/*++ Copyright (c) 2012 Microsoft Corporation Module Name: z3_algebraic.h Abstract: Additional APIs for handling Z3 algebraic numbers encoded as Z3_ASTs Author: Leonardo de Moura (leonardo) 2012-12-07 Notes: --*/ #ifndef _Z3_ALGEBRAIC_H_ #define _Z3_ALGEBRAIC_H_ #ifdef __cplusplus extern "C" { #endif // __cplusplus /** \brief Return Z3_TRUE if \c can be used as value in the Z3 real algebraic number package. def_API('Z3_algebraic_is_value', BOOL, (_in(CONTEXT), _in(AST))) */ Z3_bool Z3_API Z3_algebraic_is_value(__in Z3_context c, __in Z3_ast a); /** \brief Return the Z3_TRUE if \c a is positive, and Z3_FALSE otherwise. \pre Z3_algebraic_is_value(c, a) def_API('Z3_algebraic_is_pos', BOOL, (_in(CONTEXT), _in(AST))) */ Z3_bool Z3_API Z3_algebraic_is_pos(__in Z3_context c, __in Z3_ast a); /** \brief Return the Z3_TRUE if \c a is negative, and Z3_FALSE otherwise. \pre Z3_algebraic_is_value(c, a) def_API('Z3_algebraic_is_neg', BOOL, (_in(CONTEXT), _in(AST))) */ Z3_bool Z3_API Z3_algebraic_is_neg(__in Z3_context c, __in Z3_ast a); /** \brief Return the Z3_TRUE if \c a is zero, and Z3_FALSE otherwise. \pre Z3_algebraic_is_value(c, a) def_API('Z3_algebraic_is_zero', BOOL, (_in(CONTEXT), _in(AST))) */ Z3_bool Z3_API Z3_algebraic_is_zero(__in Z3_context c, __in Z3_ast a); /** \brief Return 1 if \c a is positive, 0 if \c a is zero, and -1 if \c a is negative. \pre Z3_algebraic_is_value(c, a) def_API('Z3_algebraic_sign', INT, (_in(CONTEXT), _in(AST))) */ int Z3_API Z3_algebraic_sign(__in Z3_context c, __in Z3_ast a); /** \brief Return the value a + b. \pre Z3_algebraic_is_value(c, a) \pre Z3_algebraic_is_value(c, b) \post Z3_algebraic_is_value(c, result) def_API('Z3_algebraic_add', AST, (_in(CONTEXT), _in(AST), _in(AST))) */ Z3_ast Z3_API Z3_algebraic_add(__in Z3_context c, __in Z3_ast a, __in Z3_ast b); /** \brief Return the value a - b. \pre Z3_algebraic_is_value(c, a) \pre Z3_algebraic_is_value(c, b) \post Z3_algebraic_is_value(c, result) def_API('Z3_algebraic_sub', AST, (_in(CONTEXT), _in(AST), _in(AST))) */ Z3_ast Z3_API Z3_algebraic_sub(__in Z3_context c, __in Z3_ast a, __in Z3_ast b); /** \brief Return the value a * b. \pre Z3_algebraic_is_value(c, a) \pre Z3_algebraic_is_value(c, b) \post Z3_algebraic_is_value(c, result) def_API('Z3_algebraic_mul', AST, (_in(CONTEXT), _in(AST), _in(AST))) */ Z3_ast Z3_API Z3_algebraic_mul(__in Z3_context c, __in Z3_ast a, __in Z3_ast b); /** \brief Return the value a / b. \pre Z3_algebraic_is_value(c, a) \pre Z3_algebraic_is_value(c, b) \pre !Z3_algebraic_is_zero(c, b) \post Z3_algebraic_is_value(c, result) def_API('Z3_algebraic_div', AST, (_in(CONTEXT), _in(AST), _in(AST))) */ Z3_ast Z3_API Z3_algebraic_div(__in Z3_context c, __in Z3_ast a, __in Z3_ast b); /** \brief Return the a^(1/k) \pre Z3_algebraic_is_value(c, a) \pre k is even => !Z3_algebraic_is_neg(c, a) \post Z3_algebraic_is_value(c, result) def_API('Z3_algebraic_root', AST, (_in(CONTEXT), _in(AST), _in(UINT))) */ Z3_ast Z3_API Z3_algebraic_root(__in Z3_context c, __in Z3_ast a, __in unsigned k); /** \brief Return the a^k \pre Z3_algebraic_is_value(c, a) \post Z3_algebraic_is_value(c, result) def_API('Z3_algebraic_power', AST, (_in(CONTEXT), _in(AST), _in(UINT))) */ Z3_ast Z3_API Z3_algebraic_power(__in Z3_context c, __in Z3_ast a, __in unsigned k); /** \brief Return Z3_TRUE if a < b, and Z3_FALSE otherwise. \pre Z3_algebraic_is_value(c, a) \pre Z3_algebraic_is_value(c, b) def_API('Z3_algebraic_lt', BOOL, (_in(CONTEXT), _in(AST), _in(AST))) */ Z3_bool Z3_API Z3_algebraic_lt(__in Z3_context c, __in Z3_ast a, __in Z3_ast b); /** \brief Return Z3_TRUE if a > b, and Z3_FALSE otherwise. \pre Z3_algebraic_is_value(c, a) \pre Z3_algebraic_is_value(c, b) def_API('Z3_algebraic_gt', BOOL, (_in(CONTEXT), _in(AST), _in(AST))) */ Z3_bool Z3_API Z3_algebraic_gt(__in Z3_context c, __in Z3_ast a, __in Z3_ast b); /** \brief Return Z3_TRUE if a <= b, and Z3_FALSE otherwise. \pre Z3_algebraic_is_value(c, a) \pre Z3_algebraic_is_value(c, b) def_API('Z3_algebraic_le', BOOL, (_in(CONTEXT), _in(AST), _in(AST))) */ Z3_bool Z3_API Z3_algebraic_le(__in Z3_context c, __in Z3_ast a, __in Z3_ast b); /** \brief Return Z3_TRUE if a >= b, and Z3_FALSE otherwise. \pre Z3_algebraic_is_value(c, a) \pre Z3_algebraic_is_value(c, b) def_API('Z3_algebraic_ge', BOOL, (_in(CONTEXT), _in(AST), _in(AST))) */ Z3_bool Z3_API Z3_algebraic_ge(__in Z3_context c, __in Z3_ast a, __in Z3_ast b); /** \brief Return Z3_TRUE if a == b, and Z3_FALSE otherwise. \pre Z3_algebraic_is_value(c, a) \pre Z3_algebraic_is_value(c, b) def_API('Z3_algebraic_eq', BOOL, (_in(CONTEXT), _in(AST), _in(AST))) */ Z3_bool Z3_API Z3_algebraic_eq(__in Z3_context c, __in Z3_ast a, __in Z3_ast b); /** \brief Return Z3_TRUE if a != b, and Z3_FALSE otherwise. \pre Z3_algebraic_is_value(c, a) \pre Z3_algebraic_is_value(c, b) def_API('Z3_algebraic_neq', BOOL, (_in(CONTEXT), _in(AST), _in(AST))) */ Z3_bool Z3_API Z3_algebraic_neq(__in Z3_context c, __in Z3_ast a, __in Z3_ast b); /** \brief Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the roots of the univariate polynomial p(a[0], ..., a[n-1], x_n). \pre p is a Z3 expression that contains only arithmetic terms and free variables. \pre forall i in [0, n) Z3_algebraic_is_value(c, a[i]) \post forall r in result Z3_algebraic_is_value(c, result) def_API('Z3_algebraic_roots', AST_VECTOR, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST))) */ Z3_ast_vector Z3_API Z3_algebraic_roots(__in Z3_context c, __in Z3_ast p, __in unsigned n, __in Z3_ast a[]); /** \brief Given a multivariate polynomial p(x_0, ..., x_{n-1}), return the sign of p(a[0], ..., a[n-1]). \pre p is a Z3 expression that contains only arithmetic terms and free variables. \pre forall i in [0, n) Z3_algebraic_is_value(c, a[i]) def_API('Z3_algebraic_eval', INT, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST))) */ int Z3_API Z3_algebraic_eval(__in Z3_context c, __in Z3_ast p, __in unsigned n, __in Z3_ast a[]); #ifdef __cplusplus }; #endif // __cplusplus #endif