/*++ Copyright (c) 2006 Microsoft Corporation Module Name: smt_context_inv.cpp Abstract: SMT logical contexts: invariant Author: Leonardo de Moura (leonardo) 2008-02-21. Revision History: --*/ #include "smt/smt_context.h" #include "ast/ast_pp.h" #include "ast/ast_ll_pp.h" #include "ast/ast_smt2_pp.h" namespace smt { #ifdef Z3DEBUG bool context::is_watching_clause(literal l, clause const * cls) const { watch_list & wl = const_cast(m_watches[l.index()]); return wl.find_clause(cls) != wl.end_clause(); } bool context::check_clause(clause const * cls) const { SASSERT(is_watching_clause(~cls->get_literal(0), cls)); SASSERT(is_watching_clause(~cls->get_literal(1), cls)); #if 0 for (literal l : *cls) { // holds, TBD re-enable when ready to re-check // SASSERT(!track_occs() || m_lit_occs[l.index()] > 0); } #endif return true; } bool context::check_clauses(clause_vector const & v) const { for (clause* cls : v) if (!cls->deleted()) check_clause(cls); return true; } bool context::check_watch_list(literal l) const { watch_list & wl = const_cast(m_watches[l.index()]); l.neg(); watch_list::clause_iterator it = wl.begin_clause(); watch_list::clause_iterator end = wl.end_clause(); for (; it != end; ++it) { clause * cls = *it; TRACE("watch_list", tout << "l: "; display_literal(tout, l); tout << "\n"; display_clause(tout, cls); tout << "\n";); SASSERT(l == cls->get_literal(0) || l == cls->get_literal(1)); } return true; } bool context::check_watch_list(unsigned l_idx) const { return check_watch_list(to_literal(l_idx)); } bool context::check_bin_watch_lists() const { if (binary_clause_opt_enabled()) { vector::const_iterator it = m_watches.begin(); vector::const_iterator end = m_watches.end(); for (unsigned l_idx = 0; it != end; ++it, ++l_idx) { literal l1 = to_literal(l_idx); watch_list const & wl = *it; literal const * it2 = wl.begin_literals(); literal const * end2 = wl.end_literals(); for (; it2 != end2; ++it2) { literal l2 = *it2; watch_list const & wl = m_watches[(~l2).index()]; SASSERT(wl.find_literal(~l1) != wl.end_literals()); } } } return true; } bool context::check_enode(enode * n) const { SASSERT(n->check_invariant()); bool is_true_eq = n->is_true_eq(); bool cg_inv = n->get_num_args() == 0 || (!is_true_eq && (!n->is_cgc_enabled() || n->is_cgr() == (m_cg_table.contains_ptr(n)))) || (is_true_eq && !m_cg_table.contains_ptr(n)); CTRACE("check_enode", !cg_inv, tout << "n: #" << n->get_owner_id() << ", m_cg: #" << n->m_cg->get_owner_id() << ", contains: " << m_cg_table.contains(n) << "\n"; display(tout);); SASSERT(cg_inv); return true; } bool context::check_enodes() const { for (enode* n : m_enodes) { check_enode(n); } return true; } bool context::check_invariant() const { check_bin_watch_lists(); check_clauses(m_aux_clauses); check_clauses(m_lemmas); check_enodes(); SASSERT(m_cg_table.check_invariant()); return true; } bool context::check_missing_clause_propagation(clause_vector const & v) const { for (clause * cls : v) { CTRACE("missing_propagation", is_unit_clause(cls), display_clause_detail(tout, cls); tout << "\n";); SASSERT(!is_unit_clause(cls)); } return true; } bool context::check_missing_bin_clause_propagation() const { if (binary_clause_opt_enabled()) { SASSERT(m_watches.size() == m_assignment.size()); vector::const_iterator it = m_watches.begin(); vector::const_iterator end = m_watches.end(); for (unsigned l_idx = 0; it != end; ++it, ++l_idx) { literal l = to_literal(l_idx); watch_list const & wl = *it; if (get_assignment(l) == l_true) { literal const * it2 = wl.begin_literals(); literal const * end2 = wl.end_literals(); for (; it2 != end2; ++it2) { literal l2 = *it2; SASSERT(get_assignment(l2) == l_true); } } } } return true; } bool context::check_missing_eq_propagation() const { for (enode* n : m_enodes) { SASSERT(!n->is_true_eq() || get_assignment(n) == l_true); if (n->is_eq() && get_assignment(n) == l_true) { SASSERT(n->is_true_eq()); } } return true; } bool context::check_missing_congruence() const { for (enode* n : m_enodes) { for (enode* n2 : m_enodes) { if (n->get_root() != n2->get_root()) { if (n->is_true_eq() && n2->is_true_eq()) continue; CTRACE("missing_propagation", congruent(n, n2), tout << mk_pp(n->get_owner(), m) << "\n" << mk_pp(n2->get_owner(), m) << "\n"; display(tout);); SASSERT(!congruent(n, n2)); } } } return true; } bool context::check_missing_bool_enode_propagation() const { for (enode* n : m_enodes) { if (m.is_bool(n->get_owner()) && get_assignment(n) == l_undef) { enode * first = n; do { CTRACE("missing_propagation", get_assignment(n) != l_undef, tout << mk_pp(first->get_owner(), m) << "\nassignment: " << get_assignment(first) << "\n" << mk_pp(n->get_owner(), m) << "\nassignment: " << get_assignment(n) << "\n";); SASSERT(get_assignment(n) == l_undef); n = n->get_next(); } while (n != first); } } return true; } bool context::check_missing_propagation() const { check_missing_clause_propagation(m_lemmas); check_missing_clause_propagation(m_aux_clauses); check_missing_bin_clause_propagation(); // check_missing_eq_propagation(); check_missing_congruence(); check_missing_bool_enode_propagation(); return true; } bool context::check_relevancy(expr_ref_vector const & v) const { return m_relevancy_propagator->check_relevancy(v); } bool context::check_relevancy() const { if (!relevancy()) return true; check_relevancy(m_b_internalized_stack); check_relevancy(m_e_internalized_stack); unsigned sz = m_asserted_formulas.get_num_formulas(); for (unsigned i = 0; i < sz; i++) { expr * n = m_asserted_formulas.get_formula(i); if (m.is_or(n)) { CTRACE("relevancy_bug", !is_relevant(n), tout << "n: " << mk_ismt2_pp(n, m) << "\n";); SASSERT(is_relevant(n)); TRACE("check_relevancy", tout << "checking:\n" << mk_ll_pp(n, m) << "\n";); SASSERT(m_relevancy_propagator->check_relevancy_or(to_app(n), true)); } else if (m.is_not(n)) { CTRACE("relevancy_bug", !is_relevant(to_app(n)->get_arg(0)), tout << "n: " << mk_ismt2_pp(n, m) << "\n";); SASSERT(is_relevant(to_app(n)->get_arg(0))); } else { CTRACE("relevancy_bug", !is_relevant(n), tout << "n: " << mk_ismt2_pp(n, m) << "\n";); SASSERT(is_relevant(n)); } } return true; } /** \brief Check if expressions attached to bool_variables and enodes have a consistent assignment. For all a, b. root(a) == root(b) ==> get_assignment(a) == get_assignment(b) */ bool context::check_eqc_bool_assignment() const { for (enode* e : m_enodes) { if (m.is_bool(e->get_owner())) { enode * r = e->get_root(); CTRACE("eqc_bool", get_assignment(e) != get_assignment(r), tout << "#" << e->get_owner_id() << "\n" << mk_pp(e->get_owner(), m) << "\n"; tout << "#" << r->get_owner_id() << "\n" << mk_pp(r->get_owner(), m) << "\n"; tout << "assignments: " << get_assignment(e) << " " << get_assignment(r) << "\n"; display(tout);); SASSERT(get_assignment(e) == get_assignment(r)); } } return true; } bool context::check_bool_var_vector_sizes() const { SASSERT(m_assignment.size() == 2 * m_bdata.size()); SASSERT(m_watches.size() == 2 * m_bdata.size()); SASSERT(m_bdata.size() == m_activity.size()); SASSERT(m_bool_var2expr.size() == m_bdata.size()); return true; } /** \brief Check the following property: - for every equality atom (= lhs rhs) assigned to false, relevant: if lhs->get_root() and rhs->get_root() are attached to theory variables v1 and v2 of theory t, then there is an entry (t, v1', v2') in m_propagated_th_diseqs such that, (= get_enode(v1') get_enode(v2')) is congruent to (= lhs rhs). */ bool context::check_th_diseq_propagation() const { TRACE("check_th_diseq_propagation", tout << "m_propagated_th_diseqs.size() " << m_propagated_th_diseqs.size() << "\n";); int num = get_num_bool_vars(); if (inconsistent() || get_manager().limit().get_cancel_flag()) { return true; } for (bool_var v = 0; v < num; v++) { if (has_enode(v)) { enode * n = bool_var2enode(v); if (n->is_eq() && is_relevant(n) && get_assignment(v) == l_false && !m.is_iff(n->get_owner())) { TRACE("check_th_diseq_propagation", tout << "checking: #" << n->get_owner_id() << " " << mk_bounded_pp(n->get_owner(), m) << "\n";); enode * lhs = n->get_arg(0)->get_root(); enode * rhs = n->get_arg(1)->get_root(); if (rhs->is_interpreted() && lhs->is_interpreted()) continue; TRACE("check_th_diseq_propagation", tout << "num. theory_vars: " << lhs->get_num_th_vars() << " " << mk_pp(m.get_sort(lhs->get_owner()), m) << "\n";); theory_var_list * l = lhs->get_th_var_list(); while (l) { theory_id th_id = l->get_th_id(); theory * th = get_theory(th_id); TRACE("check_th_diseq_propagation", tout << "checking theory: " << m.get_family_name(th_id) << "\n";); // if the theory doesn't use diseqs, then the diseqs are not propagated. if (th->use_diseqs() && rhs->get_th_var(th_id) != null_theory_var) { bool found = false; // lhs and rhs are attached to theory th_id for (new_th_eq const& eq : m_propagated_th_diseqs) { if (eq.m_th_id == th_id) { enode * lhs_prime = th->get_enode(eq.m_lhs)->get_root(); enode * rhs_prime = th->get_enode(eq.m_rhs)->get_root(); if ((lhs == lhs_prime && rhs == rhs_prime) || (rhs == lhs_prime && lhs == rhs_prime)) { TRACE("check_th_diseq_propagation", tout << "ok v" << v << " " << get_assignment(v) << "\n";); found = true; break; } } } CTRACE("check_th_diseq_propagation", !found, tout << "checking theory: " << m.get_family_name(th_id) << "\n" << "root: #" << n->get_root()->get_owner_id() << " node: #" << n->get_owner_id() << "\n" << mk_pp(n->get_owner(), m) << "\n" << "lhs: #" << lhs->get_owner_id() << ", rhs: #" << rhs->get_owner_id() << "\n" << mk_bounded_pp(lhs->get_owner(), m) << " " << mk_bounded_pp(rhs->get_owner(), m) << "\n";); VERIFY(found); } l = l->get_next(); } } } } return true; } bool context::check_missing_diseq_conflict() const { for (enode_pair const& p : m_diseq_vector) { enode * n1 = p.first; enode * n2 = p.second; if (n1->get_root() == n2->get_root()) { TRACE("diseq_bug", tout << "n1: #" << n1->get_owner_id() << ", n2: #" << n2->get_owner_id() << ", r: #" << n1->get_root()->get_owner_id() << "\n"; tout << "n1 parents:\n"; display_parent_eqs(tout, n1); tout << "n2 parents:\n"; display_parent_eqs(tout, n2); tout << "r parents:\n"; display_parent_eqs(tout, n1->get_root()); ); UNREACHABLE(); } } return true; } #endif bool context::validate_justification(bool_var v, bool_var_data const& d, b_justification const& j) { if (j.get_kind() == b_justification::CLAUSE && v != true_bool_var) { clause* cls = j.get_clause(); literal l = cls->get_literal(0); if (l.var() != v) { l = cls->get_literal(1); } SASSERT(l.var() == v); SASSERT(m_assignment[l.index()] == l_true); } return true; } bool context::validate_model() { if (!m_proto_model) { return true; } for (literal lit : m_assigned_literals) { if (!is_relevant(lit)) { continue; } expr_ref n(m), res(m); literal2expr(lit, n); if (!is_ground(n)) { continue; } switch (get_assignment(lit)) { case l_undef: break; case l_true: if (!m_proto_model->eval(n, res, false)) return true; CTRACE("model", !m.is_true(res), tout << n << " evaluates to " << res << "\n";); if (m.is_false(res)) { return false; } break; case l_false: if (!m_proto_model->eval(n, res, false)) return true; CTRACE("model", !m.is_false(res), tout << n << " evaluates to " << res << "\n";); if (m.is_true(res)) { return false; } break; } } return true; } /** \brief validate unsat core returned by */ void context::validate_unsat_core() { if (!get_fparams().m_core_validate) { return; } warning_msg("Users should not set smt.core.validate. This option is for debugging only."); context ctx(get_manager(), get_fparams(), get_params()); ptr_vector assertions; get_assertions(assertions); unsigned sz = assertions.size(); for (unsigned i = 0; i < sz; ++i) { ctx.assert_expr(assertions[i]); } sz = m_unsat_core.size(); for (unsigned i = 0; i < sz; ++i) { ctx.assert_expr(m_unsat_core.get(i)); } lbool res = ctx.check(); switch (res) { case l_false: break; case l_true: throw default_exception("Core could not be validated"); case l_undef: IF_VERBOSE(1, verbose_stream() << "core validation produced unknown\n"); break; } } };