: " << show_deref(y_ule_az)); clause.push_new_constraint(std::move(y_ule_az)); p_dependency_ref dep(m_solver.m_dm.mk_join(c1->dep(), d.src->dep()), m_solver.m_dm); return clause.build(lvl, dep); } } return nullptr; } /// Add Ω*(x, y) to the clause. /// /// @param[in] p bit width bool conflict_explainer::push_omega_mul(clause_builder& clause, unsigned level, unsigned p, pdd const& x, pdd const& y) { LOG_H3("Omega^*(x, y)"); LOG("x = " << x); LOG("y = " << y); auto& pddm = m_solver.sz2pdd(p); unsigned min_k = 0; unsigned max_k = p - 1; unsigned k = p/2; rational x_val; if (m_solver.try_eval(x, x_val)) { unsigned x_bits = x_val.bitsize(); LOG("eval x: " << x << " := " << x_val << " (x_bits: " << x_bits << ")"); SASSERT(x_val < rational::power_of_two(x_bits)); min_k = x_bits; } rational y_val; if (m_solver.try_eval(y, y_val)) { unsigned y_bits = y_val.bitsize(); LOG("eval y: " << y << " := " << y_val << " (y_bits: " << y_bits << ")"); SASSERT(y_val < rational::power_of_two(y_bits)); max_k = p - y_bits; } if (min_k > max_k) { // In this case, we cannot choose k such that both literals are false. // This means x*y overflows in the current model and the chosen rule is not applicable. // (or maybe we are in the case where we need the msb-encoding for overflow). return false; } SASSERT(min_k <= max_k); // if this assertion fails, we cannot choose k s.t. both literals are false // TODO: could also choose other value for k (but between the bounds) if (min_k == 0) k = max_k; else k = min_k; LOG("k = " << k << "; min_k = " << min_k << "; max_k = " << max_k << "; p = " << p); SASSERT(min_k <= k && k <= max_k); // x >= 2^k constraint_ref c1 = m_solver.m_constraints.ult(level, pos_t, pddm.mk_val(rational::power_of_two(k)), x, null_dep()); // y > 2^{p-k} constraint_ref c2 = m_solver.m_constraints.ule(level, pos_t, pddm.mk_val(rational::power_of_two(p-k)), y, null_dep()); clause.push_new_constraint(std::move(c1)); clause.push_new_constraint(std::move(c2)); return true; } }