/*++ Copyright (c) 2021 Microsoft Corporation Module Name: Polysat core saturation Author: Nikolaj Bjorner (nbjorner) 2021-03-19 Jakob Rath 2021-04-6 --*/ #pragma once #include "math/polysat/conflict.h" namespace polysat { class solver; class constraint_manager; class inference_engine { friend class conflict; protected: solver& s; public: inference_engine(solver& s) :s(s) {} virtual ~inference_engine() {} /** Try to apply an inference rule. * Derive new constraints from constraints containing the variable v (i.e., at least one premise must contain v). * Returns true if a new constraint was added to the core. */ virtual bool perform(pvar v, conflict& core) = 0; }; class inf_saturate : public inference_engine { vector m_new_constraints; char const* m_rule = nullptr; void set_rule(char const* r) { m_rule = r; } void push_omega(pdd const& x, pdd const& y); void push_omega_bisect(pdd const& x, rational x_max, pdd const& y, rational y_max); signed_constraint ineq(bool strict, pdd const& lhs, pdd const& rhs); bool propagate(conflict& core, inequality const& crit1, inequality const& crit2, signed_constraint& c); bool propagate(conflict& core, inequality const& crit1, inequality const& crit2, bool strict, pdd const& lhs, pdd const& rhs); bool try_ugt_x(pvar v, conflict& core, inequality const& c); bool try_ugt_y(pvar v, conflict& core, inequality const& c); bool try_ugt_y(pvar v, conflict& core, inequality const& l_y, inequality const& yx_l_zx, pdd const& x, pdd const& z); bool try_y_l_ax_and_x_l_z(pvar x, conflict& core, inequality const& c); bool try_y_l_ax_and_x_l_z(pvar x, conflict& core, inequality const& x_l_z, inequality const& y_l_ax, pdd const& a, pdd const& y); bool try_ugt_z(pvar z, conflict& core, inequality const& c); bool try_ugt_z(pvar z, conflict& core, inequality const& x_l_z0, inequality const& yz_l_xz, pdd const& y, pdd const& x); bool try_tangent(pvar v, conflict& core, inequality const& c); // c := lhs ~ v // where ~ is < or <= bool is_l_v(pvar v, inequality const& c); // c := v ~ rhs bool is_g_v(pvar v, inequality const& c); // c := x ~ Y bool is_x_l_Y(pvar x, inequality const& c, pdd& y); // c := X*y ~ X*Z bool is_Xy_l_XZ(pvar y, inequality const& c, pdd& x, pdd& z); bool verify_Xy_l_XZ(pvar y, inequality const& c, pdd const& x, pdd const& z); // c := Y ~ Ax bool is_Y_l_Ax(pvar x, inequality const& d, pdd& a, pdd& y); bool verify_Y_l_Ax(pvar x, inequality const& d, pdd const& a, pdd const& y); // c := Y*X ~ z*X bool is_YX_l_zX(pvar z, inequality const& c, pdd& x, pdd& y); bool verify_YX_l_zX(pvar z, inequality const& c, pdd const& x, pdd const& y); // c := xY <= xZ bool is_xY_l_xZ(pvar x, inequality const& c, pdd& y, pdd& z); // xy := x * Y bool is_xY(pvar x, pdd const& xy, pdd& y); // a * b does not overflow bool is_non_overflow(pdd const& a, pdd const& b); // p := coeff*x*y where coeff_x = coeff*x, x a variable bool is_coeffxY(pdd const& coeff_x, pdd const& p, pdd& y); rational max_value(pdd const& x); public: inf_saturate(solver& s) : inference_engine(s) {} bool perform(pvar v, conflict& core) override; }; /* * TODO: we could resolve constraints in cjust[v] against each other to * obtain stronger propagation. Example: * (x + 1)*P = 0 and (x + 1)*Q = 0, where gcd(P,Q) = 1, then we have x + 1 = 0. * We refer to this process as narrowing. * In general form it can rely on factoring. * Root finding can further prune viable. */ }