/*++ Copyright (c) 2011 Microsoft Corporation Module Name: model_evaluator.cpp Abstract: Evaluate expressions in a given model. Author: Leonardo de Moura (leonardo) 2011-04-30. Revision History: --*/ #include "ast/ast_pp.h" #include "ast/ast_util.h" #include "ast/for_each_expr.h" #include "ast/recfun_decl_plugin.h" #include "ast/rewriter/rewriter_types.h" #include "ast/rewriter/bool_rewriter.h" #include "ast/rewriter/arith_rewriter.h" #include "ast/rewriter/bv_rewriter.h" #include "ast/rewriter/pb_rewriter.h" #include "ast/rewriter/seq_rewriter.h" #include "ast/rewriter/datatype_rewriter.h" #include "ast/rewriter/array_rewriter.h" #include "ast/rewriter/fpa_rewriter.h" #include "ast/rewriter/th_rewriter.h" #include "ast/rewriter/rewriter_def.h" #include "ast/rewriter/var_subst.h" #include "ast/rewriter/recfun_rewriter.h" #include "model/model_smt2_pp.h" #include "model/model.h" #include "model/model_evaluator_params.hpp" #include "model/model_evaluator.h" #include "model/model_v2_pp.h" namespace mev { struct evaluator_cfg : public default_rewriter_cfg { ast_manager & m; model_core & m_model; params_ref m_params; bool_rewriter m_b_rw; arith_rewriter m_a_rw; bv_rewriter m_bv_rw; array_rewriter m_ar_rw; datatype_rewriter m_dt_rw; pb_rewriter m_pb_rw; fpa_rewriter m_f_rw; seq_rewriter m_seq_rw; recfun_rewriter m_rec_rw; array_util m_ar; arith_util m_au; fpa_util m_fpau; datatype::util m_dt; unsigned long long m_max_memory; unsigned m_max_steps; bool m_model_completion; bool m_array_equalities; bool m_array_as_stores; obj_map m_def_cache; expr_ref_vector m_pinned; evaluator_cfg(ast_manager & m, model_core & md, params_ref const & p): m(m), m_model(md), m_params(p), m_b_rw(m), // We must allow customers to set parameters for arithmetic rewriter/evaluator. // In particular, the maximum degree of algebraic numbers that will be evaluated. m_a_rw(m, p), m_bv_rw(m), // See comment above. We want to allow customers to set :sort-store m_ar_rw(m, p), m_dt_rw(m), m_pb_rw(m), m_f_rw(m), m_seq_rw(m), m_rec_rw(m), m_ar(m), m_au(m), m_fpau(m), m_dt(m), m_pinned(m) { bool flat = true; m_b_rw.set_flat_and_or(flat); m_a_rw.set_flat(flat); m_bv_rw.set_flat(flat); m_bv_rw.set_mkbv2num(true); m_ar_rw.set_expand_select_store(true); m_ar_rw.set_expand_select_ite(true); updt_params(p); //add_unspecified_function_models(md); } void updt_params(params_ref const & _p) { model_evaluator_params p(_p); m_max_memory = megabytes_to_bytes(p.max_memory()); m_max_steps = p.max_steps(); m_model_completion = p.completion(); m_array_equalities = p.array_equalities(); m_array_as_stores = p.array_as_stores(); } bool evaluate(func_decl * f, unsigned num, expr * const * args, expr_ref & result) { func_interp * fi = m_model.get_func_interp(f); bool r = (fi != nullptr) && eval_fi(fi, num, args, result); CTRACE("model_evaluator", r, tout << "reduce_app " << f->get_name() << "\n"; for (unsigned i = 0; i < num; i++) tout << mk_ismt2_pp(args[i], m) << "\n"; tout << "---->\n" << mk_ismt2_pp(result, m) << "\n";); return r; } // Try to use the entries to quickly evaluate the fi bool eval_fi(func_interp * fi, unsigned num, expr * const * args, expr_ref & result) { if (fi->num_entries() == 0) return false; // let get_macro handle it. SASSERT(fi->get_arity() == num); bool actuals_are_values = true; for (unsigned i = 0; actuals_are_values && i < num; i++) actuals_are_values = m.is_value(args[i]); if (!actuals_are_values) return false; // let get_macro handle it func_entry * entry = fi->get_entry(args); if (entry != nullptr) { result = entry->get_result(); return true; } return false; } bool reduce_quantifier(quantifier * old_q, expr * new_body, expr * const * new_patterns, expr * const * new_no_patterns, expr_ref & result, proof_ref & result_pr) { th_rewriter th(m); return th.reduce_quantifier(old_q, new_body, new_patterns, new_no_patterns, result, result_pr); } br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) { auto st = reduce_app_core(f, num, args, result, result_pr); CTRACE("model_evaluator", st != BR_FAILED, tout << st << " " << mk_pp(f, m) << " "; for (unsigned i = 0; i < num; ++i) tout << mk_pp(args[i], m) << " "; tout << "\n--> " << result << "\n";); return st; } bool contains_redex(expr* e) { if (m_ar.is_as_array(e)) return true; if (is_var(e)) return false; if (is_app(e) && to_app(e)->get_num_args() == 0) return false; struct has_redex {}; struct has_redex_finder { array_util& au; has_redex_finder(array_util& au): au(au) {} void operator()(var* v) {} void operator()(quantifier* q) {} void operator()(app* a) { if (au.is_as_array(a->get_decl())) throw has_redex(); if (au.get_manager().is_eq(a)) throw has_redex(); } }; has_redex_finder ha(m_ar); try { for_each_expr(ha, e); } catch (has_redex) { return true; } return false; } br_status reduce_app_core(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) { result_pr = nullptr; family_id fid = f->get_family_id(); bool _is_uninterp = fid != null_family_id && m.get_plugin(fid)->is_considered_uninterpreted(f); br_status st = BR_FAILED; #if 0 struct pp { func_decl* f; expr_ref& r; pp(func_decl* f, expr_ref& r) :f(f), r(r) {} ~pp() { TRACE("model_evaluator", tout << mk_pp(f, r.m()) << " " << r << "\n";); } }; pp _pp(f, result); #endif func_decl* g = nullptr; if (num == 0 && m_ar.is_as_array(f, g)) { auto* fi = m_model.get_func_interp(g); if (fi && (result = fi->get_array_interp(g))) return BR_REWRITE1; } if (num == 0 && (fid == null_family_id || _is_uninterp)) { expr* val = m_model.get_const_interp(f); if (val != nullptr) { result = val; st = contains_redex(val) ? BR_REWRITE_FULL : BR_DONE; TRACE("model_evaluator", tout << st << " " << result << "\n";); return st; } if (!m_model_completion) return BR_FAILED; if (!m_ar.is_as_array(f)) { sort * s = f->get_range(); expr * val = m_model.get_some_value(s); m_model.register_decl(f, val); result = val; return BR_DONE; } // fall through } if (fid == m_b_rw.get_fid()) { decl_kind k = f->get_decl_kind(); if (k == OP_EQ) { // theory dispatch for = SASSERT(num == 2); sort* s = args[0]->get_sort(); family_id s_fid = s->get_family_id(); if (s_fid == m_a_rw.get_fid()) st = m_a_rw.mk_eq_core(args[0], args[1], result); else if (s_fid == m_bv_rw.get_fid()) st = m_bv_rw.mk_eq_core(args[0], args[1], result); else if (s_fid == m_dt_rw.get_fid()) st = m_dt_rw.mk_eq_core(args[0], args[1], result); else if (s_fid == m_f_rw.get_fid()) st = m_f_rw.mk_eq_core(args[0], args[1], result); else if (s_fid == m_seq_rw.get_fid()) st = m_seq_rw.mk_eq_core(args[0], args[1], result); else if (s_fid == m_ar_rw.get_fid()) st = mk_array_eq(args[0], args[1], result); else if (m.are_equal(args[0], args[1])) { result = m.mk_true(); st = BR_DONE; } else if (m.are_distinct(args[0], args[1])) { result = m.mk_false(); st = BR_DONE; } if (st != BR_FAILED) return st; } if (k == OP_AND) { st = m_a_rw.mk_and_core(num, args, result); if (st != BR_FAILED) return st; } return m_b_rw.mk_app_core(f, num, args, result); } if (fid == m_a_rw.get_fid()) st = m_a_rw.mk_app_core(f, num, args, result); else if (fid == m_bv_rw.get_fid()) st = m_bv_rw.mk_app_core(f, num, args, result); else if (fid == m_ar_rw.get_fid()) st = m_ar_rw.mk_app_core(f, num, args, result); else if (fid == m_dt_rw.get_fid()) st = m_dt_rw.mk_app_core(f, num, args, result); else if (fid == m_pb_rw.get_fid()) st = m_pb_rw.mk_app_core(f, num, args, result); else if (fid == m_f_rw.get_fid()) st = m_f_rw.mk_app_core(f, num, args, result); else if (fid == m_seq_rw.get_fid()) st = m_seq_rw.mk_app_core(f, num, args, result); else if (fid == m_rec_rw.get_fid()) st = m_rec_rw.mk_app_core(f, num, args, result); else if (fid == m.get_label_family_id() && num == 1) { result = args[0]; st = BR_DONE; } else if (evaluate(f, num, args, result)) st = BR_REWRITE1; if (st == BR_FAILED && !m.is_builtin_family_id(fid)) st = evaluate_partial_theory_func(f, num, args, result, result_pr); if (st == BR_DONE && is_app(result)) { app* a = to_app(result); if (evaluate(a->get_decl(), a->get_num_args(), a->get_args(), result)) st = BR_REWRITE1; } if (st == BR_DONE && is_app(result) && expand_as_array(to_app(result)->get_decl(), result)) return BR_REWRITE_FULL; if (st == BR_FAILED && expand_as_array(f, result)) return BR_REWRITE_FULL; return st; } bool expand_as_array(func_decl* f, expr_ref& result) { if (!m_model_completion) return false; func_decl* g = nullptr; if (!m_ar.is_as_array(f, g)) return false; expr* def = nullptr; if (m_def_cache.find(g, def)) { result = def; TRACE("model_evaluator", tout << result << "\n";); return true; } expr_ref tmp(m); func_interp* fi = m_model.get_func_interp(g); if (fi && !fi->get_else()) { fi->set_else(m_model.get_some_value(g->get_range())); } if (fi && (tmp = fi->get_array_interp(g))) { model_evaluator ev(m_model, m_params); ev.set_model_completion(false); result = ev(tmp); m_pinned.push_back(result); m_def_cache.insert(g, result); TRACE("model_evaluator", tout << mk_pp(g, m) << " " << result << "\n";); return true; } TRACE("model_evaluator", tout << "could not get array interpretation " << mk_pp(g, m) << " " << fi << "\n"; tout << m_model << "\n";); return false; } void expand_stores(expr_ref& val) { TRACE("model_evaluator", tout << val << "\n";); vector stores; expr_ref else_case(m); bool _unused; if (m_array_as_stores && m_ar.is_array(val) && extract_array_func_interp(val, stores, else_case, _unused)) { sort* srt = val->get_sort(); val = m_ar.mk_const_array(srt, else_case); for (unsigned i = stores.size(); i-- > 0; ) { expr_ref_vector args(m); args.push_back(val); args.append(stores[i].size(), stores[i].data()); val = m_ar.mk_store(args); } TRACE("model_evaluator", tout << val << "\n";); } } bool reduce_macro() { return true; } bool get_macro(func_decl * f, expr * & def, quantifier * & , proof * &) { func_interp * fi = m_model.get_func_interp(f); def = nullptr; if (fi != nullptr) { if (fi->is_partial()) { if (m_model_completion) { sort * s = f->get_range(); expr * val = m_model.get_some_value(s); fi->set_else(val); } else return false; } def = fi->get_interp(); SASSERT(def != nullptr); } else if (m_model_completion && (f->get_family_id() == null_family_id || m.get_plugin(f->get_family_id())->is_considered_uninterpreted(f))) { sort * s = f->get_range(); expr * val = m_model.get_some_value(s); func_interp * new_fi = alloc(func_interp, m, f->get_arity()); new_fi->set_else(val); m_model.register_decl(f, new_fi); def = val; SASSERT(def != nullptr); } CTRACE("model_evaluator", def != nullptr, tout << "get_macro for " << f->get_name() << " (model completion: " << m_model_completion << ") " << mk_pp(def, m) << "\n";); return def != nullptr; } br_status evaluate_partial_theory_func(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) { SASSERT(f != nullptr); SASSERT(!m.is_builtin_family_id(f->get_family_id())); result = nullptr; result_pr = nullptr; if (f->get_family_id() == m_fpau.get_family_id() && !m_fpau.is_considered_uninterpreted(f, num, args)) { // cwinter: should this be unreachable? return BR_FAILED; } func_interp * fi = m_model.get_func_interp(f); func_decl_ref f_ui(m); if (!fi && m_au.is_considered_uninterpreted(f, num, args, f_ui)) { if (f_ui) { fi = m_model.get_func_interp(f_ui); } if (!fi) { result = m_au.mk_numeral(rational(0), f->get_range()); return BR_DONE; } } else if (!fi && m_au.is_considered_partially_interpreted(f, num, args, f_ui)) { fi = m_model.get_func_interp(f_ui); if (fi) { auto interp = fi->get_interp(); if (interp) { var_subst vs(m, false); result = vs(fi->get_interp(), num, args); result = m.mk_ite(m.mk_eq(m_au.mk_real(rational(0)), args[1]), result, m.mk_app(f, num, args)); return BR_DONE; } } } else if (!fi && m_fpau.is_considered_uninterpreted(f, num, args)) { result = m.get_some_value(f->get_range()); return BR_DONE; } else if (m_dt.is_accessor(f)) { expr* arg = args[0]; if (m.is_value(arg) && !fi) { fi = alloc(func_interp, m, f->get_arity()); expr* val = m_model.get_some_value(f->get_range()); fi->set_else(val); m_model.register_decl(f, fi); result = val; return BR_DONE; } if (!is_ground(arg)) { result = m.mk_app(f, num, args); return BR_DONE; } } if (fi) { if (fi->is_partial()) fi->set_else(m.get_some_value(f->get_range())); var_subst vs(m, false); result = vs(fi->get_interp(), num, args); if (!is_ground(result.get()) && recfun::util(m).is_defined(f)) return BR_DONE; return BR_REWRITE_FULL; } return BR_FAILED; } bool max_steps_exceeded(unsigned num_steps) const { if (memory::get_allocation_size() > m_max_memory) throw rewriter_exception(Z3_MAX_MEMORY_MSG); return num_steps > m_max_steps; } br_status mk_array_eq(expr* a, expr* b, expr_ref& result) { if (a == b) { result = m.mk_true(); return BR_DONE; } if (!m_array_equalities) { return m_ar_rw.mk_eq_core(a, b, result); } TRACE("model_evaluator", tout << "mk_array_eq " << m_array_equalities << " " << mk_pp(a, m) << " " << mk_pp(b, m) << "\n";); vector stores1, stores2; bool args_are_unique1, args_are_unique2; expr_ref else1(m), else2(m); if (extract_array_func_interp(a, stores1, else1, args_are_unique1) && extract_array_func_interp(b, stores2, else2, args_are_unique2)) { expr_ref_vector conj(m), args1(m), args2(m); if (m.are_equal(else1, else2)) { // no op } else if (m.are_distinct(else1, else2) && !(else1->get_sort()->get_info()->get_num_elements().is_finite())) { result = m.mk_false(); return BR_DONE; } else { conj.push_back(m.mk_eq(else1, else2)); } if (args_are_unique1 && args_are_unique2 && !stores1.empty()) { TRACE("model_evaluator", tout << "args are unique " << conj << "\n";); return mk_array_eq_core(stores1, else1, stores2, else2, conj, result); } // TBD: this is too inefficient. args1.push_back(a); args2.push_back(b); stores1.append(stores2); for (unsigned i = 0; i < stores1.size(); ++i) { args1.resize(1); args1.append(stores1[i].size() - 1, stores1[i].data()); args2.resize(1); args2.append(stores1[i].size() - 1, stores1[i].data()); expr_ref s1(m_ar.mk_select(args1.size(), args1.data()), m); expr_ref s2(m_ar.mk_select(args2.size(), args2.data()), m); conj.push_back(m.mk_eq(s1, s2)); } result = mk_and(conj); TRACE("model_evaluator", tout << mk_pp(a, m) << " == " << mk_pp(b, m) << " -> " << conj << "\n"; for (auto& s : stores1) tout << "store: " << s << "\n"; ); return BR_REWRITE_FULL; } return m_ar_rw.mk_eq_core(a, b, result); } struct args_eq { unsigned m_arity; args_eq(unsigned arity): m_arity(arity) {} bool operator()(expr * const* args1, expr* const* args2) const { for (unsigned i = 0; i < m_arity; ++i) { if (args1[i] != args2[i]) { return false; } } return true; } }; struct args_hash { unsigned m_arity; args_hash(unsigned arity): m_arity(arity) {} unsigned operator()(expr * const* args) const { return get_composite_hash(args, m_arity, default_kind_hash_proc(), *this); } unsigned operator()(expr* const* args, unsigned idx) const { return args[idx]->hash(); } }; typedef hashtable args_table; br_status mk_array_eq_core(vector const& stores1, expr* else1, vector const& stores2, expr* else2, expr_ref_vector& conj, expr_ref& result) { unsigned arity = stores1[0].size()-1; // TBD: fix arity. args_hash ah(arity); args_eq ae(arity); args_table table1(DEFAULT_HASHTABLE_INITIAL_CAPACITY, ah, ae); args_table table2(DEFAULT_HASHTABLE_INITIAL_CAPACITY, ah, ae); TRACE("model_evaluator", tout << "arity " << arity << "\n"; for (auto& v : stores1) tout << "stores1: " << v << "\n"; for (auto& v : stores2) tout << "stores2: " << v << "\n"; tout << "else1: " << mk_pp(else1, m) << "\n"; tout << "else2: " << mk_pp(else2, m) << "\n"; tout << "conj: " << conj << "\n";); // stores with smaller index take precedence for (unsigned i = stores1.size(); i-- > 0; ) { table1.insert(stores1[i].data()); } for (unsigned i = 0, sz = stores2.size(); i < sz; ++i) { if (table2.contains(stores2[i].data())) { // first insertion takes precedence. TRACE("model_evaluator", tout << "duplicate " << stores2[i] << "\n";); continue; } table2.insert(stores2[i].data()); expr * const* args = nullptr; expr* val = stores2[i][arity]; if (table1.find(stores2[i].data(), args)) { TRACE("model_evaluator", tout << "found value " << stores2[i] << "\n";); table1.remove(args); switch (compare(args[arity], val)) { case l_true: break; case l_false: result = m.mk_false(); return BR_DONE; default: conj.push_back(m.mk_eq(val, args[arity])); break; } } else { TRACE("model_evaluator", tout << "not found value " << stores2[i] << "\n";); switch (compare(else1, val)) { case l_true: break; case l_false: result = m.mk_false(); return BR_DONE; default: conj.push_back(m.mk_eq(else1, val)); break; } } } for (auto const& t : table1) { switch (compare((t)[arity], else2)) { case l_true: break; case l_false: result = m.mk_false(); return BR_DONE; default: conj.push_back(m.mk_eq((t)[arity], else2)); break; } } result = mk_and(conj); return BR_REWRITE_FULL; } lbool compare(expr* a, expr* b) { if (m.are_equal(a, b)) return l_true; if (m.are_distinct(a, b)) return l_false; return l_undef; } bool args_are_values(expr_ref_vector const& store, bool& are_unique) { bool are_values = true; for (unsigned j = 0; are_values && j + 1 < store.size(); ++j) { are_values = m.is_value(store[j]); are_unique &= m.is_unique_value(store[j]); } SASSERT(!are_unique || are_values); return are_values; } bool extract_array_func_interp(expr* a, vector& stores, expr_ref& else_case, bool& are_unique) { SASSERT(m_ar.is_array(a)); are_unique = true; TRACE("model_evaluator", tout << mk_pp(a, m) << "\n";); while (m_ar.is_store(a)) { expr_ref_vector store(m); store.append(to_app(a)->get_num_args()-1, to_app(a)->get_args()+1); args_are_values(store, are_unique); stores.push_back(store); a = to_app(a)->get_arg(0); } if (m_ar.is_const(a)) { else_case = to_app(a)->get_arg(0); return true; } if (m_ar_rw.has_index_set(a, else_case, stores)) { for (auto const& store : stores) args_are_values(store, are_unique); return true; } if (!m_ar.is_as_array(a)) { TRACE("model_evaluator", tout << "no translation: " << mk_pp(a, m) << "\n";); TRACE("model_evaluator", tout << m_model << "\n";); return false; } func_decl* f = m_ar.get_as_array_func_decl(to_app(a)); func_interp* g = m_model.get_func_interp(f); if (!g) { TRACE("model_evaluator", tout << "no interpretation for " << mk_pp(f, m) << "\n";); return false; } else_case = g->get_else(); if (!else_case) { TRACE("model_evaluator", tout << "no else case " << mk_pp(a, m) << "\n";); return false; } bool ground = is_ground(else_case); unsigned sz = g->num_entries(); expr_ref_vector store(m); for (unsigned i = 0; i < sz; ++i) { store.reset(); func_entry const* fe = g->get_entry(i); expr* res = fe->get_result(); if (m.are_equal(else_case, res)) { continue; } ground &= is_ground(res); store.append(g->get_arity(), fe->get_args()); store.push_back(res); for (expr* arg : store) { ground &= is_ground(arg); } stores.push_back(store); } if (!ground) { TRACE("model_evaluator", tout << "could not extract ground array interpretation: " << mk_pp(a, m) << "\n";); return false; } return true; } }; } struct model_evaluator::imp : public rewriter_tpl { mev::evaluator_cfg m_cfg; imp(model_core & md, params_ref const & p): rewriter_tpl(md.get_manager(), false, // no proofs for evaluator m_cfg), m_cfg(md.get_manager(), md, p) { } void expand_stores(expr_ref &val) {m_cfg.expand_stores(val);} void reset() { rewriter_tpl::reset(); m_cfg.reset(); m_cfg.m_def_cache.reset(); } }; model_evaluator::model_evaluator(model_core & md, params_ref const & p) { m_imp = alloc(imp, md, p); } ast_manager & model_evaluator::m() const { return m_imp->m(); } model_evaluator::~model_evaluator() { dealloc(m_imp); } void model_evaluator::updt_params(params_ref const & p) { m_imp->cfg().updt_params(p); } void model_evaluator::get_param_descrs(param_descrs & r) { model_evaluator_params::collect_param_descrs(r); } void model_evaluator::set_model_completion(bool f) { if (m_imp->cfg().m_model_completion != f) { reset(); m_imp->cfg().m_model_completion = f; } } bool model_evaluator::get_model_completion() const { return m_imp->cfg().m_model_completion; } void model_evaluator::set_expand_array_equalities(bool f) { m_imp->cfg().m_array_equalities = f; } unsigned model_evaluator::get_num_steps() const { return m_imp->get_num_steps(); } void model_evaluator::cleanup(params_ref const & p) { model_core & md = m_imp->cfg().m_model; m_imp->~imp(); new (m_imp) imp(md, p); } void model_evaluator::reset(params_ref const & p) { m_imp->reset(); updt_params(p); } void model_evaluator::reset(model_core &model, params_ref const& p) { m_imp->~imp(); new (m_imp) imp(model, p); } void model_evaluator::operator()(expr * t, expr_ref & result) { TRACE("model_evaluator", tout << mk_ismt2_pp(t, m()) << "\n";); m_imp->operator()(t, result); m_imp->expand_stores(result); TRACE("model_evaluator", tout << "eval: " << mk_ismt2_pp(t, m()) << " --> " << result << "\n";); } expr_ref model_evaluator::operator()(expr * t) { expr_ref result(m()); this->operator()(t, result); return result; } expr_ref_vector model_evaluator::operator()(expr_ref_vector const& ts) { expr_ref_vector rs(m()); for (expr* t : ts) rs.push_back((*this)(t)); return rs; } bool model_evaluator::is_true(expr* t) { expr_ref tmp(m()); return eval(t, tmp, true) && m().is_true(tmp); } bool model_evaluator::is_false(expr* t) { expr_ref tmp(m()); return eval(t, tmp, true) && m().is_false(tmp); } bool model_evaluator::is_true(expr_ref_vector const& ts) { for (expr* t : ts) if (!is_true(t)) return false; return true; } bool model_evaluator::are_equal(expr* s, expr* t) { if (m().are_equal(s, t)) return true; if (m().are_distinct(s, t)) return false; expr_ref t1(m()), t2(m()); eval(t, t1, true); eval(s, t2, true); return m().are_equal(t1, t2); } bool model_evaluator::eval(expr* t, expr_ref& r, bool model_completion) { set_model_completion(model_completion); try { r = (*this)(t); return true; } catch (model_evaluator_exception &ex) { (void)ex; TRACE("model_evaluator", tout << ex.msg () << "\n";); return false; } } bool model_evaluator::eval(expr_ref_vector const& ts, expr_ref& r, bool model_completion) { expr_ref tmp(m()); tmp = mk_and(ts); return eval(tmp, r, model_completion); } void model_evaluator::set_solver(expr_solver* solver) { m_imp->m_cfg.m_seq_rw.set_solver(solver); } bool model_evaluator::has_solver() { return m_imp->m_cfg.m_seq_rw.has_solver(); } model_core const & model_evaluator::get_model() const { return m_imp->cfg().m_model; }