# Copyright Microsoft Research 2016 # The following script finds sequences of length n-1 of # integers 0,..,n-1 such that the difference of the n-1 # adjacent entries fall in the range 0,..,n-1 # This is known as the "The All-Interval Series Problem" # See http://www.csplib.org/Problems/prob007/ from __future__ import print_function from z3 import * import time set_option("sat.gc.burst", False) # disable GC at every search. It is wasteful for these small queries. def diff_at_j_is_i(xs, j, i): assert(0 <= j and j + 1 < len(xs)) assert(1 <= i and i < len(xs)) return Or([ And(xs[j][k], xs[j+1][k-i]) for k in range(i,len(xs))] + [ And(xs[j][k], xs[j+1][k+i]) for k in range(0,len(xs)-i)]) def ais(n): xij = [ [ Bool("x_%d_%d" % (i,j)) for j in range(n)] for i in range(n) ] s = SolverFor("QF_FD") # Optionally replace by (slower) default solver if using # more then just finite domains (Booleans, Bit-vectors, enumeration types # and bounded integers) # s = Solver() for i in range(n): s.add(AtMost(xij[i] + [1])) s.add(Or(xij[i])) for j in range(n): xi = [ xij[i][j] for i in range(n) ] s.add(AtMost(xi + [1])) s.add(Or(xi)) dji = [ [ diff_at_j_is_i(xij, j, i + 1) for i in range(n-1)] for j in range(n-1) ] for j in range(n-1): s.add(AtMost(dji[j] + [1])) s.add(Or(dji[j])) for i in range(n-1): dj = [dji[j][i] for j in range(n-1)] s.add(AtMost(dj + [1])) s.add(Or(dj)) return s, xij def process_model(s, xij, n): # x_ij integer i is at position j # d_ij difference between integer at position j, j+1 is i # sum_j d_ij = 1 i = 1,...,n-1 # sum_j x_ij = 1 # sum_i x_ij = 1 m = s.model() block = [] values = [] for i in range(n): k = -1 for j in range(n): if is_true(m.eval(xij[i][j])): assert(k == -1) block += [xij[i][j]] k = j values += [k] print(values) sys.stdout.flush() return block def all_models(n): count = 0 s, xij = ais(n) start = time.time() while sat == s.check(): block = process_model(s, xij, n) s.add(Not(And(block))) count += 1 print(s.statistics()) print(time.time() - start) print(count) set_option(verbose=1) all_models(12)