/*++ Module Name: theory_str.cpp Abstract: String Theory Plugin Author: Murphy Berzish and Yunhui Zheng Revision History: --*/ #include "ast/ast_smt2_pp.h" #include "smt/smt_context.h" #include "smt/theory_str.h" #include "smt/smt_model_generator.h" #include "ast/ast_pp.h" #include "ast/ast_ll_pp.h" #include #include #include "smt/theory_seq_empty.h" #include "smt/theory_arith.h" #include "ast/ast_util.h" #include "ast/rewriter/seq_rewriter.h" #include "ast/rewriter/expr_replacer.h" #include "ast/rewriter/var_subst.h" #include "smt_kernel.h" #include "model/model_smt2_pp.h" namespace smt { class seq_expr_solver : public expr_solver { kernel m_kernel; public: seq_expr_solver(ast_manager& m, smt_params& fp): m_kernel(m, fp) {} lbool check_sat(expr* e) override { m_kernel.push(); m_kernel.assert_expr(e); lbool r = m_kernel.check(); m_kernel.pop(1); return r; } }; theory_str::theory_str(context& ctx, ast_manager & m, theory_str_params const & params): theory(ctx, m.mk_family_id("seq")), m_params(params), /* Options */ opt_EagerStringConstantLengthAssertions(true), opt_VerifyFinalCheckProgress(false), opt_LCMUnrollStep(2), opt_NoQuickReturn_IntegerTheory(false), opt_DisableIntegerTheoryIntegration(false), opt_DeferEQCConsistencyCheck(false), opt_CheckVariableScope(true), opt_ConcatOverlapAvoid(true), /* Internal setup */ search_started(false), m_autil(m), u(m), sLevel(0), finalCheckProgressIndicator(false), m_trail(m), m_factory(nullptr), m_mk_aut(m), m_unused_id(0), m_delayed_axiom_setup_terms(m), m_delayed_assertions_todo(m), m_persisted_axioms(m), m_persisted_axiom_todo(m), tmpStringVarCount(0), tmpXorVarCount(0), avoidLoopCut(true), loopDetected(false), m_theoryStrOverlapAssumption_term(m.mk_true(), m), contains_map(m), string_int_conversion_terms(m), totalCacheAccessCount(0), cacheHitCount(0), cacheMissCount(0), m_fresh_id(0), m_trail_stack(*this), m_find(*this), fixed_length_subterm_trail(m), fixed_length_assumptions(m), bitvector_character_constants(m) { } theory_str::~theory_str() { m_trail_stack.reset(); for (eautomaton * aut : regex_automata) { dealloc(aut); } regex_automata.clear(); } void theory_str::init() { initialize_charset(); m_mk_aut.set_solver(alloc(seq_expr_solver, get_manager(), ctx.get_fparams())); } void theory_str::reset_internal_data_structures() { //m_trail.reset(); m_delayed_axiom_setup_terms.reset(); m_basicstr_axiom_todo.reset(); m_concat_axiom_todo.reset(); m_string_constant_length_todo.reset(); m_concat_eval_todo.reset(); m_delayed_assertions_todo.reset(); m_library_aware_axiom_todo.reset(); m_persisted_axioms.reset(); m_persisted_axiom_todo.reset(); axiomatized_terms.reset(); existing_toplevel_exprs.reset(); varForBreakConcat.clear(); loopDetected = false; cut_var_map.reset(); m_cut_allocs.reset(); //variable_set.reset(); //internal_variable_set.reset(); //internal_variable_scope_levels.clear(); contains_map.reset(); contain_pair_bool_map.reset(); contain_pair_idx_map.reset(); m_automata.reset(); regex_automata.reset(); regex_terms.reset(); regex_terms_by_string.reset(); regex_automaton_assumptions.reset(); regex_nfa_cache.reset(); regex_terms_with_path_constraints.reset(); regex_terms_with_length_constraints.reset(); regex_term_to_length_constraint.reset(); regex_term_to_extra_length_vars.reset(); regex_last_lower_bound.reset(); regex_last_upper_bound.reset(); regex_length_attempt_count.reset(); regex_fail_count.reset(); regex_intersection_fail_count.reset(); string_chars.reset(); concat_astNode_map.reset(); string_int_conversion_terms.reset(); string_int_axioms.reset(); stringConstantCache.reset(); length_ast_map.reset(); //m_trail_stack.reset(); // m_find.reset(); fixed_length_subterm_trail.reset(); fixed_length_assumptions.reset(); fixed_length_used_len_terms.reset(); var_to_char_subterm_map.reset(); uninterpreted_to_char_subterm_map.reset(); fixed_length_lesson.reset(); candidate_model.reset(); bitvector_character_constants.reset(); } expr * theory_str::mk_string(zstring const& str) { if (m_params.m_StringConstantCache) { ++totalCacheAccessCount; expr * val; if (stringConstantCache.find(str, val)) { return val; } else { val = u.str.mk_string(str); m_trail.push_back(val); stringConstantCache.insert(str, val); return val; } } else { return u.str.mk_string(str); } } expr * theory_str::mk_string(const char * str) { symbol sym(str); return u.str.mk_string(sym); } void theory_str::collect_statistics(::statistics & st) const { st.update("str refine equation", m_stats.m_refine_eq); st.update("str refine negated equation", m_stats.m_refine_neq); st.update("str refine function", m_stats.m_refine_f); st.update("str refine negated function", m_stats.m_refine_nf); } void theory_str::initialize_charset() { bool defaultCharset = true; if (defaultCharset) { // valid C strings can't contain the null byte ('\0') charSetSize = 255; char_set.resize(256, 0); int idx = 0; // small letters for (int i = 97; i < 123; i++) { char_set[idx] = (char) i; charSetLookupTable[char_set[idx]] = idx; idx++; } // caps for (int i = 65; i < 91; i++) { char_set[idx] = (char) i; charSetLookupTable[char_set[idx]] = idx; idx++; } // numbers for (int i = 48; i < 58; i++) { char_set[idx] = (char) i; charSetLookupTable[char_set[idx]] = idx; idx++; } // printable marks - 1 for (int i = 32; i < 48; i++) { char_set[idx] = (char) i; charSetLookupTable[char_set[idx]] = idx; idx++; } // printable marks - 2 for (int i = 58; i < 65; i++) { char_set[idx] = (char) i; charSetLookupTable[char_set[idx]] = idx; idx++; } // printable marks - 3 for (int i = 91; i < 97; i++) { char_set[idx] = (char) i; charSetLookupTable[char_set[idx]] = idx; idx++; } // printable marks - 4 for (int i = 123; i < 127; i++) { char_set[idx] = (char) i; charSetLookupTable[char_set[idx]] = idx; idx++; } // non-printable - 1 for (int i = 1; i < 32; i++) { char_set[idx] = (char) i; charSetLookupTable[char_set[idx]] = idx; idx++; } // non-printable - 2 for (int i = 127; i < 256; i++) { char_set[idx] = (char) i; charSetLookupTable[char_set[idx]] = idx; idx++; } } else { const char setset[] = { 'a', 'b', 'c' }; int fSize = sizeof(setset) / sizeof(char); char_set.resize(fSize, 0); charSetSize = fSize; for (int i = 0; i < charSetSize; i++) { char_set[i] = setset[i]; charSetLookupTable[setset[i]] = i; } } } void theory_str::assert_axiom(expr * _e) { if (_e == nullptr) return; if (opt_VerifyFinalCheckProgress) { finalCheckProgressIndicator = true; } if (get_manager().is_true(_e)) return; ast_manager& m = get_manager(); TRACE("str", tout << "asserting " << mk_ismt2_pp(_e, m) << std::endl;); expr_ref e(_e, m); //th_rewriter rw(m); //rw(e); if (!ctx.b_internalized(e)) { ctx.internalize(e, false); } literal lit(ctx.get_literal(e)); ctx.mark_as_relevant(lit); if (m.has_trace_stream()) log_axiom_instantiation(e); ctx.mk_th_axiom(get_id(), 1, &lit); if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n"; // crash/error avoidance: add all axioms to the trail m_trail.push_back(e); //TRACE("str", tout << "done asserting " << mk_ismt2_pp(e, get_manager()) << std::endl;); } void theory_str::assert_axiom_rw(expr * e) { if (e == nullptr) return; ast_manager & m = get_manager(); expr_ref _e(e, m); ctx.get_rewriter()(_e); assert_axiom(_e); } expr * theory_str::rewrite_implication(expr * premise, expr * conclusion) { ast_manager & m = get_manager(); return m.mk_or(mk_not(m, premise), conclusion); } void theory_str::assert_implication(expr * premise, expr * conclusion) { ast_manager & m = get_manager(); TRACE("str", tout << "asserting implication " << mk_ismt2_pp(premise, m) << " -> " << mk_ismt2_pp(conclusion, m) << std::endl;); expr_ref axiom(m.mk_or(mk_not(m, premise), conclusion), m); assert_axiom(axiom); } bool theory_str::internalize_atom(app * atom, bool gate_ctx) { return internalize_term(atom); } bool theory_str::internalize_term(app * term) { ast_manager & m = get_manager(); SASSERT(term->get_family_id() == get_family_id()); TRACE("str", tout << "internalizing term: " << mk_ismt2_pp(term, get_manager()) << std::endl;); // emulation of user_smt_theory::internalize_term() unsigned num_args = term->get_num_args(); for (unsigned i = 0; i < num_args; ++i) { ctx.internalize(term->get_arg(i), false); } if (ctx.e_internalized(term)) { enode * e = ctx.get_enode(term); mk_var(e); return true; } // m_parents.push_back(term); enode * e = ctx.mk_enode(term, false, m.is_bool(term), true); if (m.is_bool(term)) { bool_var bv = ctx.mk_bool_var(term); ctx.set_var_theory(bv, get_id()); ctx.set_enode_flag(bv, true); } // make sure every argument is attached to a theory variable for (unsigned i = 0; i < num_args; ++i) { enode * arg = e->get_arg(i); theory_var v_arg = mk_var(arg); TRACE("str", tout << "arg has theory var #" << v_arg << std::endl;); (void)v_arg; } theory_var v = mk_var(e); TRACE("str", tout << "term has theory var #" << v << std::endl;); (void)v; if (opt_EagerStringConstantLengthAssertions && u.str.is_string(term)) { TRACE("str", tout << "eagerly asserting length of string term " << mk_pp(term, m) << std::endl;); m_basicstr_axiom_todo.insert(e); } return true; } enode* theory_str::ensure_enode(expr* e) { if (!ctx.e_internalized(e)) { ctx.internalize(e, false); } enode* n = ctx.get_enode(e); ctx.mark_as_relevant(n); return n; } void theory_str::refresh_theory_var(expr * e) { ast_manager & m = get_manager(); enode * en = ensure_enode(e); theory_var v = mk_var(en); (void)v; TRACE("str", tout << "refresh " << mk_pp(e, get_manager()) << ": v#" << v << std::endl;); if (m.get_sort(e) == u.str.mk_string_sort()) { m_basicstr_axiom_todo.push_back(en); } } theory_var theory_str::mk_var(enode* n) { TRACE("str", tout << "mk_var for " << mk_pp(n->get_owner(), get_manager()) << std::endl;); ast_manager & m = get_manager(); if (!(m.get_sort(n->get_owner()) == u.str.mk_string_sort())) { return null_theory_var; } if (is_attached_to_var(n)) { TRACE("str", tout << "already attached to theory var" << std::endl;); return n->get_th_var(get_id()); } else { theory_var v = theory::mk_var(n); m_find.mk_var(); TRACE("str", tout << "new theory var v#" << v << " find " << m_find.find(v) << std::endl;); ctx.attach_th_var(n, this, v); ctx.mark_as_relevant(n); return v; } } static void cut_vars_map_copy(obj_map & dest, obj_map & src) { for (auto const& kv : src) { dest.insert(kv.m_key, 1); } } bool theory_str::has_self_cut(expr * n1, expr * n2) { if (!cut_var_map.contains(n1)) { return false; } if (!cut_var_map.contains(n2)) { return false; } if (cut_var_map[n1].empty() || cut_var_map[n2].empty()) { return false; } for (auto const& kv : cut_var_map[n1].top()->vars) { if (cut_var_map[n2].top()->vars.contains(kv.m_key)) { return true; } } return false; } void theory_str::add_cut_info_one_node(expr * baseNode, int slevel, expr * node) { // crash avoidance? m_trail.push_back(baseNode); m_trail.push_back(node); if (!cut_var_map.contains(baseNode)) { T_cut * varInfo = alloc(T_cut); m_cut_allocs.push_back(varInfo); varInfo->level = slevel; varInfo->vars.insert(node, 1); cut_var_map.insert(baseNode, std::stack()); cut_var_map[baseNode].push(varInfo); TRACE("str", tout << "add var info for baseNode=" << mk_pp(baseNode, get_manager()) << ", node=" << mk_pp(node, get_manager()) << " [" << slevel << "]" << std::endl;); } else { if (cut_var_map[baseNode].empty()) { T_cut * varInfo = alloc(T_cut); m_cut_allocs.push_back(varInfo); varInfo->level = slevel; varInfo->vars.insert(node, 1); cut_var_map[baseNode].push(varInfo); TRACE("str", tout << "add var info for baseNode=" << mk_pp(baseNode, get_manager()) << ", node=" << mk_pp(node, get_manager()) << " [" << slevel << "]" << std::endl;); } else { if (cut_var_map[baseNode].top()->level < slevel) { T_cut * varInfo = alloc(T_cut); m_cut_allocs.push_back(varInfo); varInfo->level = slevel; cut_vars_map_copy(varInfo->vars, cut_var_map[baseNode].top()->vars); varInfo->vars.insert(node, 1); cut_var_map[baseNode].push(varInfo); TRACE("str", tout << "add var info for baseNode=" << mk_pp(baseNode, get_manager()) << ", node=" << mk_pp(node, get_manager()) << " [" << slevel << "]" << std::endl;); } else if (cut_var_map[baseNode].top()->level == slevel) { cut_var_map[baseNode].top()->vars.insert(node, 1); TRACE("str", tout << "add var info for baseNode=" << mk_pp(baseNode, get_manager()) << ", node=" << mk_pp(node, get_manager()) << " [" << slevel << "]" << std::endl;); } else { get_manager().raise_exception("entered illegal state during add_cut_info_one_node()"); } } } } void theory_str::add_cut_info_merge(expr * destNode, int slevel, expr * srcNode) { // crash avoidance? m_trail.push_back(destNode); m_trail.push_back(srcNode); if (!cut_var_map.contains(srcNode)) { get_manager().raise_exception("illegal state in add_cut_info_merge(): cut_var_map doesn't contain srcNode"); } if (cut_var_map[srcNode].empty()) { get_manager().raise_exception("illegal state in add_cut_info_merge(): cut_var_map[srcNode] is empty"); } if (!cut_var_map.contains(destNode)) { T_cut * varInfo = alloc(T_cut); m_cut_allocs.push_back(varInfo); varInfo->level = slevel; cut_vars_map_copy(varInfo->vars, cut_var_map[srcNode].top()->vars); cut_var_map.insert(destNode, std::stack()); cut_var_map[destNode].push(varInfo); TRACE("str", tout << "merge var info for destNode=" << mk_pp(destNode, get_manager()) << ", srcNode=" << mk_pp(srcNode, get_manager()) << " [" << slevel << "]" << std::endl;); } else { if (cut_var_map[destNode].empty() || cut_var_map[destNode].top()->level < slevel) { T_cut * varInfo = alloc(T_cut); m_cut_allocs.push_back(varInfo); varInfo->level = slevel; cut_vars_map_copy(varInfo->vars, cut_var_map[destNode].top()->vars); cut_vars_map_copy(varInfo->vars, cut_var_map[srcNode].top()->vars); cut_var_map[destNode].push(varInfo); TRACE("str", tout << "merge var info for destNode=" << mk_pp(destNode, get_manager()) << ", srcNode=" << mk_pp(srcNode, get_manager()) << " [" << slevel << "]" << std::endl;); } else if (cut_var_map[destNode].top()->level == slevel) { cut_vars_map_copy(cut_var_map[destNode].top()->vars, cut_var_map[srcNode].top()->vars); TRACE("str", tout << "merge var info for destNode=" << mk_pp(destNode, get_manager()) << ", srcNode=" << mk_pp(srcNode, get_manager()) << " [" << slevel << "]" << std::endl;); } else { get_manager().raise_exception("illegal state in add_cut_info_merge(): inconsistent slevels"); } } } void theory_str::check_and_init_cut_var(expr * node) { if (cut_var_map.contains(node)) { return; } else if (!u.str.is_string(node)) { add_cut_info_one_node(node, -1, node); } } literal theory_str::mk_literal(expr* _e) { ast_manager & m = get_manager(); expr_ref e(_e, m); ensure_enode(e); return ctx.get_literal(e); } app * theory_str::mk_int(int n) { return m_autil.mk_numeral(rational(n), true); } app * theory_str::mk_int(rational & q) { return m_autil.mk_numeral(q, true); } void theory_str::track_variable_scope(expr * var) { if (internal_variable_scope_levels.find(sLevel) == internal_variable_scope_levels.end()) { internal_variable_scope_levels[sLevel] = obj_hashtable(); } internal_variable_scope_levels[sLevel].insert(var); } app * theory_str::mk_internal_xor_var() { return mk_int_var("$$_xor"); } app * theory_str::mk_fresh_const(char const* name, sort* s) { string_buffer<64> buffer; buffer << name; buffer << "!tmp"; buffer << m_fresh_id; m_fresh_id++; return u.mk_skolem(symbol(buffer.c_str()), 0, nullptr, s); } app * theory_str::mk_int_var(std::string name) { ast_manager & m = get_manager(); TRACE("str", tout << "creating integer variable " << name << " at scope level " << sLevel << std::endl;); sort * int_sort = m.mk_sort(m_autil.get_family_id(), INT_SORT); app * a = mk_fresh_const(name.c_str(), int_sort); ctx.internalize(a, false); SASSERT(ctx.get_enode(a) != nullptr); SASSERT(ctx.e_internalized(a)); ctx.mark_as_relevant(a); // I'm assuming that this combination will do the correct thing in the integer theory. //mk_var(ctx.get_enode(a)); m_trail.push_back(a); //variable_set.insert(a); //internal_variable_set.insert(a); //track_variable_scope(a); return a; } app * theory_str::mk_str_var(std::string name) { TRACE("str", tout << "creating string variable " << name << " at scope level " << sLevel << std::endl;); sort * string_sort = u.str.mk_string_sort(); app * a = mk_fresh_const(name.c_str(), string_sort); m_trail.push_back(a); TRACE("str", tout << "a->get_family_id() = " << a->get_family_id() << std::endl << "this->get_family_id() = " << this->get_family_id() << std::endl;); // I have a hunch that this may not get internalized for free... ctx.internalize(a, false); SASSERT(ctx.get_enode(a) != nullptr); SASSERT(ctx.e_internalized(a)); // this might help?? mk_var(ctx.get_enode(a)); m_basicstr_axiom_todo.push_back(ctx.get_enode(a)); TRACE("str", tout << "add " << mk_pp(a, get_manager()) << " to m_basicstr_axiom_todo" << std::endl;); variable_set.insert(a); internal_variable_set.insert(a); track_variable_scope(a); return a; } void theory_str::add_nonempty_constraint(expr * s) { ast_manager & m = get_manager(); expr_ref ax1(mk_not(m, ctx.mk_eq_atom(s, mk_string(""))), m); assert_axiom(ax1); { // build LHS expr_ref len_str(mk_strlen(s), m); SASSERT(len_str); // build RHS expr_ref zero(m_autil.mk_numeral(rational(0), true), m); SASSERT(zero); // build LHS > RHS and assert // we have to build !(LHS <= RHS) instead expr_ref lhs_gt_rhs(mk_not(m, m_autil.mk_le(len_str, zero)), m); SASSERT(lhs_gt_rhs); assert_axiom(lhs_gt_rhs); } } app_ref theory_str::mk_nonempty_str_var() { ast_manager & m = get_manager(); std::stringstream ss; ss << tmpStringVarCount; tmpStringVarCount++; std::string name = "$$_str" + ss.str(); TRACE("str", tout << "creating nonempty string variable " << name << " at scope level " << sLevel << std::endl;); sort * string_sort = u.str.mk_string_sort(); app_ref a(mk_fresh_const(name.c_str(), string_sort), m); ctx.internalize(a, false); SASSERT(ctx.get_enode(a) != nullptr); // this might help?? mk_var(ctx.get_enode(a)); // assert a variation of the basic string axioms that ensures this string is nonempty { // build LHS expr_ref len_str(mk_strlen(a), m); SASSERT(len_str); // build RHS expr_ref zero(m_autil.mk_numeral(rational(0), true), m); SASSERT(zero); // build LHS > RHS and assert // we have to build !(LHS <= RHS) instead expr_ref lhs_gt_rhs(mk_not(m, m_autil.mk_le(len_str, zero)), m); SASSERT(lhs_gt_rhs); assert_axiom(lhs_gt_rhs); } // add 'a' to variable sets, so we can keep track of it m_trail.push_back(a); variable_set.insert(a); internal_variable_set.insert(a); track_variable_scope(a); return a; } app * theory_str::mk_contains(expr * haystack, expr * needle) { app * contains = u.str.mk_contains(haystack, needle); // TODO double-check semantics/argument order m_trail.push_back(contains); // immediately force internalization so that axiom setup does not fail ctx.internalize(contains, false); set_up_axioms(contains); return contains; } // note, this invokes "special-case" handling for the start index being 0 app * theory_str::mk_indexof(expr * haystack, expr * needle) { app * indexof = u.str.mk_index(haystack, needle, mk_int(0)); m_trail.push_back(indexof); // immediately force internalization so that axiom setup does not fail ctx.internalize(indexof, false); set_up_axioms(indexof); return indexof; } app * theory_str::mk_strlen(expr * e) { /*if (m_strutil.is_string(e)) {*/ if (false) { zstring strval; u.str.is_string(e, strval); unsigned int len = strval.length(); return m_autil.mk_numeral(rational(len), true); } else { if (false) { // use cache app * lenTerm = nullptr; if (!length_ast_map.find(e, lenTerm)) { lenTerm = u.str.mk_length(e); length_ast_map.insert(e, lenTerm); m_trail.push_back(lenTerm); } return lenTerm; } else { // always regen return u.str.mk_length(e); } } } /* * Returns the simplified concatenation of two expressions, * where either both expressions are constant strings * or one expression is the empty string. * If this precondition does not hold, the function returns nullptr. * (note: this function was strTheory::Concat()) */ expr * theory_str::mk_concat_const_str(expr * n1, expr * n2) { bool n1HasEqcValue = false; bool n2HasEqcValue = false; expr * v1 = get_eqc_value(n1, n1HasEqcValue); expr * v2 = get_eqc_value(n2, n2HasEqcValue); if (u.str.is_string(v1)) { n1HasEqcValue = true; } if (u.str.is_string(v2)) { n2HasEqcValue = true; } if (n1HasEqcValue && n2HasEqcValue) { zstring n1_str; u.str.is_string(v1, n1_str); zstring n2_str; u.str.is_string(v2, n2_str); zstring result = n1_str + n2_str; return mk_string(result); } else if (n1HasEqcValue && !n2HasEqcValue) { zstring n1_str; u.str.is_string(v1, n1_str); if (n1_str.empty()) { return n2; } } else if (!n1HasEqcValue && n2HasEqcValue) { zstring n2_str; u.str.is_string(v2, n2_str); if (n2_str.empty()) { return n1; } } return nullptr; } expr * theory_str::mk_concat(expr * n1, expr * n2) { ast_manager & m = get_manager(); ENSURE(n1 != nullptr); ENSURE(n2 != nullptr); bool n1HasEqcValue = false; bool n2HasEqcValue = false; n1 = get_eqc_value(n1, n1HasEqcValue); n2 = get_eqc_value(n2, n2HasEqcValue); if (n1HasEqcValue && n2HasEqcValue) { return mk_concat_const_str(n1, n2); } else if (n1HasEqcValue && !n2HasEqcValue) { bool n2_isConcatFunc = u.str.is_concat(to_app(n2)); zstring n1_str; u.str.is_string(n1, n1_str); if (n1_str.empty()) { return n2; } if (n2_isConcatFunc) { expr * n2_arg0 = to_app(n2)->get_arg(0); expr * n2_arg1 = to_app(n2)->get_arg(1); if (u.str.is_string(n2_arg0)) { n1 = mk_concat_const_str(n1, n2_arg0); // n1 will be a constant n2 = n2_arg1; } } } else if (!n1HasEqcValue && n2HasEqcValue) { zstring n2_str; u.str.is_string(n2, n2_str); if (n2_str.empty()) { return n1; } if (u.str.is_concat(to_app(n1))) { expr * n1_arg0 = to_app(n1)->get_arg(0); expr * n1_arg1 = to_app(n1)->get_arg(1); if (u.str.is_string(n1_arg1)) { n1 = n1_arg0; n2 = mk_concat_const_str(n1_arg1, n2); // n2 will be a constant } } } else { if (u.str.is_concat(to_app(n1)) && u.str.is_concat(to_app(n2))) { expr * n1_arg0 = to_app(n1)->get_arg(0); expr * n1_arg1 = to_app(n1)->get_arg(1); expr * n2_arg0 = to_app(n2)->get_arg(0); expr * n2_arg1 = to_app(n2)->get_arg(1); if (u.str.is_string(n1_arg1) && u.str.is_string(n2_arg0)) { expr * tmpN1 = n1_arg0; expr * tmpN2 = mk_concat_const_str(n1_arg1, n2_arg0); n1 = mk_concat(tmpN1, tmpN2); n2 = n2_arg1; } } } //------------------------------------------------------ // * expr * ast1 = mk_2_arg_app(ctx, td->Concat, n1, n2); // * expr * ast2 = mk_2_arg_app(ctx, td->Concat, n1, n2); // Z3 treats (ast1) and (ast2) as two different nodes. //------------------------------------------------------- expr * concatAst = nullptr; if (!concat_astNode_map.find(n1, n2, concatAst)) { concatAst = u.str.mk_concat(n1, n2); m_trail.push_back(concatAst); concat_astNode_map.insert(n1, n2, concatAst); expr_ref concat_length(mk_strlen(concatAst), m); ptr_vector childrenVector; get_nodes_in_concat(concatAst, childrenVector); expr_ref_vector items(m); for (auto el : childrenVector) { items.push_back(mk_strlen(el)); } expr_ref lenAssert(ctx.mk_eq_atom(concat_length, m_autil.mk_add(items.size(), items.c_ptr())), m); assert_axiom(lenAssert); } return concatAst; } bool theory_str::can_propagate() { return !m_basicstr_axiom_todo.empty() || !m_concat_axiom_todo.empty() || !m_concat_eval_todo.empty() || !m_library_aware_axiom_todo.empty() || !m_delayed_axiom_setup_terms.empty() || !m_persisted_axiom_todo.empty() || (search_started && !m_delayed_assertions_todo.empty()) ; } void theory_str::propagate() { candidate_model.reset(); while (can_propagate()) { TRACE("str", tout << "propagating..." << std::endl;); while(true) { // this can potentially recursively activate itself unsigned start_count = m_basicstr_axiom_todo.size(); ptr_vector axioms_tmp(m_basicstr_axiom_todo); for (auto const& el : axioms_tmp) { instantiate_basic_string_axioms(el); } unsigned end_count = m_basicstr_axiom_todo.size(); if (end_count > start_count) { TRACE("str", tout << "new basic string axiom terms added -- checking again" << std::endl;); continue; } else { break; } } m_basicstr_axiom_todo.reset(); TRACE("str", tout << "reset m_basicstr_axiom_todo" << std::endl;); for (auto const& el : m_concat_axiom_todo) { instantiate_concat_axiom(el); } m_concat_axiom_todo.reset(); for (auto const& el : m_concat_eval_todo) { try_eval_concat(el); } m_concat_eval_todo.reset(); while(true) { // Special handling: terms can recursively set up other terms // (e.g. indexof can instantiate other indexof terms). // - Copy the list so it can potentially be modified during setup. // - Don't clear this list if new ones are added in the process; // instead, set up all the new terms before proceeding. // TODO see if any other propagate() worklists need this kind of handling // TODO we really only need to check the new ones on each pass unsigned start_count = m_library_aware_axiom_todo.size(); ptr_vector axioms_tmp(m_library_aware_axiom_todo); for (auto const& e : axioms_tmp) { app * a = e->get_owner(); if (u.str.is_stoi(a)) { instantiate_axiom_str_to_int(e); } else if (u.str.is_itos(a)) { instantiate_axiom_int_to_str(e); } else if (u.str.is_at(a)) { instantiate_axiom_CharAt(e); } else if (u.str.is_prefix(a)) { instantiate_axiom_prefixof(e); } else if (u.str.is_suffix(a)) { instantiate_axiom_suffixof(e); } else if (u.str.is_contains(a)) { instantiate_axiom_Contains(e); } else if (u.str.is_index(a)) { instantiate_axiom_Indexof(e); } else if (u.str.is_extract(a)) { instantiate_axiom_Substr(e); } else if (u.str.is_replace(a)) { instantiate_axiom_Replace(e); } else if (u.str.is_in_re(a)) { instantiate_axiom_RegexIn(e); } else { TRACE("str", tout << "BUG: unhandled library-aware term " << mk_pp(e->get_owner(), get_manager()) << std::endl;); NOT_IMPLEMENTED_YET(); } } unsigned end_count = m_library_aware_axiom_todo.size(); if (end_count > start_count) { TRACE("str", tout << "new library-aware terms added during axiom setup -- checking again" << std::endl;); continue; } else { break; } } m_library_aware_axiom_todo.reset(); for (auto el : m_delayed_axiom_setup_terms) { // I think this is okay ctx.internalize(el, false); set_up_axioms(el); } m_delayed_axiom_setup_terms.reset(); for (expr * a : m_persisted_axiom_todo) { assert_axiom(a); } m_persisted_axiom_todo.reset(); if (search_started) { for (auto const& el : m_delayed_assertions_todo) { assert_axiom(el); } m_delayed_assertions_todo.reset(); } } } /* * Attempt to evaluate a concat over constant strings, * and if this is possible, assert equality between the * flattened string and the original term. */ void theory_str::try_eval_concat(enode * cat) { app * a_cat = cat->get_owner(); SASSERT(u.str.is_concat(a_cat)); ast_manager & m = get_manager(); TRACE("str", tout << "attempting to flatten " << mk_pp(a_cat, m) << std::endl;); std::stack worklist; zstring flattenedString(""); bool constOK = true; { app * arg0 = to_app(a_cat->get_arg(0)); app * arg1 = to_app(a_cat->get_arg(1)); worklist.push(arg1); worklist.push(arg0); } while (constOK && !worklist.empty()) { app * evalArg = worklist.top(); worklist.pop(); zstring nextStr; if (u.str.is_string(evalArg, nextStr)) { flattenedString = flattenedString + nextStr; } else if (u.str.is_concat(evalArg)) { app * arg0 = to_app(evalArg->get_arg(0)); app * arg1 = to_app(evalArg->get_arg(1)); worklist.push(arg1); worklist.push(arg0); } else { TRACE("str", tout << "non-constant term in concat -- giving up." << std::endl;); constOK = false; break; } } if (constOK) { TRACE("str", tout << "flattened to \"" << flattenedString.encode().c_str() << "\"" << std::endl;); expr_ref constStr(mk_string(flattenedString), m); expr_ref axiom(ctx.mk_eq_atom(a_cat, constStr), m); assert_axiom(axiom); } } /* * Instantiate an axiom of the following form: * Length(Concat(x, y)) = Length(x) + Length(y) */ void theory_str::instantiate_concat_axiom(enode * cat) { app * a_cat = cat->get_owner(); SASSERT(u.str.is_concat(a_cat)); ast_manager & m = get_manager(); TRACE("str", tout << "instantiating concat axiom for " << mk_ismt2_pp(a_cat, m) << std::endl;); // build LHS expr_ref len_xy(m); len_xy = mk_strlen(a_cat); SASSERT(len_xy); // build RHS: start by extracting x and y from Concat(x, y) SASSERT(a_cat->get_num_args() == 2); app * a_x = to_app(a_cat->get_arg(0)); app * a_y = to_app(a_cat->get_arg(1)); expr_ref len_x(m); len_x = mk_strlen(a_x); SASSERT(len_x); expr_ref len_y(m); len_y = mk_strlen(a_y); SASSERT(len_y); // now build len_x + len_y expr_ref len_x_plus_len_y(m); len_x_plus_len_y = m_autil.mk_add(len_x, len_y); SASSERT(len_x_plus_len_y); // finally assert equality between the two subexpressions app * eq = m.mk_eq(len_xy, len_x_plus_len_y); SASSERT(eq); assert_axiom(eq); } /* * Add axioms that are true for any string variable: * 1. Length(x) >= 0 * 2. Length(x) == 0 <=> x == "" * If the term is a string constant, we can assert something stronger: * Length(x) == strlen(x) */ void theory_str::instantiate_basic_string_axioms(enode * str) { ast_manager & m = get_manager(); TRACE("str", tout << "set up basic string axioms on " << mk_pp(str->get_owner(), m) << std::endl;); { sort * a_sort = m.get_sort(str->get_owner()); sort * str_sort = u.str.mk_string_sort(); if (a_sort != str_sort) { TRACE("str", tout << "WARNING: not setting up string axioms on non-string term " << mk_pp(str->get_owner(), m) << std::endl;); return; } } // TESTING: attempt to avoid a crash here when a variable goes out of scope if (str->get_iscope_lvl() > ctx.get_scope_level()) { TRACE("str", tout << "WARNING: skipping axiom setup on out-of-scope string term" << std::endl;); return; } // generate a stronger axiom for constant strings app * a_str = str->get_owner(); if (u.str.is_string(a_str)) { expr_ref len_str(m); len_str = mk_strlen(a_str); SASSERT(len_str); zstring strconst; u.str.is_string(str->get_owner(), strconst); TRACE("str", tout << "instantiating constant string axioms for \"" << strconst.encode().c_str() << "\"" << std::endl;); unsigned int l = strconst.length(); expr_ref len(m_autil.mk_numeral(rational(l), true), m); literal lit(mk_eq(len_str, len, false)); ctx.mark_as_relevant(lit); if (m.has_trace_stream()) log_axiom_instantiation(ctx.bool_var2expr(lit.var())); ctx.mk_th_axiom(get_id(), 1, &lit); if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n"; } else { // build axiom 1: Length(a_str) >= 0 { // build LHS expr_ref len_str(m); len_str = mk_strlen(a_str); SASSERT(len_str); // build RHS expr_ref zero(m); zero = m_autil.mk_numeral(rational(0), true); SASSERT(zero); // build LHS >= RHS and assert app * lhs_ge_rhs = m_autil.mk_ge(len_str, zero); SASSERT(lhs_ge_rhs); TRACE("str", tout << "string axiom 1: " << mk_ismt2_pp(lhs_ge_rhs, m) << std::endl;); assert_axiom(lhs_ge_rhs); } // build axiom 2: Length(a_str) == 0 <=> a_str == "" { // build LHS of iff expr_ref len_str(m); len_str = mk_strlen(a_str); SASSERT(len_str); expr_ref zero(m); zero = m_autil.mk_numeral(rational(0), true); SASSERT(zero); expr_ref lhs(m); lhs = ctx.mk_eq_atom(len_str, zero); SASSERT(lhs); // build RHS of iff expr_ref empty_str(m); empty_str = mk_string(""); SASSERT(empty_str); expr_ref rhs(m); rhs = ctx.mk_eq_atom(a_str, empty_str); SASSERT(rhs); // build LHS <=> RHS and assert TRACE("str", tout << "string axiom 2: " << mk_ismt2_pp(lhs, m) << " <=> " << mk_ismt2_pp(rhs, m) << std::endl;); literal l(mk_eq(lhs, rhs, true)); ctx.mark_as_relevant(l); if (m.has_trace_stream()) log_axiom_instantiation(ctx.bool_var2expr(l.var())); ctx.mk_th_axiom(get_id(), 1, &l); if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n"; } } } /* * Add an axiom of the form: * (lhs == rhs) -> ( Length(lhs) == Length(rhs) ) */ void theory_str::instantiate_str_eq_length_axiom(enode * lhs, enode * rhs) { ast_manager & m = get_manager(); app * a_lhs = lhs->get_owner(); app * a_rhs = rhs->get_owner(); // build premise: (lhs == rhs) expr_ref premise(ctx.mk_eq_atom(a_lhs, a_rhs), m); // build conclusion: ( Length(lhs) == Length(rhs) ) expr_ref len_lhs(mk_strlen(a_lhs), m); SASSERT(len_lhs); expr_ref len_rhs(mk_strlen(a_rhs), m); SASSERT(len_rhs); expr_ref conclusion(ctx.mk_eq_atom(len_lhs, len_rhs), m); TRACE("str", tout << "string-eq length-eq axiom: " << mk_ismt2_pp(premise, m) << " -> " << mk_ismt2_pp(conclusion, m) << std::endl;); assert_implication(premise, conclusion); } void theory_str::instantiate_axiom_CharAt(enode * e) { ast_manager & m = get_manager(); expr* arg0, *arg1; app * expr = e->get_owner(); if (axiomatized_terms.contains(expr)) { TRACE("str", tout << "already set up CharAt axiom for " << mk_pp(expr, m) << std::endl;); return; } axiomatized_terms.insert(expr); VERIFY(u.str.is_at(expr, arg0, arg1)); TRACE("str", tout << "instantiate CharAt axiom for " << mk_pp(expr, m) << std::endl;); expr_ref ts0(mk_str_var("ts0"), m); expr_ref ts1(mk_str_var("ts1"), m); expr_ref ts2(mk_str_var("ts2"), m); expr_ref cond(m.mk_and( m_autil.mk_ge(arg1, mk_int(0)), m_autil.mk_lt(arg1, mk_strlen(arg0))), m); expr_ref_vector and_item(m); and_item.push_back(ctx.mk_eq_atom(arg0, mk_concat(ts0, mk_concat(ts1, ts2)))); and_item.push_back(ctx.mk_eq_atom(arg1, mk_strlen(ts0))); and_item.push_back(ctx.mk_eq_atom(mk_strlen(ts1), mk_int(1))); expr_ref thenBranch(::mk_and(and_item)); expr_ref elseBranch(ctx.mk_eq_atom(ts1, mk_string("")), m); expr_ref axiom(m.mk_ite(cond, thenBranch, elseBranch), m); expr_ref reductionVar(ctx.mk_eq_atom(expr, ts1), m); expr_ref finalAxiom(m.mk_and(axiom, reductionVar), m); ctx.get_rewriter()(finalAxiom); assert_axiom(finalAxiom); } void theory_str::instantiate_axiom_prefixof(enode * e) { ast_manager & m = get_manager(); app * expr = e->get_owner(); if (axiomatized_terms.contains(expr)) { TRACE("str", tout << "already set up prefixof axiom for " << mk_pp(expr, m) << std::endl;); return; } axiomatized_terms.insert(expr); TRACE("str", tout << "instantiate prefixof axiom for " << mk_pp(expr, m) << std::endl;); expr_ref ts0(mk_str_var("ts0"), m); expr_ref ts1(mk_str_var("ts1"), m); expr_ref_vector innerItems(m); innerItems.push_back(ctx.mk_eq_atom(expr->get_arg(1), mk_concat(ts0, ts1))); innerItems.push_back(ctx.mk_eq_atom(mk_strlen(ts0), mk_strlen(expr->get_arg(0)))); innerItems.push_back(m.mk_ite(ctx.mk_eq_atom(ts0, expr->get_arg(0)), expr, mk_not(m, expr))); expr_ref then1(m.mk_and(innerItems.size(), innerItems.c_ptr()), m); SASSERT(then1); // the top-level condition is Length(arg0) >= Length(arg1) expr_ref topLevelCond( m_autil.mk_ge( m_autil.mk_add( mk_strlen(expr->get_arg(1)), m_autil.mk_mul(mk_int(-1), mk_strlen(expr->get_arg(0)))), mk_int(0)) , m); SASSERT(topLevelCond); expr_ref finalAxiom(m.mk_ite(topLevelCond, then1, mk_not(m, expr)), m); SASSERT(finalAxiom); assert_axiom(finalAxiom); } void theory_str::instantiate_axiom_suffixof(enode * e) { ast_manager & m = get_manager(); app * expr = e->get_owner(); if (axiomatized_terms.contains(expr)) { TRACE("str", tout << "already set up suffixof axiom for " << mk_pp(expr, m) << std::endl;); return; } axiomatized_terms.insert(expr); TRACE("str", tout << "instantiate suffixof axiom for " << mk_pp(expr, m) << std::endl;); expr_ref ts0(mk_str_var("ts0"), m); expr_ref ts1(mk_str_var("ts1"), m); expr_ref_vector innerItems(m); innerItems.push_back(ctx.mk_eq_atom(expr->get_arg(1), mk_concat(ts0, ts1))); innerItems.push_back(ctx.mk_eq_atom(mk_strlen(ts1), mk_strlen(expr->get_arg(0)))); innerItems.push_back(m.mk_ite(ctx.mk_eq_atom(ts1, expr->get_arg(0)), expr, mk_not(m, expr))); expr_ref then1(m.mk_and(innerItems.size(), innerItems.c_ptr()), m); SASSERT(then1); // the top-level condition is Length(arg0) >= Length(arg1) expr_ref topLevelCond( m_autil.mk_ge( m_autil.mk_add( mk_strlen(expr->get_arg(1)), m_autil.mk_mul(mk_int(-1), mk_strlen(expr->get_arg(0)))), mk_int(0)) , m); SASSERT(topLevelCond); expr_ref finalAxiom(m.mk_ite(topLevelCond, then1, mk_not(m, expr)), m); SASSERT(finalAxiom); assert_axiom(finalAxiom); } void theory_str::instantiate_axiom_Contains(enode * e) { ast_manager & m = get_manager(); app * ex = e->get_owner(); if (axiomatized_terms.contains(ex)) { TRACE("str", tout << "already set up Contains axiom for " << mk_pp(ex, m) << std::endl;); return; } axiomatized_terms.insert(ex); // quick path, because this is necessary due to rewriter behaviour // at minimum it should fix z3str/concat-006.smt2 zstring haystackStr, needleStr; if (u.str.is_string(ex->get_arg(0), haystackStr) && u.str.is_string(ex->get_arg(1), needleStr)) { TRACE("str", tout << "eval constant Contains term " << mk_pp(ex, m) << std::endl;); if (haystackStr.contains(needleStr)) { assert_axiom(ex); } else { assert_axiom(mk_not(m, ex)); } return; } { // register Contains() expr * str = ex->get_arg(0); expr * substr = ex->get_arg(1); contains_map.push_back(ex); std::pair key = std::pair(str, substr); contain_pair_bool_map.insert(str, substr, ex); if (!contain_pair_idx_map.contains(str)) { contain_pair_idx_map.insert(str, std::set>()); } if (!contain_pair_idx_map.contains(substr)) { contain_pair_idx_map.insert(substr, std::set>()); } contain_pair_idx_map[str].insert(key); contain_pair_idx_map[substr].insert(key); } TRACE("str", tout << "instantiate Contains axiom for " << mk_pp(ex, m) << std::endl;); expr_ref ts0(mk_str_var("ts0"), m); expr_ref ts1(mk_str_var("ts1"), m); expr_ref breakdownAssert(ctx.mk_eq_atom(ex, ctx.mk_eq_atom(ex->get_arg(0), mk_concat(ts0, mk_concat(ex->get_arg(1), ts1)))), m); SASSERT(breakdownAssert); assert_axiom(breakdownAssert); } void theory_str::instantiate_axiom_Indexof(enode * e) { th_rewriter & rw = ctx.get_rewriter(); ast_manager & m = get_manager(); app * ex = e->get_owner(); if (axiomatized_terms.contains(ex)) { TRACE("str", tout << "already set up str.indexof axiom for " << mk_pp(ex, m) << std::endl;); return; } SASSERT(ex->get_num_args() == 3); { // Attempt to rewrite to an integer constant. If this succeeds, // assert equality with that constant. // The rewriter normally takes care of this for terms that are in scope // at the beginning of the search. // We perform the check here to catch terms that are added during the search. expr_ref rwex(ex, m); rw(rwex); if (m_autil.is_numeral(rwex)) { TRACE("str", tout << "constant expression " << mk_pp(ex, m) << " simplifies to " << mk_pp(rwex, m) << std::endl;); assert_axiom(ctx.mk_eq_atom(ex, rwex)); axiomatized_terms.insert(ex); return; } } expr * exHaystack = nullptr; expr * exNeedle = nullptr; expr * exIndex = nullptr; u.str.is_index(ex, exHaystack, exNeedle, exIndex); // if the third argument is exactly the integer 0, we can use this "simple" indexof; // otherwise, we call the "extended" version rational startingInteger; if (!m_autil.is_numeral(exIndex, startingInteger) || !startingInteger.is_zero()) { // "extended" indexof term with prefix instantiate_axiom_Indexof_extended(e); return; } axiomatized_terms.insert(ex); TRACE("str", tout << "instantiate str.indexof axiom for " << mk_pp(ex, m) << std::endl;); expr_ref x1(mk_str_var("x1"), m); expr_ref x2(mk_str_var("x2"), m); expr_ref condAst1(mk_contains(exHaystack, exNeedle), m); expr_ref condAst2(m.mk_not(ctx.mk_eq_atom(exNeedle, mk_string(""))), m); expr_ref condAst(m.mk_and(condAst1, condAst2), m); SASSERT(condAst); // ----------------------- // true branch expr_ref_vector thenItems(m); // args[0] = x1 . args[1] . x2 thenItems.push_back(ctx.mk_eq_atom(exHaystack, mk_concat(x1, mk_concat(exNeedle, x2)))); // indexAst = |x1| thenItems.push_back(ctx.mk_eq_atom(ex, mk_strlen(x1))); // args[0] = x3 . x4 // /\ |x3| = |x1| + |args[1]| - 1 // /\ ! contains(x3, args[1]) expr_ref x3(mk_str_var("x3"), m); expr_ref x4(mk_str_var("x4"), m); expr_ref tmpLen(m_autil.mk_add(ex, mk_strlen(ex->get_arg(1)), mk_int(-1)), m); SASSERT(tmpLen); thenItems.push_back(ctx.mk_eq_atom(exHaystack, mk_concat(x3, x4))); thenItems.push_back(ctx.mk_eq_atom(mk_strlen(x3), tmpLen)); thenItems.push_back(mk_not(m, mk_contains(x3, exNeedle))); expr_ref thenBranch(mk_and(thenItems), m); SASSERT(thenBranch); // ----------------------- // false branch expr_ref elseBranch(m.mk_ite( ctx.mk_eq_atom(exNeedle, mk_string("")), ctx.mk_eq_atom(ex, mk_int(0)), ctx.mk_eq_atom(ex, mk_int(-1)) ), m); SASSERT(elseBranch); expr_ref breakdownAssert(m.mk_ite(condAst, thenBranch, elseBranch), m); rw(breakdownAssert); assert_axiom(breakdownAssert); { // heuristic: integrate with str.contains information // (but don't introduce it if it isn't already in the instance) expr_ref haystack(ex->get_arg(0), m), needle(ex->get_arg(1), m), startIdx(ex->get_arg(2), m); expr_ref zeroAst(mk_int(0), m); // (H contains N) <==> (H indexof N, 0) >= 0 expr_ref premise(u.str.mk_contains(haystack, needle), m); ctx.internalize(premise, false); expr_ref conclusion(m_autil.mk_ge(ex, zeroAst), m); expr_ref containsAxiom(ctx.mk_eq_atom(premise, conclusion), m); SASSERT(containsAxiom); // we can't assert this during init_search as it breaks an invariant if the instance becomes inconsistent //m_delayed_axiom_setup_terms.push_back(containsAxiom); } } void theory_str::instantiate_axiom_Indexof_extended(enode * _e) { th_rewriter & rw = ctx.get_rewriter(); ast_manager & m = get_manager(); app * e = _e->get_owner(); if (axiomatized_terms.contains(e)) { TRACE("str", tout << "already set up extended str.indexof axiom for " << mk_pp(e, m) << std::endl;); return; } SASSERT(e->get_num_args() == 3); axiomatized_terms.insert(e); TRACE("str", tout << "instantiate extended str.indexof axiom for " << mk_pp(e, m) << std::endl;); // str.indexof(H, N, i): // i < 0 --> -1 // i == 0 --> str.indexof(H, N, 0) // i >= len(H) --> -1 // 0 < i < len(H) --> // H = hd ++ tl // len(hd) = i // i + str.indexof(tl, N, 0) expr * H = nullptr; // "haystack" expr * N = nullptr; // "needle" expr * i = nullptr; // start index u.str.is_index(e, H, N, i); expr_ref minus_one(m_autil.mk_numeral(rational::minus_one(), true), m); expr_ref zero(m_autil.mk_numeral(rational::zero(), true), m); expr_ref empty_string(mk_string(""), m); // case split // case 1: i < 0 { expr_ref premise(m_autil.mk_le(i, minus_one), m); expr_ref conclusion(ctx.mk_eq_atom(e, minus_one), m); assert_implication(premise, conclusion); } // case 1.1: N == "" and i out of range { expr_ref premiseNEmpty(ctx.mk_eq_atom(N, empty_string), m); // range check expr_ref premiseRangeLower(m_autil.mk_ge(i, zero), m); expr_ref premiseRangeUpper(m_autil.mk_le(i, mk_strlen(H)), m); expr_ref premiseRange(m.mk_and(premiseRangeLower, premiseRangeUpper), m); expr_ref premise(m.mk_and(premiseNEmpty, m.mk_not(premiseRange)), m); expr_ref conclusion(ctx.mk_eq_atom(e, minus_one), m); expr_ref finalAxiom(rewrite_implication(premise, conclusion), m); rw(finalAxiom); assert_axiom(finalAxiom); } // case 1.2: N == "" and i within range { expr_ref premiseNEmpty(ctx.mk_eq_atom(N, empty_string), m); // range check expr_ref premiseRangeLower(m_autil.mk_ge(i, zero), m); expr_ref premiseRangeUpper(m_autil.mk_le(i, mk_strlen(H)), m); expr_ref premiseRange(m.mk_and(premiseRangeLower, premiseRangeUpper), m); expr_ref premise(m.mk_and(premiseNEmpty, premiseRange), m); expr_ref conclusion(ctx.mk_eq_atom(e, i), m); expr_ref finalAxiom(rewrite_implication(premise, conclusion), m); rw(finalAxiom); assert_axiom(finalAxiom); } // case 2: i = 0 { expr_ref premise1(ctx.mk_eq_atom(i, zero), m); expr_ref premise2(m.mk_not(ctx.mk_eq_atom(N, empty_string)), m); expr_ref premise(m.mk_and(premise1, premise2), m); rw(premise); // reduction to simpler case expr_ref conclusion(ctx.mk_eq_atom(e, mk_indexof(H, N)), m); assert_implication(premise, conclusion); } // case 3: i >= len(H) { //expr_ref _premise(m_autil.mk_ge(i, mk_strlen(H)), m); //expr_ref premise(_premise); //th_rewriter rw(m); //rw(premise); expr_ref premise1(m_autil.mk_ge(m_autil.mk_add(i, m_autil.mk_mul(minus_one, mk_strlen(H))), zero), m); expr_ref premise2(m.mk_not(ctx.mk_eq_atom(N, empty_string)), m); expr_ref premise(m.mk_and(premise1, premise2), m); rw(premise); expr_ref conclusion(ctx.mk_eq_atom(e, minus_one), m); assert_implication(premise, conclusion); } // case 3.5: H doesn't contain N { expr_ref premise(m.mk_not(u.str.mk_contains(H, N)), m); expr_ref conclusion(ctx.mk_eq_atom(e, minus_one), m); rw(premise); assert_implication(premise, conclusion); } // case 4: 0 < i < len(H), N non-empty, and H contains N { expr_ref premise1(m_autil.mk_gt(i, zero), m); //expr_ref premise2(m_autil.mk_lt(i, mk_strlen(H)), m); expr_ref premise2(m.mk_not(m_autil.mk_ge(m_autil.mk_add(i, m_autil.mk_mul(minus_one, mk_strlen(H))), zero)), m); expr_ref premise3(u.str.mk_contains(H, N), m); expr_ref premise4(m.mk_not(ctx.mk_eq_atom(N, mk_string(""))), m); expr_ref_vector premises(m); premises.push_back(premise1); premises.push_back(premise2); premises.push_back(premise3); premises.push_back(premise4); expr_ref _premise(mk_and(premises), m); expr_ref premise(_premise); rw(premise); expr_ref hd(mk_str_var("hd"), m); expr_ref tl(mk_str_var("tl"), m); expr_ref_vector conclusion_terms(m); conclusion_terms.push_back(ctx.mk_eq_atom(H, mk_concat(hd, tl))); conclusion_terms.push_back(ctx.mk_eq_atom(mk_strlen(hd), i)); conclusion_terms.push_back(u.str.mk_contains(tl, N)); conclusion_terms.push_back(ctx.mk_eq_atom(e, m_autil.mk_add(i, mk_indexof(tl, N)))); expr_ref conclusion(mk_and(conclusion_terms), m); assert_implication(premise, conclusion); } { // heuristic: integrate with str.contains information // (but don't introduce it if it isn't already in the instance) // (0 <= i < len(H)) ==> (H contains N) <==> (H indexof N, i) >= 0 expr_ref precondition1(m_autil.mk_gt(i, minus_one), m); //expr_ref precondition2(m_autil.mk_lt(i, mk_strlen(H)), m); expr_ref precondition2(m.mk_not(m_autil.mk_ge(m_autil.mk_add(i, m_autil.mk_mul(minus_one, mk_strlen(H))), zero)), m); expr_ref precondition3(m.mk_not(ctx.mk_eq_atom(N, mk_string(""))), m); expr_ref precondition(m.mk_and(precondition1, precondition2, precondition3), m); rw(precondition); expr_ref premise(u.str.mk_contains(H, N), m); ctx.internalize(premise, false); expr_ref conclusion(m_autil.mk_ge(e, zero), m); expr_ref containsAxiom(ctx.mk_eq_atom(premise, conclusion), m); expr_ref finalAxiom(rewrite_implication(precondition, containsAxiom), m); SASSERT(finalAxiom); // we can't assert this during init_search as it breaks an invariant if the instance becomes inconsistent m_delayed_assertions_todo.push_back(finalAxiom); } } void theory_str::instantiate_axiom_LastIndexof(enode * e) { ast_manager & m = get_manager(); app * expr = e->get_owner(); if (axiomatized_terms.contains(expr)) { TRACE("str", tout << "already set up LastIndexof axiom for " << mk_pp(expr, m) << std::endl;); return; } axiomatized_terms.insert(expr); TRACE("str", tout << "instantiate LastIndexof axiom for " << mk_pp(expr, m) << std::endl;); expr_ref x1(mk_str_var("x1"), m); expr_ref x2(mk_str_var("x2"), m); expr_ref indexAst(mk_int_var("index"), m); expr_ref_vector items(m); // args[0] = x1 . args[1] . x2 expr_ref eq1(ctx.mk_eq_atom(expr->get_arg(0), mk_concat(x1, mk_concat(expr->get_arg(1), x2))), m); expr_ref arg0HasArg1(mk_contains(expr->get_arg(0), expr->get_arg(1)), m); // arg0HasArg1 = Contains(args[0], args[1]) items.push_back(ctx.mk_eq_atom(arg0HasArg1, eq1)); expr_ref condAst(arg0HasArg1, m); //---------------------------- // true branch expr_ref_vector thenItems(m); thenItems.push_back(m_autil.mk_ge(indexAst, mk_int(0))); // args[0] = x1 . args[1] . x2 // x1 doesn't contain args[1] thenItems.push_back(mk_not(m, mk_contains(x2, expr->get_arg(1)))); thenItems.push_back(ctx.mk_eq_atom(indexAst, mk_strlen(x1))); bool canSkip = false; zstring arg1Str; if (u.str.is_string(expr->get_arg(1), arg1Str)) { if (arg1Str.length() == 1) { canSkip = true; } } if (!canSkip) { // args[0] = x3 . x4 /\ |x3| = |x1| + 1 /\ ! contains(x4, args[1]) expr_ref x3(mk_str_var("x3"), m); expr_ref x4(mk_str_var("x4"), m); expr_ref tmpLen(m_autil.mk_add(indexAst, mk_int(1)), m); thenItems.push_back(ctx.mk_eq_atom(expr->get_arg(0), mk_concat(x3, x4))); thenItems.push_back(ctx.mk_eq_atom(mk_strlen(x3), tmpLen)); thenItems.push_back(mk_not(m, mk_contains(x4, expr->get_arg(1)))); } //---------------------------- // else branch expr_ref_vector elseItems(m); elseItems.push_back(ctx.mk_eq_atom(indexAst, mk_int(-1))); items.push_back(m.mk_ite(condAst, m.mk_and(thenItems.size(), thenItems.c_ptr()), m.mk_and(elseItems.size(), elseItems.c_ptr()))); expr_ref breakdownAssert(m.mk_and(items.size(), items.c_ptr()), m); SASSERT(breakdownAssert); expr_ref reduceToIndex(ctx.mk_eq_atom(expr, indexAst), m); SASSERT(reduceToIndex); expr_ref finalAxiom(m.mk_and(breakdownAssert, reduceToIndex), m); SASSERT(finalAxiom); assert_axiom(finalAxiom); } void theory_str::instantiate_axiom_Substr(enode * e) { ast_manager & m = get_manager(); expr* substrBase = nullptr; expr* substrPos = nullptr; expr* substrLen = nullptr; app * expr = e->get_owner(); if (axiomatized_terms.contains(expr)) { TRACE("str", tout << "already set up Substr axiom for " << mk_pp(expr, m) << std::endl;); return; } axiomatized_terms.insert(expr); TRACE("str", tout << "instantiate Substr axiom for " << mk_pp(expr, m) << std::endl;); VERIFY(u.str.is_extract(expr, substrBase, substrPos, substrLen)); expr_ref zero(m_autil.mk_numeral(rational::zero(), true), m); expr_ref minusOne(m_autil.mk_numeral(rational::minus_one(), true), m); SASSERT(zero); SASSERT(minusOne); expr_ref_vector argumentsValid_terms(m); // pos >= 0 argumentsValid_terms.push_back(m_autil.mk_ge(substrPos, zero)); // pos < strlen(base) // --> pos + -1*strlen(base) < 0 argumentsValid_terms.push_back(mk_not(m, m_autil.mk_ge( m_autil.mk_add(substrPos, m_autil.mk_mul(minusOne, mk_strlen(substrBase))), zero))); // len >= 0 argumentsValid_terms.push_back(m_autil.mk_ge(substrLen, zero)); // (pos+len) >= strlen(base) // --> pos + len + -1*strlen(base) >= 0 expr_ref lenOutOfBounds(m_autil.mk_ge( m_autil.mk_add(substrPos, substrLen, m_autil.mk_mul(minusOne, mk_strlen(substrBase))), zero), m); expr_ref argumentsValid = mk_and(argumentsValid_terms); // Case 1: pos < 0 or pos >= strlen(base) or len < 0 // ==> (Substr ...) = "" expr_ref case1_premise(m.mk_not(argumentsValid), m); expr_ref case1_conclusion(ctx.mk_eq_atom(expr, mk_string("")), m); expr_ref case1(m.mk_implies(case1_premise, case1_conclusion), m); // Case 2: (pos >= 0 and pos < strlen(base) and len >= 0) and (pos+len) >= strlen(base) // ==> base = t0.t1 AND len(t0) = pos AND (Substr ...) = t1 expr_ref t0(mk_str_var("t0"), m); expr_ref t1(mk_str_var("t1"), m); expr_ref case2_conclusion(m.mk_and( ctx.mk_eq_atom(substrBase, mk_concat(t0,t1)), ctx.mk_eq_atom(mk_strlen(t0), substrPos), ctx.mk_eq_atom(expr, t1)), m); expr_ref case2(m.mk_implies(m.mk_and(argumentsValid, lenOutOfBounds), case2_conclusion), m); // Case 3: (pos >= 0 and pos < strlen(base) and len >= 0) and (pos+len) < strlen(base) // ==> base = t2.t3.t4 AND len(t2) = pos AND len(t3) = len AND (Substr ...) = t3 expr_ref t2(mk_str_var("t2"), m); expr_ref t3(mk_str_var("t3"), m); expr_ref t4(mk_str_var("t4"), m); expr_ref_vector case3_conclusion_terms(m); case3_conclusion_terms.push_back(ctx.mk_eq_atom(substrBase, mk_concat(t2, mk_concat(t3, t4)))); case3_conclusion_terms.push_back(ctx.mk_eq_atom(mk_strlen(t2), substrPos)); case3_conclusion_terms.push_back(ctx.mk_eq_atom(mk_strlen(t3), substrLen)); case3_conclusion_terms.push_back(ctx.mk_eq_atom(expr, t3)); expr_ref case3_conclusion(mk_and(case3_conclusion_terms), m); expr_ref case3(m.mk_implies(m.mk_and(argumentsValid, m.mk_not(lenOutOfBounds)), case3_conclusion), m); { th_rewriter rw(m); expr_ref case1_rw(case1, m); rw(case1_rw); assert_axiom(case1_rw); expr_ref case2_rw(case2, m); rw(case2_rw); assert_axiom(case2_rw); expr_ref case3_rw(case3, m); rw(case3_rw); assert_axiom(case3_rw); } } // (str.replace s t t') is the string obtained by replacing the first occurrence // of t in s, if any, by t'. Note that if t is empty, the result is to prepend // t' to s; also, if t does not occur in s then the result is s. void theory_str::instantiate_axiom_Replace(enode * e) { ast_manager & m = get_manager(); app * ex = e->get_owner(); if (axiomatized_terms.contains(ex)) { TRACE("str", tout << "already set up Replace axiom for " << mk_pp(ex, m) << std::endl;); return; } axiomatized_terms.insert(ex); TRACE("str", tout << "instantiate Replace axiom for " << mk_pp(ex, m) << std::endl;); expr_ref x1(mk_str_var("x1"), m); expr_ref x2(mk_str_var("x2"), m); expr_ref i1(mk_int_var("i1"), m); expr_ref result(mk_str_var("result"), m); expr * replaceS = nullptr; expr * replaceT = nullptr; expr * replaceTPrime = nullptr; VERIFY(u.str.is_replace(ex, replaceS, replaceT, replaceTPrime)); // t empty => result = (str.++ t' s) expr_ref emptySrcAst(ctx.mk_eq_atom(replaceT, mk_string("")), m); expr_ref prependTPrimeToS(ctx.mk_eq_atom(result, mk_concat(replaceTPrime, replaceS)), m); // condAst = Contains(args[0], args[1]) expr_ref condAst(mk_contains(ex->get_arg(0), ex->get_arg(1)), m); // ----------------------- // true branch expr_ref_vector thenItems(m); // args[0] = x1 . args[1] . x2 thenItems.push_back(ctx.mk_eq_atom(ex->get_arg(0), mk_concat(x1, mk_concat(ex->get_arg(1), x2)))); // i1 = |x1| thenItems.push_back(ctx.mk_eq_atom(i1, mk_strlen(x1))); // args[0] = x3 . x4 /\ |x3| = |x1| + |args[1]| - 1 /\ ! contains(x3, args[1]) expr_ref x3(mk_str_var("x3"), m); expr_ref x4(mk_str_var("x4"), m); expr_ref tmpLen(m_autil.mk_add(i1, mk_strlen(ex->get_arg(1)), mk_int(-1)), m); thenItems.push_back(ctx.mk_eq_atom(ex->get_arg(0), mk_concat(x3, x4))); thenItems.push_back(ctx.mk_eq_atom(mk_strlen(x3), tmpLen)); thenItems.push_back(mk_not(m, mk_contains(x3, ex->get_arg(1)))); thenItems.push_back(ctx.mk_eq_atom(result, mk_concat(x1, mk_concat(ex->get_arg(2), x2)))); // ----------------------- // false branch expr_ref elseBranch(ctx.mk_eq_atom(result, ex->get_arg(0)), m); th_rewriter rw(m); expr_ref breakdownAssert(m.mk_ite(emptySrcAst, prependTPrimeToS, m.mk_ite(condAst, mk_and(thenItems), elseBranch)), m); expr_ref breakdownAssert_rw(breakdownAssert, m); rw(breakdownAssert_rw); assert_axiom(breakdownAssert_rw); expr_ref reduceToResult(ctx.mk_eq_atom(ex, result), m); expr_ref reduceToResult_rw(reduceToResult, m); rw(reduceToResult_rw); assert_axiom(reduceToResult_rw); } void theory_str::instantiate_axiom_str_to_int(enode * e) { ast_manager & m = get_manager(); app * ex = e->get_owner(); if (axiomatized_terms.contains(ex)) { TRACE("str", tout << "already set up str.to-int axiom for " << mk_pp(ex, m) << std::endl;); return; } axiomatized_terms.insert(ex); TRACE("str", tout << "instantiate str.to-int axiom for " << mk_pp(ex, m) << std::endl;); // let expr = (str.to-int S) // axiom 1: expr >= -1 // axiom 2: expr = 0 <==> S = "0" // axiom 3: expr >= 1 ==> len(S) > 0 AND S[0] != "0" expr * S = ex->get_arg(0); { expr_ref axiom1(m_autil.mk_ge(ex, m_autil.mk_numeral(rational::minus_one(), true)), m); SASSERT(axiom1); assert_axiom(axiom1); } { expr_ref lhs(ctx.mk_eq_atom(ex, m_autil.mk_numeral(rational::zero(), true)), m); expr_ref rhs(ctx.mk_eq_atom(S, mk_string("0")), m); expr_ref axiom2(ctx.mk_eq_atom(lhs, rhs), m); SASSERT(axiom2); assert_axiom(axiom2); } { expr_ref premise(m_autil.mk_ge(ex, m_autil.mk_numeral(rational::one(), true)), m); // S >= 1 --> S in [1-9][0-9]* expr_ref re_positiveInteger(u.re.mk_concat( u.re.mk_range(mk_string("1"), mk_string("9")), u.re.mk_star(u.re.mk_range(mk_string("0"), mk_string("9")))), m); expr_ref conclusion(mk_RegexIn(S, re_positiveInteger), m); SASSERT(premise); SASSERT(conclusion); assert_implication(premise, conclusion); } } void theory_str::instantiate_axiom_int_to_str(enode * e) { ast_manager & m = get_manager(); app * ex = e->get_owner(); if (axiomatized_terms.contains(ex)) { TRACE("str", tout << "already set up str.from-int axiom for " << mk_pp(ex, m) << std::endl;); return; } axiomatized_terms.insert(ex); TRACE("str", tout << "instantiate str.from-int axiom for " << mk_pp(ex, m) << std::endl;); // axiom 1: N < 0 <==> (str.from-int N) = "" expr * N = ex->get_arg(0); { expr_ref axiom1_lhs(mk_not(m, m_autil.mk_ge(N, m_autil.mk_numeral(rational::zero(), true))), m); expr_ref axiom1_rhs(ctx.mk_eq_atom(ex, mk_string("")), m); expr_ref axiom1(ctx.mk_eq_atom(axiom1_lhs, axiom1_rhs), m); SASSERT(axiom1); assert_axiom(axiom1); } // axiom 2: The only (str.from-int N) that starts with a "0" is "0". { expr_ref zero(mk_string("0"), m); // let (the result starts with a "0") be p expr_ref starts_with_zero(u.str.mk_prefix(zero, ex), m); // let (the result is "0") be q expr_ref is_zero(ctx.mk_eq_atom(ex, zero), m); // encoding: the result does NOT start with a "0" (~p) xor the result is "0" (q) // ~p xor q == (~p or q) and (p or ~q) assert_axiom(m.mk_and(m.mk_or(m.mk_not(starts_with_zero), is_zero), m.mk_or(starts_with_zero, m.mk_not(is_zero)))); } } expr * theory_str::mk_RegexIn(expr * str, expr * regexp) { app * regexIn = u.re.mk_in_re(str, regexp); // immediately force internalization so that axiom setup does not fail ctx.internalize(regexIn, false); set_up_axioms(regexIn); return regexIn; } void theory_str::instantiate_axiom_RegexIn(enode * e) { ast_manager & m = get_manager(); app * ex = e->get_owner(); if (axiomatized_terms.contains(ex)) { TRACE("str", tout << "already set up RegexIn axiom for " << mk_pp(ex, m) << std::endl;); return; } axiomatized_terms.insert(ex); TRACE("str", tout << "instantiate RegexIn axiom for " << mk_pp(ex, m) << std::endl;); expr_ref str(ex->get_arg(0), m); regex_terms.insert(ex); if (!regex_terms_by_string.contains(str)) { regex_terms_by_string.insert(str, ptr_vector()); } regex_terms_by_string[str].push_back(ex); } void theory_str::attach_new_th_var(enode * n) { theory_var v = mk_var(n); ctx.attach_th_var(n, this, v); TRACE("str", tout << "new theory var: " << mk_ismt2_pp(n->get_owner(), get_manager()) << " := v#" << v << std::endl;); } void theory_str::reset_eh() { TRACE("str", tout << "resetting" << std::endl;); m_trail_stack.reset(); candidate_model.reset(); m_basicstr_axiom_todo.reset(); m_concat_axiom_todo.reset(); pop_scope_eh(ctx.get_scope_level()); } /* * Check equality among equivalence class members of LHS and RHS * to discover an incorrect LHS == RHS. * For example, if we have y2 == "str3" * and the equivalence classes are * { y2, (Concat ce m2) } * { "str3", (Concat abc x2) } * then y2 can't be equal to "str3". * Then add an assertion: (y2 == (Concat ce m2)) AND ("str3" == (Concat abc x2)) -> (y2 != "str3") */ bool theory_str::new_eq_check(expr * lhs, expr * rhs) { ast_manager & m = get_manager(); // skip this check if we defer consistency checking, as we can do it for every EQC in final check if (!opt_DeferEQCConsistencyCheck) { check_concat_len_in_eqc(lhs); check_concat_len_in_eqc(rhs); } // Now we iterate over all pairs of terms across both EQCs // and check whether we can show that any pair of distinct terms // cannot possibly be equal. // If that's the case, we assert an axiom to that effect and stop. expr * eqc_nn1 = lhs; do { expr * eqc_nn2 = rhs; do { TRACE("str", tout << "checking whether " << mk_pp(eqc_nn1, m) << " and " << mk_pp(eqc_nn2, m) << " can be equal" << std::endl;); // inconsistency check: value if (!can_two_nodes_eq(eqc_nn1, eqc_nn2)) { TRACE("str", tout << "inconsistency detected: " << mk_pp(eqc_nn1, m) << " cannot be equal to " << mk_pp(eqc_nn2, m) << std::endl;); expr_ref to_assert(mk_not(m, ctx.mk_eq_atom(eqc_nn1, eqc_nn2)), m); assert_axiom(to_assert); // this shouldn't use the integer theory at all, so we don't allow the option of quick-return return false; } if (!check_length_consistency(eqc_nn1, eqc_nn2)) { TRACE("str", tout << "inconsistency detected: " << mk_pp(eqc_nn1, m) << " and " << mk_pp(eqc_nn2, m) << " have inconsistent lengths" << std::endl;); if (opt_NoQuickReturn_IntegerTheory){ TRACE("str", tout << "continuing in new_eq_check() due to opt_NoQuickReturn_IntegerTheory" << std::endl;); } else { return false; } } eqc_nn2 = get_eqc_next(eqc_nn2); } while (eqc_nn2 != rhs); eqc_nn1 = get_eqc_next(eqc_nn1); } while (eqc_nn1 != lhs); if (!contains_map.empty()) { check_contain_in_new_eq(lhs, rhs); } // okay, all checks here passed return true; } // support for user_smt_theory-style EQC handling app * theory_str::get_ast(theory_var v) { return get_enode(v)->get_owner(); } theory_var theory_str::get_var(expr * n) const { if (!is_app(n)) { return null_theory_var; } if (ctx.e_internalized(to_app(n))) { enode * e = ctx.get_enode(to_app(n)); return e->get_th_var(get_id()); } return null_theory_var; } // simulate Z3_theory_get_eqc_next() expr * theory_str::get_eqc_next(expr * n) { theory_var v = get_var(n); if (v != null_theory_var) { theory_var r = m_find.next(v); return get_ast(r); } return n; } void theory_str::group_terms_by_eqc(expr * n, std::set & concats, std::set & vars, std::set & consts) { expr * eqcNode = n; do { app * ast = to_app(eqcNode); if (u.str.is_concat(ast)) { expr * simConcat = simplify_concat(ast); if (simConcat != ast) { if (u.str.is_concat(to_app(simConcat))) { concats.insert(simConcat); } else { if (u.str.is_string(simConcat)) { consts.insert(simConcat); } else { vars.insert(simConcat); } } } else { concats.insert(simConcat); } } else if (u.str.is_string(ast)) { consts.insert(ast); } else { vars.insert(ast); } eqcNode = get_eqc_next(eqcNode); } while (eqcNode != n); } void theory_str::get_nodes_in_concat(expr * node, ptr_vector & nodeList) { app * a_node = to_app(node); if (!u.str.is_concat(a_node)) { nodeList.push_back(node); return; } else { SASSERT(a_node->get_num_args() == 2); expr * leftArg = a_node->get_arg(0); expr * rightArg = a_node->get_arg(1); get_nodes_in_concat(leftArg, nodeList); get_nodes_in_concat(rightArg, nodeList); } } // previously Concat() in strTheory.cpp // Evaluates the concatenation (n1 . n2) with respect to // the current equivalence classes of n1 and n2. // Returns a constant string expression representing this concatenation // if one can be determined, or nullptr if this is not possible. expr * theory_str::eval_concat(expr * n1, expr * n2) { bool n1HasEqcValue = false; bool n2HasEqcValue = false; expr * v1 = get_eqc_value(n1, n1HasEqcValue); expr * v2 = get_eqc_value(n2, n2HasEqcValue); if (n1HasEqcValue && n2HasEqcValue) { zstring n1_str, n2_str; u.str.is_string(v1, n1_str); u.str.is_string(v2, n2_str); zstring result = n1_str + n2_str; return mk_string(result); } else if (n1HasEqcValue && !n2HasEqcValue) { zstring v1_str; u.str.is_string(v1, v1_str); if (v1_str.empty()) { return n2; } } else if (n2HasEqcValue && !n1HasEqcValue) { zstring v2_str; u.str.is_string(v2, v2_str); if (v2_str.empty()) { return n1; } } // give up return nullptr; } // trace code helper inline std::string rational_to_string_if_exists(const rational & x, bool x_exists) { if (x_exists) { return x.to_string(); } else { return "?"; } } /* * The inputs: * ~ nn: non const node * ~ eq_str: the equivalent constant string of nn * Iterate the parent of all eqc nodes of nn, looking for: * ~ concat node * to see whether some concat nodes can be simplified. */ void theory_str::simplify_parent(expr * nn, expr * eq_str) { ast_manager & m = get_manager(); TRACE("str", tout << "simplifying parents of " << mk_ismt2_pp(nn, m) << " with respect to " << mk_ismt2_pp(eq_str, m) << std::endl;); ctx.internalize(nn, false); zstring eq_strValue; u.str.is_string(eq_str, eq_strValue); expr * n_eqNode = nn; do { enode * n_eq_enode = ctx.get_enode(n_eqNode); TRACE("str", tout << "considering all parents of " << mk_ismt2_pp(n_eqNode, m) << std::endl << "associated n_eq_enode has " << n_eq_enode->get_num_parents() << " parents" << std::endl;); // the goal of this next bit is to avoid dereferencing a bogus e_parent in the following loop. // what I imagine is causing this bug is that, for example, we examine some parent, we add an axiom that involves it, // and the parent_it iterator becomes invalidated, because we indirectly modified the container that we're iterating over. enode_vector current_parents; for (enode_vector::const_iterator parent_it = n_eq_enode->begin_parents(); parent_it != n_eq_enode->end_parents(); parent_it++) { current_parents.insert(*parent_it); } for (enode_vector::iterator parent_it = current_parents.begin(); parent_it != current_parents.end(); ++parent_it) { enode * e_parent = *parent_it; SASSERT(e_parent != nullptr); app * a_parent = e_parent->get_owner(); TRACE("str", tout << "considering parent " << mk_ismt2_pp(a_parent, m) << std::endl;); if (u.str.is_concat(a_parent)) { expr * arg0 = a_parent->get_arg(0); expr * arg1 = a_parent->get_arg(1); rational parentLen; bool parentLen_exists = get_len_value(a_parent, parentLen); if (arg0 == n_eq_enode->get_owner()) { rational arg0Len, arg1Len; bool arg0Len_exists = get_len_value(eq_str, arg0Len); bool arg1Len_exists = get_len_value(arg1, arg1Len); TRACE("str", tout << "simplify_parent #1:" << std::endl << "* parent = " << mk_ismt2_pp(a_parent, m) << std::endl << "* |parent| = " << rational_to_string_if_exists(parentLen, parentLen_exists) << std::endl << "* |arg0| = " << rational_to_string_if_exists(arg0Len, arg0Len_exists) << std::endl << "* |arg1| = " << rational_to_string_if_exists(arg1Len, arg1Len_exists) << std::endl; ); (void)arg0Len_exists; if (parentLen_exists && !arg1Len_exists) { TRACE("str", tout << "make up len for arg1" << std::endl;); expr_ref implyL11(m.mk_and(ctx.mk_eq_atom(mk_strlen(a_parent), mk_int(parentLen)), ctx.mk_eq_atom(mk_strlen(arg0), mk_int(arg0Len))), m); rational makeUpLenArg1 = parentLen - arg0Len; if (makeUpLenArg1.is_nonneg()) { expr_ref implyR11(ctx.mk_eq_atom(mk_strlen(arg1), mk_int(makeUpLenArg1)), m); assert_implication(implyL11, implyR11); } else { expr_ref neg(mk_not(m, implyL11), m); assert_axiom(neg); } } // (Concat n_eqNode arg1) /\ arg1 has eq const expr * concatResult = eval_concat(eq_str, arg1); if (concatResult != nullptr) { bool arg1HasEqcValue = false; expr * arg1Value = get_eqc_value(arg1, arg1HasEqcValue); expr_ref implyL(m); if (arg1 != arg1Value) { expr_ref eq_ast1(m); eq_ast1 = ctx.mk_eq_atom(n_eqNode, eq_str); SASSERT(eq_ast1); expr_ref eq_ast2(m); eq_ast2 = ctx.mk_eq_atom(arg1, arg1Value); SASSERT(eq_ast2); implyL = m.mk_and(eq_ast1, eq_ast2); } else { implyL = ctx.mk_eq_atom(n_eqNode, eq_str); } if (!in_same_eqc(a_parent, concatResult)) { expr_ref implyR(m); implyR = ctx.mk_eq_atom(a_parent, concatResult); SASSERT(implyR); assert_implication(implyL, implyR); } } else if (u.str.is_concat(to_app(n_eqNode))) { expr_ref simpleConcat(m); simpleConcat = mk_concat(eq_str, arg1); if (!in_same_eqc(a_parent, simpleConcat)) { expr_ref implyL(m); implyL = ctx.mk_eq_atom(n_eqNode, eq_str); SASSERT(implyL); expr_ref implyR(m); implyR = ctx.mk_eq_atom(a_parent, simpleConcat); SASSERT(implyR); assert_implication(implyL, implyR); } } } // if (arg0 == n_eq_enode->get_owner()) if (arg1 == n_eq_enode->get_owner()) { rational arg0Len, arg1Len; bool arg0Len_exists = get_len_value(arg0, arg0Len); bool arg1Len_exists = get_len_value(eq_str, arg1Len); TRACE("str", tout << "simplify_parent #2:" << std::endl << "* parent = " << mk_ismt2_pp(a_parent, m) << std::endl << "* |parent| = " << rational_to_string_if_exists(parentLen, parentLen_exists) << std::endl << "* |arg0| = " << rational_to_string_if_exists(arg0Len, arg0Len_exists) << std::endl << "* |arg1| = " << rational_to_string_if_exists(arg1Len, arg1Len_exists) << std::endl; ); (void)arg1Len_exists; if (parentLen_exists && !arg0Len_exists) { TRACE("str", tout << "make up len for arg0" << std::endl;); expr_ref implyL11(m.mk_and(ctx.mk_eq_atom(mk_strlen(a_parent), mk_int(parentLen)), ctx.mk_eq_atom(mk_strlen(arg1), mk_int(arg1Len))), m); rational makeUpLenArg0 = parentLen - arg1Len; if (makeUpLenArg0.is_nonneg()) { expr_ref implyR11(ctx.mk_eq_atom(mk_strlen(arg0), mk_int(makeUpLenArg0)), m); assert_implication(implyL11, implyR11); } else { expr_ref neg(mk_not(m, implyL11), m); assert_axiom(neg); } } // (Concat arg0 n_eqNode) /\ arg0 has eq const expr * concatResult = eval_concat(arg0, eq_str); if (concatResult != nullptr) { bool arg0HasEqcValue = false; expr * arg0Value = get_eqc_value(arg0, arg0HasEqcValue); expr_ref implyL(m); if (arg0 != arg0Value) { expr_ref eq_ast1(m); eq_ast1 = ctx.mk_eq_atom(n_eqNode, eq_str); SASSERT(eq_ast1); expr_ref eq_ast2(m); eq_ast2 = ctx.mk_eq_atom(arg0, arg0Value); SASSERT(eq_ast2); implyL = m.mk_and(eq_ast1, eq_ast2); } else { implyL = ctx.mk_eq_atom(n_eqNode, eq_str); } if (!in_same_eqc(a_parent, concatResult)) { expr_ref implyR(m); implyR = ctx.mk_eq_atom(a_parent, concatResult); SASSERT(implyR); assert_implication(implyL, implyR); } } else if (u.str.is_concat(to_app(n_eqNode))) { expr_ref simpleConcat(m); simpleConcat = mk_concat(arg0, eq_str); if (!in_same_eqc(a_parent, simpleConcat)) { expr_ref implyL(m); implyL = ctx.mk_eq_atom(n_eqNode, eq_str); SASSERT(implyL); expr_ref implyR(m); implyR = ctx.mk_eq_atom(a_parent, simpleConcat); SASSERT(implyR); assert_implication(implyL, implyR); } } } // if (arg1 == n_eq_enode->get_owner //--------------------------------------------------------- // Case (2-1) begin: (Concat n_eqNode (Concat str var)) if (arg0 == n_eqNode && u.str.is_concat(to_app(arg1))) { app * a_arg1 = to_app(arg1); TRACE("str", tout << "simplify_parent #3" << std::endl;); expr * r_concat_arg0 = a_arg1->get_arg(0); if (u.str.is_string(r_concat_arg0)) { expr * combined_str = eval_concat(eq_str, r_concat_arg0); SASSERT(combined_str); expr * r_concat_arg1 = a_arg1->get_arg(1); expr_ref implyL(m); implyL = ctx.mk_eq_atom(n_eqNode, eq_str); expr * simplifiedAst = mk_concat(combined_str, r_concat_arg1); if (!in_same_eqc(a_parent, simplifiedAst)) { expr_ref implyR(m); implyR = ctx.mk_eq_atom(a_parent, simplifiedAst); assert_implication(implyL, implyR); } } } // Case (2-1) end: (Concat n_eqNode (Concat str var)) //--------------------------------------------------------- //--------------------------------------------------------- // Case (2-2) begin: (Concat (Concat var str) n_eqNode) if (u.str.is_concat(to_app(arg0)) && arg1 == n_eqNode) { app * a_arg0 = to_app(arg0); TRACE("str", tout << "simplify_parent #4" << std::endl;); expr * l_concat_arg1 = a_arg0->get_arg(1); if (u.str.is_string(l_concat_arg1)) { expr * combined_str = eval_concat(l_concat_arg1, eq_str); SASSERT(combined_str); expr * l_concat_arg0 = a_arg0->get_arg(0); expr_ref implyL(m); implyL = ctx.mk_eq_atom(n_eqNode, eq_str); expr * simplifiedAst = mk_concat(l_concat_arg0, combined_str); if (!in_same_eqc(a_parent, simplifiedAst)) { expr_ref implyR(m); implyR = ctx.mk_eq_atom(a_parent, simplifiedAst); assert_implication(implyL, implyR); } } } // Case (2-2) end: (Concat (Concat var str) n_eqNode) //--------------------------------------------------------- // Have to look up one more layer: if the parent of the concat is another concat //------------------------------------------------- // Case (3-1) begin: (Concat (Concat var n_eqNode) str ) if (arg1 == n_eqNode) { for (enode_vector::iterator concat_parent_it = e_parent->begin_parents(); concat_parent_it != e_parent->end_parents(); concat_parent_it++) { enode * e_concat_parent = *concat_parent_it; app * concat_parent = e_concat_parent->get_owner(); if (u.str.is_concat(concat_parent)) { expr * concat_parent_arg0 = concat_parent->get_arg(0); expr * concat_parent_arg1 = concat_parent->get_arg(1); if (concat_parent_arg0 == a_parent && u.str.is_string(concat_parent_arg1)) { TRACE("str", tout << "simplify_parent #5" << std::endl;); expr * combinedStr = eval_concat(eq_str, concat_parent_arg1); SASSERT(combinedStr); expr_ref implyL(m); implyL = ctx.mk_eq_atom(n_eqNode, eq_str); expr * simplifiedAst = mk_concat(arg0, combinedStr); if (!in_same_eqc(concat_parent, simplifiedAst)) { expr_ref implyR(m); implyR = ctx.mk_eq_atom(concat_parent, simplifiedAst); assert_implication(implyL, implyR); } } } } } // Case (3-1) end: (Concat (Concat var n_eqNode) str ) // Case (3-2) begin: (Concat str (Concat n_eqNode var) ) if (arg0 == n_eqNode) { for (enode_vector::iterator concat_parent_it = e_parent->begin_parents(); concat_parent_it != e_parent->end_parents(); concat_parent_it++) { enode * e_concat_parent = *concat_parent_it; app * concat_parent = e_concat_parent->get_owner(); if (u.str.is_concat(concat_parent)) { expr * concat_parent_arg0 = concat_parent->get_arg(0); expr * concat_parent_arg1 = concat_parent->get_arg(1); if (concat_parent_arg1 == a_parent && u.str.is_string(concat_parent_arg0)) { TRACE("str", tout << "simplify_parent #6" << std::endl;); expr * combinedStr = eval_concat(concat_parent_arg0, eq_str); SASSERT(combinedStr); expr_ref implyL(m); implyL = ctx.mk_eq_atom(n_eqNode, eq_str); expr * simplifiedAst = mk_concat(combinedStr, arg1); if (!in_same_eqc(concat_parent, simplifiedAst)) { expr_ref implyR(m); implyR = ctx.mk_eq_atom(concat_parent, simplifiedAst); assert_implication(implyL, implyR); } } } } } // Case (3-2) end: (Concat str (Concat n_eqNode var) ) } // if is_concat(a_parent) } // for parent_it : n_eq_enode->begin_parents() // check next EQC member n_eqNode = get_eqc_next(n_eqNode); } while (n_eqNode != nn); } expr * theory_str::simplify_concat(expr * node) { ast_manager & m = get_manager(); std::map resolvedMap; ptr_vector argVec; get_nodes_in_concat(node, argVec); for (unsigned i = 0; i < argVec.size(); ++i) { bool vArgHasEqcValue = false; expr * vArg = get_eqc_value(argVec[i], vArgHasEqcValue); if (vArg != argVec[i]) { resolvedMap[argVec[i]] = vArg; } } if (resolvedMap.empty()) { // no simplification possible return node; } else { expr * resultAst = mk_string(""); for (unsigned i = 0; i < argVec.size(); ++i) { bool vArgHasEqcValue = false; expr * vArg = get_eqc_value(argVec[i], vArgHasEqcValue); resultAst = mk_concat(resultAst, vArg); } TRACE("str", tout << mk_ismt2_pp(node, m) << " is simplified to " << mk_ismt2_pp(resultAst, m) << std::endl;); if (in_same_eqc(node, resultAst)) { TRACE("str", tout << "SKIP: both concats are already in the same equivalence class" << std::endl;); } else { expr_ref_vector items(m); int pos = 0; for (auto itor : resolvedMap) { items.push_back(ctx.mk_eq_atom(itor.first, itor.second)); pos += 1; } expr_ref premise(mk_and(items), m); expr_ref conclusion(ctx.mk_eq_atom(node, resultAst), m); assert_implication(premise, conclusion); } return resultAst; } } // Modified signature of Z3str2's inferLenConcat(). // Returns true iff nLen can be inferred by this method // (i.e. the equivalent of a len_exists flag in get_len_value()). bool theory_str::infer_len_concat(expr * n, rational & nLen) { ast_manager & m = get_manager(); expr * arg0 = to_app(n)->get_arg(0); expr * arg1 = to_app(n)->get_arg(1); rational arg0_len, arg1_len; bool arg0_len_exists = get_len_value(arg0, arg0_len); bool arg1_len_exists = get_len_value(arg1, arg1_len); rational tmp_len; bool nLen_exists = get_len_value(n, tmp_len); if (arg0_len_exists && arg1_len_exists && !nLen_exists) { expr_ref_vector l_items(m); // if (mk_strlen(arg0) != mk_int(arg0_len)) { { l_items.push_back(ctx.mk_eq_atom(mk_strlen(arg0), mk_int(arg0_len))); } // if (mk_strlen(arg1) != mk_int(arg1_len)) { { l_items.push_back(ctx.mk_eq_atom(mk_strlen(arg1), mk_int(arg1_len))); } expr_ref axl(m.mk_and(l_items.size(), l_items.c_ptr()), m); rational nnLen = arg0_len + arg1_len; expr_ref axr(ctx.mk_eq_atom(mk_strlen(n), mk_int(nnLen)), m); TRACE("str", tout << "inferred (Length " << mk_pp(n, m) << ") = " << nnLen << std::endl;); assert_implication(axl, axr); nLen = nnLen; return true; } else { return false; } } void theory_str::infer_len_concat_arg(expr * n, rational len) { if (len.is_neg()) { return; } ast_manager & m = get_manager(); expr * arg0 = to_app(n)->get_arg(0); expr * arg1 = to_app(n)->get_arg(1); rational arg0_len, arg1_len; bool arg0_len_exists = get_len_value(arg0, arg0_len); bool arg1_len_exists = get_len_value(arg1, arg1_len); expr_ref_vector l_items(m); expr_ref axr(m); axr.reset(); // if (mk_length(t, n) != mk_int(ctx, len)) { { l_items.push_back(ctx.mk_eq_atom(mk_strlen(n), mk_int(len))); } if (!arg0_len_exists && arg1_len_exists) { //if (mk_length(t, arg1) != mk_int(ctx, arg1_len)) { { l_items.push_back(ctx.mk_eq_atom(mk_strlen(arg1), mk_int(arg1_len))); } rational arg0Len = len - arg1_len; if (arg0Len.is_nonneg()) { axr = ctx.mk_eq_atom(mk_strlen(arg0), mk_int(arg0Len)); } else { // could negate } } else if (arg0_len_exists && !arg1_len_exists) { //if (mk_length(t, arg0) != mk_int(ctx, arg0_len)) { { l_items.push_back(ctx.mk_eq_atom(mk_strlen(arg0), mk_int(arg0_len))); } rational arg1Len = len - arg0_len; if (arg1Len.is_nonneg()) { axr = ctx.mk_eq_atom(mk_strlen(arg1), mk_int(arg1Len)); } else { // could negate } } else { } if (axr) { expr_ref axl(m.mk_and(l_items.size(), l_items.c_ptr()), m); assert_implication(axl, axr); } } void theory_str::infer_len_concat_equality(expr * nn1, expr * nn2) { rational nnLen; bool nnLen_exists = get_len_value(nn1, nnLen); if (!nnLen_exists) { nnLen_exists = get_len_value(nn2, nnLen); } // case 1: // Known: a1_arg0 and a1_arg1 // Unknown: nn1 if (u.str.is_concat(to_app(nn1))) { rational nn1ConcatLen; bool nn1ConcatLen_exists = infer_len_concat(nn1, nn1ConcatLen); if (nnLen_exists && nn1ConcatLen_exists) { nnLen = nn1ConcatLen; } } // case 2: // Known: a1_arg0 and a1_arg1 // Unknown: nn1 if (u.str.is_concat(to_app(nn2))) { rational nn2ConcatLen; bool nn2ConcatLen_exists = infer_len_concat(nn2, nn2ConcatLen); if (nnLen_exists && nn2ConcatLen_exists) { nnLen = nn2ConcatLen; } } if (nnLen_exists) { if (u.str.is_concat(to_app(nn1))) { infer_len_concat_arg(nn1, nnLen); } if (u.str.is_concat(to_app(nn2))) { infer_len_concat_arg(nn2, nnLen); } } /* if (isConcatFunc(t, nn2)) { int nn2ConcatLen = inferLenConcat(t, nn2); if (nnLen == -1 && nn2ConcatLen != -1) nnLen = nn2ConcatLen; } if (nnLen != -1) { if (isConcatFunc(t, nn1)) { inferLenConcatArg(t, nn1, nnLen); } if (isConcatFunc(t, nn2)) { inferLenConcatArg(t, nn2, nnLen); } } */ } void theory_str::add_theory_aware_branching_info(expr * term, double priority, lbool phase) { ctx.internalize(term, false); bool_var v = ctx.get_bool_var(term); ctx.add_theory_aware_branching_info(v, priority, phase); } void theory_str::generate_mutual_exclusion(expr_ref_vector & terms) { // pull each literal out of the arrangement disjunction literal_vector ls; for (expr * e : terms) { literal l = ctx.get_literal(e); ls.push_back(l); } ctx.mk_th_case_split(ls.size(), ls.c_ptr()); } void theory_str::print_cut_var(expr * node, std::ofstream & xout) { ast_manager & m = get_manager(); xout << "Cut info of " << mk_pp(node, m) << std::endl; if (cut_var_map.contains(node)) { if (!cut_var_map[node].empty()) { xout << "[" << cut_var_map[node].top()->level << "] "; for (auto const& kv : cut_var_map[node].top()->vars) { xout << mk_pp(kv.m_key, m) << ", "; } xout << std::endl; } } } /* * Handle two equivalent Concats. */ void theory_str::simplify_concat_equality(expr * nn1, expr * nn2) { ast_manager & m = get_manager(); app * a_nn1 = to_app(nn1); SASSERT(a_nn1->get_num_args() == 2); app * a_nn2 = to_app(nn2); SASSERT(a_nn2->get_num_args() == 2); expr * a1_arg0 = a_nn1->get_arg(0); expr * a1_arg1 = a_nn1->get_arg(1); expr * a2_arg0 = a_nn2->get_arg(0); expr * a2_arg1 = a_nn2->get_arg(1); rational a1_arg0_len, a1_arg1_len, a2_arg0_len, a2_arg1_len; bool a1_arg0_len_exists = get_len_value(a1_arg0, a1_arg0_len); bool a1_arg1_len_exists = get_len_value(a1_arg1, a1_arg1_len); bool a2_arg0_len_exists = get_len_value(a2_arg0, a2_arg0_len); bool a2_arg1_len_exists = get_len_value(a2_arg1, a2_arg1_len); TRACE("str", tout << "nn1 = " << mk_ismt2_pp(nn1, m) << std::endl << "nn2 = " << mk_ismt2_pp(nn2, m) << std::endl;); TRACE("str", tout << "len(" << mk_pp(a1_arg0, m) << ") = " << (a1_arg0_len_exists ? a1_arg0_len.to_string() : "?") << std::endl << "len(" << mk_pp(a1_arg1, m) << ") = " << (a1_arg1_len_exists ? a1_arg1_len.to_string() : "?") << std::endl << "len(" << mk_pp(a2_arg0, m) << ") = " << (a2_arg0_len_exists ? a2_arg0_len.to_string() : "?") << std::endl << "len(" << mk_pp(a2_arg1, m) << ") = " << (a2_arg1_len_exists ? a2_arg1_len.to_string() : "?") << std::endl << std::endl;); infer_len_concat_equality(nn1, nn2); if (a1_arg0 == a2_arg0) { if (!in_same_eqc(a1_arg1, a2_arg1)) { expr_ref premise(ctx.mk_eq_atom(nn1, nn2), m); expr_ref eq1(ctx.mk_eq_atom(a1_arg1, a2_arg1), m); expr_ref eq2(ctx.mk_eq_atom(mk_strlen(a1_arg1), mk_strlen(a2_arg1)), m); expr_ref conclusion(m.mk_and(eq1, eq2), m); assert_implication(premise, conclusion); } TRACE("str", tout << "SKIP: a1_arg0 == a2_arg0" << std::endl;); return; } if (a1_arg1 == a2_arg1) { if (!in_same_eqc(a1_arg0, a2_arg0)) { expr_ref premise(ctx.mk_eq_atom(nn1, nn2), m); expr_ref eq1(ctx.mk_eq_atom(a1_arg0, a2_arg0), m); expr_ref eq2(ctx.mk_eq_atom(mk_strlen(a1_arg0), mk_strlen(a2_arg0)), m); expr_ref conclusion(m.mk_and(eq1, eq2), m); assert_implication(premise, conclusion); } TRACE("str", tout << "SKIP: a1_arg1 == a2_arg1" << std::endl;); return; } // quick path if (in_same_eqc(a1_arg0, a2_arg0)) { if (in_same_eqc(a1_arg1, a2_arg1)) { TRACE("str", tout << "SKIP: a1_arg0 =~ a2_arg0 and a1_arg1 =~ a2_arg1" << std::endl;); return; } else { TRACE("str", tout << "quick path 1-1: a1_arg0 =~ a2_arg0" << std::endl;); expr_ref premise(m.mk_and(ctx.mk_eq_atom(nn1, nn2), ctx.mk_eq_atom(a1_arg0, a2_arg0)), m); expr_ref conclusion(m.mk_and(ctx.mk_eq_atom(a1_arg1, a2_arg1), ctx.mk_eq_atom(mk_strlen(a1_arg1), mk_strlen(a2_arg1))), m); assert_implication(premise, conclusion); return; } } else { if (in_same_eqc(a1_arg1, a2_arg1)) { TRACE("str", tout << "quick path 1-2: a1_arg1 =~ a2_arg1" << std::endl;); expr_ref premise(m.mk_and(ctx.mk_eq_atom(nn1, nn2), ctx.mk_eq_atom(a1_arg1, a2_arg1)), m); expr_ref conclusion(m.mk_and(ctx.mk_eq_atom(a1_arg0, a2_arg0), ctx.mk_eq_atom(mk_strlen(a1_arg0), mk_strlen(a2_arg0))), m); assert_implication(premise, conclusion); return; } } // quick path 2-1 if (a1_arg0_len_exists && a2_arg0_len_exists && a1_arg0_len == a2_arg0_len) { if (!in_same_eqc(a1_arg0, a2_arg0)) { TRACE("str", tout << "quick path 2-1: len(nn1.arg0) == len(nn2.arg0)" << std::endl;); expr_ref ax_l1(ctx.mk_eq_atom(nn1, nn2), m); expr_ref ax_l2(ctx.mk_eq_atom(mk_strlen(a1_arg0), mk_strlen(a2_arg0)), m); expr_ref ax_r1(ctx.mk_eq_atom(a1_arg0, a2_arg0), m); expr_ref ax_r2(ctx.mk_eq_atom(a1_arg1, a2_arg1), m); expr_ref premise(m.mk_and(ax_l1, ax_l2), m); expr_ref conclusion(m.mk_and(ax_r1, ax_r2), m); assert_implication(premise, conclusion); if (opt_NoQuickReturn_IntegerTheory) { TRACE("str", tout << "bypassing quick return from the end of this case" << std::endl;); } else { return; } } } if (a1_arg1_len_exists && a2_arg1_len_exists && a1_arg1_len == a2_arg1_len) { if (!in_same_eqc(a1_arg1, a2_arg1)) { TRACE("str", tout << "quick path 2-2: len(nn1.arg1) == len(nn2.arg1)" << std::endl;); expr_ref ax_l1(ctx.mk_eq_atom(nn1, nn2), m); expr_ref ax_l2(ctx.mk_eq_atom(mk_strlen(a1_arg1), mk_strlen(a2_arg1)), m); expr_ref ax_r1(ctx.mk_eq_atom(a1_arg0, a2_arg0), m); expr_ref ax_r2(ctx.mk_eq_atom(a1_arg1, a2_arg1), m); expr_ref premise(m.mk_and(ax_l1, ax_l2), m); expr_ref conclusion(m.mk_and(ax_r1, ax_r2), m); assert_implication(premise, conclusion); if (opt_NoQuickReturn_IntegerTheory) { TRACE("str", tout << "bypassing quick return from the end of this case" << std::endl;); } else { return; } } } expr_ref new_nn1(simplify_concat(nn1), m); expr_ref new_nn2(simplify_concat(nn2), m); app * a_new_nn1 = to_app(new_nn1); app * a_new_nn2 = to_app(new_nn2); TRACE("str", tout << "new_nn1 = " << mk_ismt2_pp(new_nn1, m) << std::endl << "new_nn2 = " << mk_ismt2_pp(new_nn2, m) << std::endl;); if (new_nn1 == new_nn2) { TRACE("str", tout << "equal concats, return" << std::endl;); return; } if (!can_two_nodes_eq(new_nn1, new_nn2)) { expr_ref detected(mk_not(m, ctx.mk_eq_atom(new_nn1, new_nn2)), m); TRACE("str", tout << "inconsistency detected: " << mk_ismt2_pp(detected, m) << std::endl;); assert_axiom(detected); return; } // check whether new_nn1 and new_nn2 are still concats bool n1IsConcat = u.str.is_concat(a_new_nn1); bool n2IsConcat = u.str.is_concat(a_new_nn2); if (!n1IsConcat && n2IsConcat) { TRACE("str", tout << "nn1_new is not a concat" << std::endl;); if (u.str.is_string(a_new_nn1)) { simplify_parent(new_nn2, new_nn1); } return; } else if (n1IsConcat && !n2IsConcat) { TRACE("str", tout << "nn2_new is not a concat" << std::endl;); if (u.str.is_string(a_new_nn2)) { simplify_parent(new_nn1, new_nn2); } return; } else if (!n1IsConcat && !n2IsConcat) { // normally this should never happen, because group_terms_by_eqc() should have pre-simplified // as much as possible. however, we make a defensive check here just in case TRACE("str", tout << "WARNING: nn1_new and nn2_new both simplify to non-concat terms" << std::endl;); return; } expr * v1_arg0 = a_new_nn1->get_arg(0); expr * v1_arg1 = a_new_nn1->get_arg(1); expr * v2_arg0 = a_new_nn2->get_arg(0); expr * v2_arg1 = a_new_nn2->get_arg(1); if (!in_same_eqc(new_nn1, new_nn2) && (nn1 != new_nn1 || nn2 != new_nn2)) { int ii4 = 0; expr* item[3]; if (nn1 != new_nn1) { item[ii4++] = ctx.mk_eq_atom(nn1, new_nn1); } if (nn2 != new_nn2) { item[ii4++] = ctx.mk_eq_atom(nn2, new_nn2); } item[ii4++] = ctx.mk_eq_atom(nn1, nn2); expr_ref premise(m.mk_and(ii4, item), m); expr_ref conclusion(ctx.mk_eq_atom(new_nn1, new_nn2), m); assert_implication(premise, conclusion); } // start to split both concats check_and_init_cut_var(v1_arg0); check_and_init_cut_var(v1_arg1); check_and_init_cut_var(v2_arg0); check_and_init_cut_var(v2_arg1); //************************************************************* // case 1: concat(x, y) = concat(m, n) //************************************************************* if (is_concat_eq_type1(new_nn1, new_nn2)) { process_concat_eq_type1(new_nn1, new_nn2); return; } //************************************************************* // case 2: concat(x, y) = concat(m, "str") //************************************************************* if (is_concat_eq_type2(new_nn1, new_nn2)) { process_concat_eq_type2(new_nn1, new_nn2); return; } //************************************************************* // case 3: concat(x, y) = concat("str", n) //************************************************************* if (is_concat_eq_type3(new_nn1, new_nn2)) { process_concat_eq_type3(new_nn1, new_nn2); return; } //************************************************************* // case 4: concat("str1", y) = concat("str2", n) //************************************************************* if (is_concat_eq_type4(new_nn1, new_nn2)) { process_concat_eq_type4(new_nn1, new_nn2); return; } //************************************************************* // case 5: concat(x, "str1") = concat(m, "str2") //************************************************************* if (is_concat_eq_type5(new_nn1, new_nn2)) { process_concat_eq_type5(new_nn1, new_nn2); return; } //************************************************************* // case 6: concat("str1", y) = concat(m, "str2") //************************************************************* if (is_concat_eq_type6(new_nn1, new_nn2)) { process_concat_eq_type6(new_nn1, new_nn2); return; } } /* * Returns true if attempting to process a concat equality between lhs and rhs * will result in overlapping variables (false otherwise). */ bool theory_str::will_result_in_overlap(expr * lhs, expr * rhs) { ast_manager & m = get_manager(); expr_ref new_nn1(simplify_concat(lhs), m); expr_ref new_nn2(simplify_concat(rhs), m); app * a_new_nn1 = to_app(new_nn1); app * a_new_nn2 = to_app(new_nn2); bool n1IsConcat = u.str.is_concat(a_new_nn1); bool n2IsConcat = u.str.is_concat(a_new_nn2); if (!n1IsConcat && !n2IsConcat) { // we simplified both sides to non-concat expressions... return false; } expr * v1_arg0 = a_new_nn1->get_arg(0); expr * v1_arg1 = a_new_nn1->get_arg(1); expr * v2_arg0 = a_new_nn2->get_arg(0); expr * v2_arg1 = a_new_nn2->get_arg(1); TRACE("str", tout << "checking whether " << mk_pp(new_nn1, m) << " and " << mk_pp(new_nn1, m) << " might overlap." << std::endl;); check_and_init_cut_var(v1_arg0); check_and_init_cut_var(v1_arg1); check_and_init_cut_var(v2_arg0); check_and_init_cut_var(v2_arg1); //************************************************************* // case 1: concat(x, y) = concat(m, n) //************************************************************* if (is_concat_eq_type1(new_nn1, new_nn2)) { TRACE("str", tout << "Type 1 check." << std::endl;); expr * x = to_app(new_nn1)->get_arg(0); expr * y = to_app(new_nn1)->get_arg(1); expr * m = to_app(new_nn2)->get_arg(0); expr * n = to_app(new_nn2)->get_arg(1); if (has_self_cut(m, y)) { TRACE("str", tout << "Possible overlap found" << std::endl; print_cut_var(m, tout); print_cut_var(y, tout);); return true; } else if (has_self_cut(x, n)) { TRACE("str", tout << "Possible overlap found" << std::endl; print_cut_var(x, tout); print_cut_var(n, tout);); return true; } else { return false; } } //************************************************************* // case 2: concat(x, y) = concat(m, "str") //************************************************************* if (is_concat_eq_type2(new_nn1, new_nn2)) { expr * y = nullptr; expr * m = nullptr; expr * v1_arg0 = to_app(new_nn1)->get_arg(0); expr * v1_arg1 = to_app(new_nn1)->get_arg(1); expr * v2_arg0 = to_app(new_nn2)->get_arg(0); expr * v2_arg1 = to_app(new_nn2)->get_arg(1); if (u.str.is_string(v1_arg1) && !u.str.is_string(v2_arg1)) { m = v1_arg0; y = v2_arg1; } else { m = v2_arg0; y = v1_arg1; } if (has_self_cut(m, y)) { TRACE("str", tout << "Possible overlap found" << std::endl; print_cut_var(m, tout); print_cut_var(y, tout);); return true; } else { return false; } } //************************************************************* // case 3: concat(x, y) = concat("str", n) //************************************************************* if (is_concat_eq_type3(new_nn1, new_nn2)) { expr * v1_arg0 = to_app(new_nn1)->get_arg(0); expr * v1_arg1 = to_app(new_nn1)->get_arg(1); expr * v2_arg0 = to_app(new_nn2)->get_arg(0); expr * v2_arg1 = to_app(new_nn2)->get_arg(1); expr * x = nullptr; expr * n = nullptr; if (u.str.is_string(v1_arg0) && !u.str.is_string(v2_arg0)) { n = v1_arg1; x = v2_arg0; } else { n = v2_arg1; x = v1_arg0; } if (has_self_cut(x, n)) { TRACE("str", tout << "Possible overlap found" << std::endl; print_cut_var(x, tout); print_cut_var(n, tout);); return true; } else { return false; } } //************************************************************* // case 4: concat("str1", y) = concat("str2", n) //************************************************************* if (is_concat_eq_type4(new_nn1, new_nn2)) { // This case can never result in an overlap. return false; } //************************************************************* // case 5: concat(x, "str1") = concat(m, "str2") //************************************************************* if (is_concat_eq_type5(new_nn1, new_nn2)) { // This case can never result in an overlap. return false; } //************************************************************* // case 6: concat("str1", y) = concat(m, "str2") //************************************************************* if (is_concat_eq_type6(new_nn1, new_nn2)) { expr * v1_arg0 = to_app(new_nn1)->get_arg(0); expr * v1_arg1 = to_app(new_nn1)->get_arg(1); expr * v2_arg0 = to_app(new_nn2)->get_arg(0); expr * v2_arg1 = to_app(new_nn2)->get_arg(1); expr * y = nullptr; expr * m = nullptr; if (u.str.is_string(v1_arg0)) { y = v1_arg1; m = v2_arg0; } else { y = v2_arg1; m = v1_arg0; } if (has_self_cut(m, y)) { TRACE("str", tout << "Possible overlap found" << std::endl; print_cut_var(m, tout); print_cut_var(y, tout);); return true; } else { return false; } } TRACE("str", tout << "warning: unrecognized concat case" << std::endl;); return false; } /************************************************************* * Type 1: concat(x, y) = concat(m, n) * x, y, m and n all variables *************************************************************/ bool theory_str::is_concat_eq_type1(expr * concatAst1, expr * concatAst2) { expr * x = to_app(concatAst1)->get_arg(0); expr * y = to_app(concatAst1)->get_arg(1); expr * m = to_app(concatAst2)->get_arg(0); expr * n = to_app(concatAst2)->get_arg(1); if (!u.str.is_string(x) && !u.str.is_string(y) && !u.str.is_string(m) && !u.str.is_string(n)) { return true; } else { return false; } } void theory_str::process_concat_eq_type1(expr * concatAst1, expr * concatAst2) { ast_manager & mgr = get_manager(); bool overlapAssumptionUsed = false; TRACE("str", tout << "process_concat_eq TYPE 1" << std::endl << "concatAst1 = " << mk_ismt2_pp(concatAst1, mgr) << std::endl << "concatAst2 = " << mk_ismt2_pp(concatAst2, mgr) << std::endl; ); if (!u.str.is_concat(to_app(concatAst1))) { TRACE("str", tout << "concatAst1 is not a concat function" << std::endl;); return; } if (!u.str.is_concat(to_app(concatAst2))) { TRACE("str", tout << "concatAst2 is not a concat function" << std::endl;); return; } expr * x = to_app(concatAst1)->get_arg(0); expr * y = to_app(concatAst1)->get_arg(1); expr * m = to_app(concatAst2)->get_arg(0); expr * n = to_app(concatAst2)->get_arg(1); rational x_len, y_len, m_len, n_len; bool x_len_exists = get_len_value(x, x_len); bool y_len_exists = get_len_value(y, y_len); bool m_len_exists = get_len_value(m, m_len); bool n_len_exists = get_len_value(n, n_len); int splitType = -1; if (x_len_exists && m_len_exists) { TRACE("str", tout << "length values found: x/m" << std::endl;); if (x_len < m_len) { splitType = 0; } else if (x_len == m_len) { splitType = 1; } else { splitType = 2; } } if (splitType == -1 && y_len_exists && n_len_exists) { TRACE("str", tout << "length values found: y/n" << std::endl;); if (y_len > n_len) { splitType = 0; } else if (y_len == n_len) { splitType = 1; } else { splitType = 2; } } TRACE("str", tout << "len(x) = " << (x_len_exists ? x_len.to_string() : "?") << std::endl << "len(y) = " << (y_len_exists ? y_len.to_string() : "?") << std::endl << "len(m) = " << (m_len_exists ? m_len.to_string() : "?") << std::endl << "len(n) = " << (n_len_exists ? n_len.to_string() : "?") << std::endl << "split type " << splitType << std::endl; ); expr_ref t1(mgr), t2(mgr); expr * xorFlag = nullptr; std::pair key1(concatAst1, concatAst2); std::pair key2(concatAst2, concatAst1); // check the entries in this map to make sure they're still in scope // before we use them. std::map, std::map >::iterator entry1 = varForBreakConcat.find(key1); std::map, std::map >::iterator entry2 = varForBreakConcat.find(key2); bool entry1InScope; if (entry1 == varForBreakConcat.end()) { entry1InScope = false; } else { if (internal_variable_set.find((entry1->second)[0]) == internal_variable_set.end() || internal_variable_set.find((entry1->second)[1]) == internal_variable_set.end() /*|| internal_variable_set.find((entry1->second)[2]) == internal_variable_set.end() */) { entry1InScope = false; } else { entry1InScope = true; } } bool entry2InScope; if (entry2 == varForBreakConcat.end()) { entry2InScope = false; } else { if (internal_variable_set.find((entry2->second)[0]) == internal_variable_set.end() || internal_variable_set.find((entry2->second)[1]) == internal_variable_set.end() /* || internal_variable_set.find((entry2->second)[2]) == internal_variable_set.end() */) { entry2InScope = false; } else { entry2InScope = true; } } TRACE("str", tout << "entry 1 " << (entry1InScope ? "in scope" : "not in scope") << std::endl << "entry 2 " << (entry2InScope ? "in scope" : "not in scope") << std::endl;); if (!entry1InScope && !entry2InScope) { t1 = mk_nonempty_str_var(); t2 = mk_nonempty_str_var(); xorFlag = mk_internal_xor_var(); check_and_init_cut_var(t1); check_and_init_cut_var(t2); varForBreakConcat[key1][0] = t1; varForBreakConcat[key1][1] = t2; varForBreakConcat[key1][2] = xorFlag; } else { // match found if (entry1InScope) { t1 = varForBreakConcat[key1][0]; t2 = varForBreakConcat[key1][1]; xorFlag = varForBreakConcat[key1][2]; } else { t1 = varForBreakConcat[key2][0]; t2 = varForBreakConcat[key2][1]; xorFlag = varForBreakConcat[key2][2]; } refresh_theory_var(t1); add_nonempty_constraint(t1); refresh_theory_var(t2); add_nonempty_constraint(t2); } // For split types 0 through 2, we can get away with providing // fewer split options since more length information is available. if (splitType == 0) { //-------------------------------------- // Type 0: M cuts Y. // len(x) < len(m) || len(y) > len(n) //-------------------------------------- expr_ref_vector ax_l_items(mgr); expr_ref_vector ax_r_items(mgr); ax_l_items.push_back(ctx.mk_eq_atom(concatAst1, concatAst2)); expr_ref x_t1(mk_concat(x, t1), mgr); expr_ref t1_n(mk_concat(t1, n), mgr); ax_r_items.push_back(ctx.mk_eq_atom(m, x_t1)); ax_r_items.push_back(ctx.mk_eq_atom(y, t1_n)); if (m_len_exists && x_len_exists) { ax_l_items.push_back(ctx.mk_eq_atom(mk_strlen(x), mk_int(x_len))); ax_l_items.push_back(ctx.mk_eq_atom(mk_strlen(m), mk_int(m_len))); rational m_sub_x = m_len - x_len; ax_r_items.push_back(ctx.mk_eq_atom(mk_strlen(t1), mk_int(m_sub_x))); } else { ax_l_items.push_back(ctx.mk_eq_atom(mk_strlen(y), mk_int(y_len))); ax_l_items.push_back(ctx.mk_eq_atom(mk_strlen(n), mk_int(n_len))); rational y_sub_n = y_len - n_len; ax_r_items.push_back(ctx.mk_eq_atom(mk_strlen(t1), mk_int(y_sub_n))); } expr_ref ax_l(mk_and(ax_l_items), mgr); expr_ref ax_r(mk_and(ax_r_items), mgr); if (!has_self_cut(m, y)) { // Cut Info add_cut_info_merge(t1, sLevel, m); add_cut_info_merge(t1, sLevel, y); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom(ax_l, ax_r), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ax_l, ax_r); } } else { loopDetected = true; TRACE("str", tout << "AVOID LOOP: SKIPPED" << std::endl;); TRACE("str", {print_cut_var(m, tout); print_cut_var(y, tout);}); if (!overlapAssumptionUsed) { overlapAssumptionUsed = true; assert_implication(ax_l, m_theoryStrOverlapAssumption_term); } } } else if (splitType == 1) { // Type 1: // len(x) = len(m) || len(y) = len(n) expr_ref ax_l1(ctx.mk_eq_atom(concatAst1, concatAst2), mgr); expr_ref ax_l2(mgr.mk_or(ctx.mk_eq_atom(mk_strlen(x), mk_strlen(m)), ctx.mk_eq_atom(mk_strlen(y), mk_strlen(n))), mgr); expr_ref ax_l(mgr.mk_and(ax_l1, ax_l2), mgr); expr_ref ax_r(mgr.mk_and(ctx.mk_eq_atom(x,m), ctx.mk_eq_atom(y,n)), mgr); assert_implication(ax_l, ax_r); } else if (splitType == 2) { // Type 2: X cuts N. // len(x) > len(m) || len(y) < len(n) expr_ref m_t2(mk_concat(m, t2), mgr); expr_ref t2_y(mk_concat(t2, y), mgr); expr_ref_vector ax_l_items(mgr); ax_l_items.push_back(ctx.mk_eq_atom(concatAst1, concatAst2)); expr_ref_vector ax_r_items(mgr); ax_r_items.push_back(ctx.mk_eq_atom(x, m_t2)); ax_r_items.push_back(ctx.mk_eq_atom(t2_y, n)); if (m_len_exists && x_len_exists) { ax_l_items.push_back(ctx.mk_eq_atom(mk_strlen(x), mk_int(x_len))); ax_l_items.push_back(ctx.mk_eq_atom(mk_strlen(m), mk_int(m_len))); rational x_sub_m = x_len - m_len; ax_r_items.push_back(ctx.mk_eq_atom(mk_strlen(t2), mk_int(x_sub_m))); } else { ax_l_items.push_back(ctx.mk_eq_atom(mk_strlen(y), mk_int(y_len))); ax_l_items.push_back(ctx.mk_eq_atom(mk_strlen(n), mk_int(n_len))); rational n_sub_y = n_len - y_len; ax_r_items.push_back(ctx.mk_eq_atom(mk_strlen(t2), mk_int(n_sub_y))); } expr_ref ax_l(mk_and(ax_l_items), mgr); expr_ref ax_r(mk_and(ax_r_items), mgr); if (!has_self_cut(x, n)) { // Cut Info add_cut_info_merge(t2, sLevel, x); add_cut_info_merge(t2, sLevel, n); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom(ax_l, ax_r), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ax_l, ax_r); } } else { loopDetected = true; TRACE("str", tout << "AVOID LOOP: SKIPPED" << std::endl;); TRACE("str", {print_cut_var(m, tout); print_cut_var(y, tout);}); if (!overlapAssumptionUsed) { overlapAssumptionUsed = true; assert_implication(ax_l, m_theoryStrOverlapAssumption_term); } } } else if (splitType == -1) { // Here we don't really have a choice. We have no length information at all... // This vector will eventually contain one term for each possible arrangement we explore. expr_ref_vector arrangement_disjunction(mgr); // break option 1: m cuts y // len(x) < len(m) || len(y) > len(n) if (!avoidLoopCut || !has_self_cut(m, y)) { expr_ref_vector and_item(mgr); // break down option 1-1 expr_ref x_t1(mk_concat(x, t1), mgr); expr_ref t1_n(mk_concat(t1, n), mgr); and_item.push_back(ctx.mk_eq_atom(m, x_t1)); and_item.push_back(ctx.mk_eq_atom(y, t1_n)); expr_ref x_plus_t1(m_autil.mk_add(mk_strlen(x), mk_strlen(t1)), mgr); and_item.push_back(ctx.mk_eq_atom(mk_strlen(m), x_plus_t1)); // These were crashing the solver because the integer theory // expects a constant on the right-hand side. // The things we want to assert here are len(m) > len(x) and len(y) > len(n). // We rewrite A > B as A-B > 0 and then as not(A-B <= 0), // and then, *because we aren't allowed to use subtraction*, // as not(A + -1*B <= 0) and_item.push_back( mgr.mk_not(m_autil.mk_le( m_autil.mk_add(mk_strlen(m), m_autil.mk_mul(mk_int(-1), mk_strlen(x))), mk_int(0))) ); and_item.push_back( mgr.mk_not(m_autil.mk_le( m_autil.mk_add(mk_strlen(y),m_autil.mk_mul(mk_int(-1), mk_strlen(n))), mk_int(0))) ); expr_ref option1(mk_and(and_item), mgr); arrangement_disjunction.push_back(option1); add_theory_aware_branching_info(option1, 0.1, l_true); add_cut_info_merge(t1, ctx.get_scope_level(), m); add_cut_info_merge(t1, ctx.get_scope_level(), y); } else { loopDetected = true; TRACE("str", tout << "AVOID LOOP: SKIPPED" << std::endl;); TRACE("str", {print_cut_var(m, tout); print_cut_var(y, tout);}); if (!overlapAssumptionUsed) { overlapAssumptionUsed = true; arrangement_disjunction.push_back(m_theoryStrOverlapAssumption_term); } } // break option 2: // x = m . t2 // n = t2 . y if (!avoidLoopCut || !has_self_cut(x, n)) { expr_ref_vector and_item(mgr); // break down option 1-2 expr_ref m_t2(mk_concat(m, t2), mgr); expr_ref t2_y(mk_concat(t2, y), mgr); and_item.push_back(ctx.mk_eq_atom(x, m_t2)); and_item.push_back(ctx.mk_eq_atom(n, t2_y)); expr_ref m_plus_t2(m_autil.mk_add(mk_strlen(m), mk_strlen(t2)), mgr); and_item.push_back(ctx.mk_eq_atom(mk_strlen(x), m_plus_t2)); // want len(x) > len(m) and len(n) > len(y) and_item.push_back( mgr.mk_not(m_autil.mk_le( m_autil.mk_add(mk_strlen(x), m_autil.mk_mul(mk_int(-1), mk_strlen(m))), mk_int(0))) ); and_item.push_back( mgr.mk_not(m_autil.mk_le( m_autil.mk_add(mk_strlen(n), m_autil.mk_mul(mk_int(-1), mk_strlen(y))), mk_int(0))) ); expr_ref option2(mk_and(and_item), mgr); arrangement_disjunction.push_back(option2); add_theory_aware_branching_info(option2, 0.1, l_true); add_cut_info_merge(t2, ctx.get_scope_level(), x); add_cut_info_merge(t2, ctx.get_scope_level(), n); } else { loopDetected = true; TRACE("str", tout << "AVOID LOOP: SKIPPED" << std::endl;); TRACE("str", {print_cut_var(x, tout); print_cut_var(n, tout);}); if (!overlapAssumptionUsed) { overlapAssumptionUsed = true; arrangement_disjunction.push_back(m_theoryStrOverlapAssumption_term); } } // option 3: // x = m, y = n if (can_two_nodes_eq(x, m) && can_two_nodes_eq(y, n)) { expr_ref_vector and_item(mgr); and_item.push_back(ctx.mk_eq_atom(x, m)); and_item.push_back(ctx.mk_eq_atom(y, n)); and_item.push_back(ctx.mk_eq_atom(mk_strlen(x), mk_strlen(m))); and_item.push_back(ctx.mk_eq_atom(mk_strlen(y), mk_strlen(n))); expr_ref option3(mk_and(and_item), mgr); arrangement_disjunction.push_back(option3); // prioritize this case, it is easier add_theory_aware_branching_info(option3, 0.5, l_true); } if (!arrangement_disjunction.empty()) { expr_ref premise(ctx.mk_eq_atom(concatAst1, concatAst2), mgr); expr_ref conclusion(mk_or(arrangement_disjunction), mgr); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom(premise, conclusion), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(premise, conclusion); } // assert mutual exclusion between each branch of the arrangement generate_mutual_exclusion(arrangement_disjunction); } else { TRACE("str", tout << "STOP: no split option found for two EQ concats." << std::endl;); } } // (splitType == -1) } /************************************************************* * Type 2: concat(x, y) = concat(m, "str") *************************************************************/ bool theory_str::is_concat_eq_type2(expr * concatAst1, expr * concatAst2) { expr * v1_arg0 = to_app(concatAst1)->get_arg(0); expr * v1_arg1 = to_app(concatAst1)->get_arg(1); expr * v2_arg0 = to_app(concatAst2)->get_arg(0); expr * v2_arg1 = to_app(concatAst2)->get_arg(1); if ((!u.str.is_string(v1_arg0)) && u.str.is_string(v1_arg1) && (!u.str.is_string(v2_arg0)) && (!u.str.is_string(v2_arg1))) { return true; } else if ((!u.str.is_string(v2_arg0)) && u.str.is_string(v2_arg1) && (!u.str.is_string(v1_arg0)) && (!u.str.is_string(v1_arg1))) { return true; } else { return false; } } void theory_str::process_concat_eq_type2(expr * concatAst1, expr * concatAst2) { ast_manager & mgr = get_manager(); bool overlapAssumptionUsed = false; TRACE("str", tout << "process_concat_eq TYPE 2" << std::endl << "concatAst1 = " << mk_ismt2_pp(concatAst1, mgr) << std::endl << "concatAst2 = " << mk_ismt2_pp(concatAst2, mgr) << std::endl; ); if (!u.str.is_concat(to_app(concatAst1))) { TRACE("str", tout << "concatAst1 is not a concat function" << std::endl;); return; } if (!u.str.is_concat(to_app(concatAst2))) { TRACE("str", tout << "concatAst2 is not a concat function" << std::endl;); return; } expr * x = nullptr; expr * y = nullptr; expr * strAst = nullptr; expr * m = nullptr; expr * v1_arg0 = to_app(concatAst1)->get_arg(0); expr * v1_arg1 = to_app(concatAst1)->get_arg(1); expr * v2_arg0 = to_app(concatAst2)->get_arg(0); expr * v2_arg1 = to_app(concatAst2)->get_arg(1); if (u.str.is_string(v1_arg1) && !u.str.is_string(v2_arg1)) { m = v1_arg0; strAst = v1_arg1; x = v2_arg0; y = v2_arg1; } else { m = v2_arg0; strAst = v2_arg1; x = v1_arg0; y = v1_arg1; } zstring strValue; u.str.is_string(strAst, strValue); rational x_len, y_len, m_len, str_len; bool x_len_exists = get_len_value(x, x_len); bool y_len_exists = get_len_value(y, y_len); bool m_len_exists = get_len_value(m, m_len); bool str_len_exists = true; str_len = rational(strValue.length()); // setup expr * xorFlag = nullptr; expr_ref temp1(mgr); std::pair key1(concatAst1, concatAst2); std::pair key2(concatAst2, concatAst1); // check the entries in this map to make sure they're still in scope // before we use them. std::map, std::map >::iterator entry1 = varForBreakConcat.find(key1); std::map, std::map >::iterator entry2 = varForBreakConcat.find(key2); // prevent checking scope for the XOR term, as it's always in the same scope as the split var bool entry1InScope; if (entry1 == varForBreakConcat.end()) { entry1InScope = false; } else { if (internal_variable_set.find((entry1->second)[0]) == internal_variable_set.end() /*|| internal_variable_set.find((entry1->second)[1]) == internal_variable_set.end()*/ ) { entry1InScope = false; } else { entry1InScope = true; } } bool entry2InScope; if (entry2 == varForBreakConcat.end()) { entry2InScope = false; } else { if (internal_variable_set.find((entry2->second)[0]) == internal_variable_set.end() /*|| internal_variable_set.find((entry2->second)[1]) == internal_variable_set.end()*/ ) { entry2InScope = false; } else { entry2InScope = true; } } TRACE("str", tout << "entry 1 " << (entry1InScope ? "in scope" : "not in scope") << std::endl << "entry 2 " << (entry2InScope ? "in scope" : "not in scope") << std::endl;); if (!entry1InScope && !entry2InScope) { temp1 = mk_nonempty_str_var(); xorFlag = mk_internal_xor_var(); varForBreakConcat[key1][0] = temp1; varForBreakConcat[key1][1] = xorFlag; } else { if (entry1InScope) { temp1 = varForBreakConcat[key1][0]; xorFlag = varForBreakConcat[key1][1]; } else if (entry2InScope) { temp1 = varForBreakConcat[key2][0]; xorFlag = varForBreakConcat[key2][1]; } refresh_theory_var(temp1); add_nonempty_constraint(temp1); } int splitType = -1; if (x_len_exists && m_len_exists) { if (x_len < m_len) splitType = 0; else if (x_len == m_len) splitType = 1; else splitType = 2; } if (splitType == -1 && y_len_exists && str_len_exists) { if (y_len > str_len) splitType = 0; else if (y_len == str_len) splitType = 1; else splitType = 2; } TRACE("str", tout << "Split type " << splitType << std::endl;); // Provide fewer split options when length information is available. if (splitType == 0) { // M cuts Y // | x | y | // | m | str | expr_ref temp1_strAst(mk_concat(temp1, strAst), mgr); if (can_two_nodes_eq(y, temp1_strAst)) { expr_ref_vector l_items(mgr); l_items.push_back(ctx.mk_eq_atom(concatAst1, concatAst2)); expr_ref_vector r_items(mgr); expr_ref x_temp1(mk_concat(x, temp1), mgr); r_items.push_back(ctx.mk_eq_atom(m, x_temp1)); r_items.push_back(ctx.mk_eq_atom(y, temp1_strAst)); if (x_len_exists && m_len_exists) { l_items.push_back(ctx.mk_eq_atom(mk_strlen(x), mk_int(x_len))); l_items.push_back(ctx.mk_eq_atom(mk_strlen(m), mk_int(m_len))); rational m_sub_x = (m_len - x_len); r_items.push_back(ctx.mk_eq_atom(mk_strlen(temp1), mk_int(m_sub_x))); } else { l_items.push_back(ctx.mk_eq_atom(mk_strlen(y), mk_int(y_len))); l_items.push_back(ctx.mk_eq_atom(mk_strlen(strAst), mk_int(str_len))); rational y_sub_str = (y_len - str_len); r_items.push_back(ctx.mk_eq_atom(mk_strlen(temp1), mk_int(y_sub_str))); } expr_ref ax_l(mk_and(l_items), mgr); expr_ref ax_r(mk_and(r_items), mgr); if (!avoidLoopCut || !(has_self_cut(m, y))) { // break down option 2-1 add_cut_info_merge(temp1, sLevel, y); add_cut_info_merge(temp1, sLevel, m); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom(ax_l, ax_r), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ax_l, ax_r); } } else { loopDetected = true; TRACE("str", tout << "AVOID LOOP: SKIP" << std::endl;); TRACE("str", {print_cut_var(m, tout); print_cut_var(y, tout);}); if (!overlapAssumptionUsed) { overlapAssumptionUsed = true; assert_implication(ax_l, m_theoryStrOverlapAssumption_term); } } } } else if (splitType == 1) { // | x | y | // | m | str | expr_ref ax_l1(ctx.mk_eq_atom(concatAst1, concatAst2), mgr); expr_ref ax_l2(mgr.mk_or( ctx.mk_eq_atom(mk_strlen(x), mk_strlen(m)), ctx.mk_eq_atom(mk_strlen(y), mk_strlen(strAst))), mgr); expr_ref ax_l(mgr.mk_and(ax_l1, ax_l2), mgr); expr_ref ax_r(mgr.mk_and(ctx.mk_eq_atom(x, m), ctx.mk_eq_atom(y, strAst)), mgr); assert_implication(ax_l, ax_r); } else if (splitType == 2) { // m cut y, // | x | y | // | m | str | rational lenDelta; expr_ref_vector l_items(mgr); l_items.push_back(ctx.mk_eq_atom(concatAst1, concatAst2)); if (x_len_exists && m_len_exists) { l_items.push_back(ctx.mk_eq_atom(mk_strlen(x), mk_int(x_len))); l_items.push_back(ctx.mk_eq_atom(mk_strlen(m), mk_int(m_len))); lenDelta = x_len - m_len; } else { l_items.push_back(ctx.mk_eq_atom(mk_strlen(y), mk_int(y_len))); lenDelta = str_len - y_len; } TRACE("str", tout << "xLen? " << (x_len_exists ? "yes" : "no") << std::endl << "mLen? " << (m_len_exists ? "yes" : "no") << std::endl << "yLen? " << (y_len_exists ? "yes" : "no") << std::endl << "xLen = " << x_len.to_string() << std::endl << "yLen = " << y_len.to_string() << std::endl << "mLen = " << m_len.to_string() << std::endl << "strLen = " << str_len.to_string() << std::endl << "lenDelta = " << lenDelta.to_string() << std::endl << "strValue = \"" << strValue << "\" (len=" << strValue.length() << ")" << "\n" ; ); zstring part1Str = strValue.extract(0, lenDelta.get_unsigned()); zstring part2Str = strValue.extract(lenDelta.get_unsigned(), strValue.length() - lenDelta.get_unsigned()); expr_ref prefixStr(mk_string(part1Str), mgr); expr_ref x_concat(mk_concat(m, prefixStr), mgr); expr_ref cropStr(mk_string(part2Str), mgr); if (can_two_nodes_eq(x, x_concat) && can_two_nodes_eq(y, cropStr)) { expr_ref_vector r_items(mgr); r_items.push_back(ctx.mk_eq_atom(x, x_concat)); r_items.push_back(ctx.mk_eq_atom(y, cropStr)); expr_ref ax_l(mk_and(l_items), mgr); expr_ref ax_r(mk_and(r_items), mgr); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom(ax_l, ax_r), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ax_l, ax_r); } } else { // negate! It's impossible to split str with these lengths TRACE("str", tout << "CONFLICT: Impossible to split str with these lengths." << std::endl;); expr_ref ax_l(mk_and(l_items), mgr); assert_axiom(mgr.mk_not(ax_l)); } } else { // Split type -1: no idea about the length... expr_ref_vector arrangement_disjunction(mgr); expr_ref temp1_strAst(mk_concat(temp1, strAst), mgr); // m cuts y if (can_two_nodes_eq(y, temp1_strAst)) { if (!avoidLoopCut || !has_self_cut(m, y)) { // break down option 2-1 expr_ref_vector and_item(mgr); expr_ref x_temp1(mk_concat(x, temp1), mgr); and_item.push_back(ctx.mk_eq_atom(m, x_temp1)); and_item.push_back(ctx.mk_eq_atom(y, temp1_strAst)); and_item.push_back(ctx.mk_eq_atom(mk_strlen(m), m_autil.mk_add(mk_strlen(x), mk_strlen(temp1)))); expr_ref option1(mk_and(and_item), mgr); arrangement_disjunction.push_back(option1); add_theory_aware_branching_info(option1, 0.1, l_true); add_cut_info_merge(temp1, ctx.get_scope_level(), y); add_cut_info_merge(temp1, ctx.get_scope_level(), m); } else { loopDetected = true; TRACE("str", tout << "AVOID LOOP: SKIPPED" << std::endl;); TRACE("str", {print_cut_var(m, tout); print_cut_var(y, tout);}); if (!overlapAssumptionUsed) { overlapAssumptionUsed = true; arrangement_disjunction.push_back(m_theoryStrOverlapAssumption_term); } } } for (unsigned int i = 0; i <= strValue.length(); ++i) { zstring part1Str = strValue.extract(0, i); zstring part2Str = strValue.extract(i, strValue.length() - i); expr_ref prefixStr(mk_string(part1Str), mgr); expr_ref x_concat(mk_concat(m, prefixStr), mgr); expr_ref cropStr(mk_string(part2Str), mgr); if (can_two_nodes_eq(x, x_concat) && can_two_nodes_eq(y, cropStr)) { // break down option 2-2 expr_ref_vector and_item(mgr); and_item.push_back(ctx.mk_eq_atom(x, x_concat)); and_item.push_back(ctx.mk_eq_atom(y, cropStr)); and_item.push_back(ctx.mk_eq_atom(mk_strlen(y), mk_int(part2Str.length()))); expr_ref option2(mk_and(and_item), mgr); arrangement_disjunction.push_back(option2); double priority; // prioritize the option where y is equal to the original string if (i == 0) { priority = 0.5; } else { priority = 0.1; } add_theory_aware_branching_info(option2, priority, l_true); } } if (!arrangement_disjunction.empty()) { expr_ref implyR(mk_or(arrangement_disjunction), mgr); if (m_params.m_StrongArrangements) { expr_ref implyLHS(ctx.mk_eq_atom(concatAst1, concatAst2), mgr); expr_ref ax_strong(ctx.mk_eq_atom(implyLHS, implyR), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ctx.mk_eq_atom(concatAst1, concatAst2), implyR); } generate_mutual_exclusion(arrangement_disjunction); } else { TRACE("str", tout << "STOP: Should not split two EQ concats." << std::endl;); } } // (splitType == -1) } /************************************************************* * Type 3: concat(x, y) = concat("str", n) *************************************************************/ bool theory_str::is_concat_eq_type3(expr * concatAst1, expr * concatAst2) { expr * v1_arg0 = to_app(concatAst1)->get_arg(0); expr * v1_arg1 = to_app(concatAst1)->get_arg(1); expr * v2_arg0 = to_app(concatAst2)->get_arg(0); expr * v2_arg1 = to_app(concatAst2)->get_arg(1); if (u.str.is_string(v1_arg0) && (!u.str.is_string(v1_arg1)) && (!u.str.is_string(v2_arg0)) && (!u.str.is_string(v2_arg1))) { return true; } else if (u.str.is_string(v2_arg0) && (!u.str.is_string(v2_arg1)) && (!u.str.is_string(v1_arg0)) && (!u.str.is_string(v1_arg1))) { return true; } else { return false; } } void theory_str::process_concat_eq_type3(expr * concatAst1, expr * concatAst2) { ast_manager & mgr = get_manager(); bool overlapAssumptionUsed = false; TRACE("str", tout << "process_concat_eq TYPE 3" << std::endl << "concatAst1 = " << mk_ismt2_pp(concatAst1, mgr) << std::endl << "concatAst2 = " << mk_ismt2_pp(concatAst2, mgr) << std::endl; ); if (!u.str.is_concat(to_app(concatAst1))) { TRACE("str", tout << "concatAst1 is not a concat function" << std::endl;); return; } if (!u.str.is_concat(to_app(concatAst2))) { TRACE("str", tout << "concatAst2 is not a concat function" << std::endl;); return; } expr * v1_arg0 = to_app(concatAst1)->get_arg(0); expr * v1_arg1 = to_app(concatAst1)->get_arg(1); expr * v2_arg0 = to_app(concatAst2)->get_arg(0); expr * v2_arg1 = to_app(concatAst2)->get_arg(1); expr * x = nullptr; expr * y = nullptr; expr * strAst = nullptr; expr * n = nullptr; if (u.str.is_string(v1_arg0) && !u.str.is_string(v2_arg0)) { strAst = v1_arg0; n = v1_arg1; x = v2_arg0; y = v2_arg1; } else { strAst = v2_arg0; n = v2_arg1; x = v1_arg0; y = v1_arg1; } zstring strValue; u.str.is_string(strAst, strValue); rational x_len, y_len, str_len, n_len; bool x_len_exists = get_len_value(x, x_len); bool y_len_exists = get_len_value(y, y_len); str_len = rational((unsigned)(strValue.length())); bool n_len_exists = get_len_value(n, n_len); expr_ref xorFlag(mgr); expr_ref temp1(mgr); std::pair key1(concatAst1, concatAst2); std::pair key2(concatAst2, concatAst1); // check the entries in this map to make sure they're still in scope // before we use them. std::map, std::map >::iterator entry1 = varForBreakConcat.find(key1); std::map, std::map >::iterator entry2 = varForBreakConcat.find(key2); bool entry1InScope; if (entry1 == varForBreakConcat.end()) { entry1InScope = false; } else { if (internal_variable_set.find((entry1->second)[0]) == internal_variable_set.end() /* || internal_variable_set.find((entry1->second)[1]) == internal_variable_set.end() */) { entry1InScope = false; } else { entry1InScope = true; } } bool entry2InScope; if (entry2 == varForBreakConcat.end()) { entry2InScope = false; } else { if (internal_variable_set.find((entry2->second)[0]) == internal_variable_set.end() /* || internal_variable_set.find((entry2->second)[1]) == internal_variable_set.end() */) { entry2InScope = false; } else { entry2InScope = true; } } TRACE("str", tout << "entry 1 " << (entry1InScope ? "in scope" : "not in scope") << std::endl << "entry 2 " << (entry2InScope ? "in scope" : "not in scope") << std::endl;); if (!entry1InScope && !entry2InScope) { temp1 = mk_nonempty_str_var(); xorFlag = mk_internal_xor_var(); varForBreakConcat[key1][0] = temp1; varForBreakConcat[key1][1] = xorFlag; } else { if (entry1InScope) { temp1 = varForBreakConcat[key1][0]; xorFlag = varForBreakConcat[key1][1]; } else if (varForBreakConcat.find(key2) != varForBreakConcat.end()) { temp1 = varForBreakConcat[key2][0]; xorFlag = varForBreakConcat[key2][1]; } refresh_theory_var(temp1); add_nonempty_constraint(temp1); } int splitType = -1; if (x_len_exists) { if (x_len < str_len) splitType = 0; else if (x_len == str_len) splitType = 1; else splitType = 2; } if (splitType == -1 && y_len_exists && n_len_exists) { if (y_len > n_len) splitType = 0; else if (y_len == n_len) splitType = 1; else splitType = 2; } TRACE("str", tout << "Split type " << splitType << std::endl;); // Provide fewer split options when length information is available. if (splitType == 0) { // | x | y | // | str | n | expr_ref_vector litems(mgr); litems.push_back(ctx.mk_eq_atom(concatAst1, concatAst2)); rational prefixLen; if (!x_len_exists) { prefixLen = str_len - (y_len - n_len); litems.push_back(ctx.mk_eq_atom(mk_strlen(y), mk_int(y_len))); litems.push_back(ctx.mk_eq_atom(mk_strlen(n), mk_int(n_len))); } else { prefixLen = x_len; litems.push_back(ctx.mk_eq_atom(mk_strlen(x), mk_int(x_len))); } zstring prefixStr = strValue.extract(0, prefixLen.get_unsigned()); rational str_sub_prefix = str_len - prefixLen; zstring suffixStr = strValue.extract(prefixLen.get_unsigned(), str_sub_prefix.get_unsigned()); expr_ref prefixAst(mk_string(prefixStr), mgr); expr_ref suffixAst(mk_string(suffixStr), mgr); expr_ref ax_l(mgr.mk_and(litems.size(), litems.c_ptr()), mgr); expr_ref suf_n_concat(mk_concat(suffixAst, n), mgr); if (can_two_nodes_eq(x, prefixAst) && can_two_nodes_eq(y, suf_n_concat)) { expr_ref_vector r_items(mgr); r_items.push_back(ctx.mk_eq_atom(x, prefixAst)); r_items.push_back(ctx.mk_eq_atom(y, suf_n_concat)); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom(ax_l, mk_and(r_items)), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ax_l, mk_and(r_items)); } } else { // negate! It's impossible to split str with these lengths TRACE("str", tout << "CONFLICT: Impossible to split str with these lengths." << std::endl;); assert_axiom(mgr.mk_not(ax_l)); } } else if (splitType == 1) { expr_ref ax_l1(ctx.mk_eq_atom(concatAst1, concatAst2), mgr); expr_ref ax_l2(mgr.mk_or( ctx.mk_eq_atom(mk_strlen(x), mk_strlen(strAst)), ctx.mk_eq_atom(mk_strlen(y), mk_strlen(n))), mgr); expr_ref ax_l(mgr.mk_and(ax_l1, ax_l2), mgr); expr_ref ax_r(mgr.mk_and(ctx.mk_eq_atom(x, strAst), ctx.mk_eq_atom(y, n)), mgr); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom(ax_l, ax_r), mgr); assert_axiom(ax_strong); } else { assert_implication(ax_l, ax_r); } } else if (splitType == 2) { // | x | y | // | str | n | expr_ref_vector litems(mgr); litems.push_back(ctx.mk_eq_atom(concatAst1, concatAst2)); rational tmpLen; if (!x_len_exists) { tmpLen = n_len - y_len; litems.push_back(ctx.mk_eq_atom(mk_strlen(y), mk_int(y_len))); litems.push_back(ctx.mk_eq_atom(mk_strlen(n), mk_int(n_len))); } else { tmpLen = x_len - str_len; litems.push_back(ctx.mk_eq_atom(mk_strlen(x), mk_int(x_len))); } expr_ref ax_l(mgr.mk_and(litems.size(), litems.c_ptr()), mgr); expr_ref str_temp1(mk_concat(strAst, temp1), mgr); expr_ref temp1_y(mk_concat(temp1, y), mgr); if (can_two_nodes_eq(x, str_temp1)) { if (!avoidLoopCut || !(has_self_cut(x, n))) { expr_ref_vector r_items(mgr); r_items.push_back(ctx.mk_eq_atom(x, str_temp1)); r_items.push_back(ctx.mk_eq_atom(n, temp1_y)); r_items.push_back(ctx.mk_eq_atom(mk_strlen(temp1), mk_int(tmpLen))); expr_ref ax_r(mk_and(r_items), mgr); //Cut Info add_cut_info_merge(temp1, sLevel, x); add_cut_info_merge(temp1, sLevel, n); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom(ax_l, ax_r), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ax_l, ax_r); } } else { loopDetected = true; TRACE("str", tout << "AVOID LOOP: SKIPPED" << std::endl;); TRACE("str", {print_cut_var(x, tout); print_cut_var(n, tout);}); if (!overlapAssumptionUsed) { overlapAssumptionUsed = true; assert_implication(ax_l, m_theoryStrOverlapAssumption_term); } } } // else { // // negate! It's impossible to split str with these lengths // __debugPrint(logFile, "[Conflict] Negate! It's impossible to split str with these lengths @ %d.\n", __LINE__); // addAxiom(t, Z3_mk_not(ctx, ax_l), __LINE__); // } } else { // Split type -1. We know nothing about the length... expr_ref_vector arrangement_disjunction(mgr); int pos = 1; for (unsigned int i = 0; i <= strValue.length(); i++) { zstring part1Str = strValue.extract(0, i); zstring part2Str = strValue.extract(i, strValue.length() - i); expr_ref cropStr(mk_string(part1Str), mgr); expr_ref suffixStr(mk_string(part2Str), mgr); expr_ref y_concat(mk_concat(suffixStr, n), mgr); if (can_two_nodes_eq(x, cropStr) && can_two_nodes_eq(y, y_concat)) { expr_ref_vector and_item(mgr); // break down option 3-1 expr_ref x_eq_str(ctx.mk_eq_atom(x, cropStr), mgr); and_item.push_back(x_eq_str); ++pos; and_item.push_back(ctx.mk_eq_atom(y, y_concat)); and_item.push_back(ctx.mk_eq_atom(mk_strlen(x), mk_strlen(cropStr))); ++pos; // and_item[pos++] = Z3_mk_eq(ctx, or_item[option], Z3_mk_eq(ctx, mk_length(t, y), mk_length(t, y_concat))); // adding length constraint for _ = constStr seems slowing things down. expr_ref option1(mk_and(and_item), mgr); ctx.get_rewriter()(option1); arrangement_disjunction.push_back(option1); double priority; if (i == strValue.length()) { priority = 0.5; } else { priority = 0.1; } add_theory_aware_branching_info(option1, priority, l_true); } } expr_ref strAst_temp1(mk_concat(strAst, temp1), mgr); //-------------------------------------------------------- // x cut n //-------------------------------------------------------- if (can_two_nodes_eq(x, strAst_temp1)) { if (!avoidLoopCut || !(has_self_cut(x, n))) { // break down option 3-2 expr_ref_vector and_item(mgr); expr_ref temp1_y(mk_concat(temp1, y), mgr); and_item.push_back(ctx.mk_eq_atom(x, strAst_temp1)); ++pos; and_item.push_back(ctx.mk_eq_atom(n, temp1_y)); ++pos; and_item.push_back(ctx.mk_eq_atom(mk_strlen(x), m_autil.mk_add(mk_strlen(strAst), mk_strlen(temp1)) ) ); ++pos; expr_ref option2(mk_and(and_item), mgr); arrangement_disjunction.push_back(option2); add_theory_aware_branching_info(option2, 0.1, l_true); add_cut_info_merge(temp1, sLevel, x); add_cut_info_merge(temp1, sLevel, n); } else { loopDetected = true; TRACE("str", tout << "AVOID LOOP: SKIPPED." << std::endl;); TRACE("str", {print_cut_var(x, tout); print_cut_var(n, tout);}); if (!overlapAssumptionUsed) { overlapAssumptionUsed = true; arrangement_disjunction.push_back(m_theoryStrOverlapAssumption_term); } } } if (!arrangement_disjunction.empty()) { expr_ref implyR(mk_or(arrangement_disjunction), mgr); if (m_params.m_StrongArrangements) { expr_ref ax_lhs(ctx.mk_eq_atom(concatAst1, concatAst2), mgr); expr_ref ax_strong(ctx.mk_eq_atom(ax_lhs, implyR), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ctx.mk_eq_atom(concatAst1, concatAst2), implyR); } generate_mutual_exclusion(arrangement_disjunction); } else { TRACE("str", tout << "STOP: should not split two eq. concats" << std::endl;); } } } /************************************************************* * Type 4: concat("str1", y) = concat("str2", n) *************************************************************/ bool theory_str::is_concat_eq_type4(expr * concatAst1, expr * concatAst2) { expr * v1_arg0 = to_app(concatAst1)->get_arg(0); expr * v1_arg1 = to_app(concatAst1)->get_arg(1); expr * v2_arg0 = to_app(concatAst2)->get_arg(0); expr * v2_arg1 = to_app(concatAst2)->get_arg(1); if (u.str.is_string(v1_arg0) && (!u.str.is_string(v1_arg1)) && u.str.is_string(v2_arg0) && (!u.str.is_string(v2_arg1))) { return true; } else { return false; } } void theory_str::process_concat_eq_type4(expr * concatAst1, expr * concatAst2) { ast_manager & mgr = get_manager(); TRACE("str", tout << "process_concat_eq TYPE 4" << std::endl << "concatAst1 = " << mk_ismt2_pp(concatAst1, mgr) << std::endl << "concatAst2 = " << mk_ismt2_pp(concatAst2, mgr) << std::endl; ); if (!u.str.is_concat(to_app(concatAst1))) { TRACE("str", tout << "concatAst1 is not a concat function" << std::endl;); return; } if (!u.str.is_concat(to_app(concatAst2))) { TRACE("str", tout << "concatAst2 is not a concat function" << std::endl;); return; } expr * v1_arg0 = to_app(concatAst1)->get_arg(0); expr * v1_arg1 = to_app(concatAst1)->get_arg(1); expr * v2_arg0 = to_app(concatAst2)->get_arg(0); expr * v2_arg1 = to_app(concatAst2)->get_arg(1); expr * str1Ast = v1_arg0; expr * y = v1_arg1; expr * str2Ast = v2_arg0; expr * n = v2_arg1; zstring str1Value, str2Value; u.str.is_string(str1Ast, str1Value); u.str.is_string(str2Ast, str2Value); unsigned int str1Len = str1Value.length(); unsigned int str2Len = str2Value.length(); int commonLen = (str1Len > str2Len) ? str2Len : str1Len; if (str1Value.extract(0, commonLen) != str2Value.extract(0, commonLen)) { TRACE("str", tout << "Conflict: " << mk_ismt2_pp(concatAst1, mgr) << " has no common prefix with " << mk_ismt2_pp(concatAst2, mgr) << std::endl;); expr_ref toNegate(mgr.mk_not(ctx.mk_eq_atom(concatAst1, concatAst2)), mgr); assert_axiom(toNegate); return; } else { if (str1Len > str2Len) { zstring deltaStr = str1Value.extract(str2Len, str1Len - str2Len); expr_ref tmpAst(mk_concat(mk_string(deltaStr), y), mgr); if (!in_same_eqc(tmpAst, n)) { // break down option 4-1 expr_ref implyR(ctx.mk_eq_atom(n, tmpAst), mgr); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom( ctx.mk_eq_atom(concatAst1, concatAst2), implyR ), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ctx.mk_eq_atom(concatAst1, concatAst2), implyR); } } } else if (str1Len == str2Len) { if (!in_same_eqc(n, y)) { //break down option 4-2 expr_ref implyR(ctx.mk_eq_atom(n, y), mgr); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom( ctx.mk_eq_atom(concatAst1, concatAst2), implyR ), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ctx.mk_eq_atom(concatAst1, concatAst2), implyR); } } } else { zstring deltaStr = str2Value.extract(str1Len, str2Len - str1Len); expr_ref tmpAst(mk_concat(mk_string(deltaStr), n), mgr); if (!in_same_eqc(y, tmpAst)) { //break down option 4-3 expr_ref implyR(ctx.mk_eq_atom(y, tmpAst), mgr); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom( ctx.mk_eq_atom(concatAst1, concatAst2), implyR ), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ctx.mk_eq_atom(concatAst1, concatAst2), implyR); } } } } } /************************************************************* * case 5: concat(x, "str1") = concat(m, "str2") *************************************************************/ bool theory_str::is_concat_eq_type5(expr * concatAst1, expr * concatAst2) { expr * v1_arg0 = to_app(concatAst1)->get_arg(0); expr * v1_arg1 = to_app(concatAst1)->get_arg(1); expr * v2_arg0 = to_app(concatAst2)->get_arg(0); expr * v2_arg1 = to_app(concatAst2)->get_arg(1); if ((!u.str.is_string(v1_arg0)) && u.str.is_string(v1_arg1) && (!u.str.is_string(v2_arg0)) && u.str.is_string(v2_arg1)) { return true; } else { return false; } } void theory_str::process_concat_eq_type5(expr * concatAst1, expr * concatAst2) { ast_manager & mgr = get_manager(); TRACE("str", tout << "process_concat_eq TYPE 5" << std::endl << "concatAst1 = " << mk_ismt2_pp(concatAst1, mgr) << std::endl << "concatAst2 = " << mk_ismt2_pp(concatAst2, mgr) << std::endl; ); if (!u.str.is_concat(to_app(concatAst1))) { TRACE("str", tout << "concatAst1 is not a concat function" << std::endl;); return; } if (!u.str.is_concat(to_app(concatAst2))) { TRACE("str", tout << "concatAst2 is not a concat function" << std::endl;); return; } expr * v1_arg0 = to_app(concatAst1)->get_arg(0); expr * v1_arg1 = to_app(concatAst1)->get_arg(1); expr * v2_arg0 = to_app(concatAst2)->get_arg(0); expr * v2_arg1 = to_app(concatAst2)->get_arg(1); expr * x = v1_arg0; expr * str1Ast = v1_arg1; expr * m = v2_arg0; expr * str2Ast = v2_arg1; zstring str1Value, str2Value; u.str.is_string(str1Ast, str1Value); u.str.is_string(str2Ast, str2Value); unsigned int str1Len = str1Value.length(); unsigned int str2Len = str2Value.length(); int cLen = (str1Len > str2Len) ? str2Len : str1Len; if (str1Value.extract(str1Len - cLen, cLen) != str2Value.extract(str2Len - cLen, cLen)) { TRACE("str", tout << "Conflict: " << mk_ismt2_pp(concatAst1, mgr) << " has no common suffix with " << mk_ismt2_pp(concatAst2, mgr) << std::endl;); expr_ref toNegate(mgr.mk_not(ctx.mk_eq_atom(concatAst1, concatAst2)), mgr); assert_axiom(toNegate); return; } else { if (str1Len > str2Len) { zstring deltaStr = str1Value.extract(0, str1Len - str2Len); expr_ref x_deltaStr(mk_concat(x, mk_string(deltaStr)), mgr); if (!in_same_eqc(m, x_deltaStr)) { expr_ref implyR(ctx.mk_eq_atom(m, x_deltaStr), mgr); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom( ctx.mk_eq_atom(concatAst1, concatAst2), implyR ), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ctx.mk_eq_atom(concatAst1, concatAst2), implyR); } } } else if (str1Len == str2Len) { // test if (!in_same_eqc(x, m)) { expr_ref implyR(ctx.mk_eq_atom(x, m), mgr); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom( ctx.mk_eq_atom(concatAst1, concatAst2), implyR ), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ctx.mk_eq_atom(concatAst1, concatAst2), implyR); } } } else { zstring deltaStr = str2Value.extract(0, str2Len - str1Len); expr_ref m_deltaStr(mk_concat(m, mk_string(deltaStr)), mgr); if (!in_same_eqc(x, m_deltaStr)) { expr_ref implyR(ctx.mk_eq_atom(x, m_deltaStr), mgr); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom( ctx.mk_eq_atom(concatAst1, concatAst2), implyR ), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ctx.mk_eq_atom(concatAst1, concatAst2), implyR); } } } } } /************************************************************* * case 6: concat("str1", y) = concat(m, "str2") *************************************************************/ bool theory_str::is_concat_eq_type6(expr * concatAst1, expr * concatAst2) { expr * v1_arg0 = to_app(concatAst1)->get_arg(0); expr * v1_arg1 = to_app(concatAst1)->get_arg(1); expr * v2_arg0 = to_app(concatAst2)->get_arg(0); expr * v2_arg1 = to_app(concatAst2)->get_arg(1); if (u.str.is_string(v1_arg0) && (!u.str.is_string(v1_arg1)) && (!u.str.is_string(v2_arg0)) && u.str.is_string(v2_arg1)) { return true; } else if (u.str.is_string(v2_arg0) && (!u.str.is_string(v2_arg1)) && (!u.str.is_string(v1_arg0)) && u.str.is_string(v1_arg1)) { return true; } else { return false; } } void theory_str::process_concat_eq_type6(expr * concatAst1, expr * concatAst2) { ast_manager & mgr = get_manager(); TRACE("str", tout << "process_concat_eq TYPE 6" << std::endl << "concatAst1 = " << mk_ismt2_pp(concatAst1, mgr) << std::endl << "concatAst2 = " << mk_ismt2_pp(concatAst2, mgr) << std::endl; ); if (!u.str.is_concat(to_app(concatAst1))) { TRACE("str", tout << "concatAst1 is not a concat function" << std::endl;); return; } if (!u.str.is_concat(to_app(concatAst2))) { TRACE("str", tout << "concatAst2 is not a concat function" << std::endl;); return; } expr * v1_arg0 = to_app(concatAst1)->get_arg(0); expr * v1_arg1 = to_app(concatAst1)->get_arg(1); expr * v2_arg0 = to_app(concatAst2)->get_arg(0); expr * v2_arg1 = to_app(concatAst2)->get_arg(1); expr * str1Ast = nullptr; expr * y = nullptr; expr * m = nullptr; expr * str2Ast = nullptr; if (u.str.is_string(v1_arg0)) { str1Ast = v1_arg0; y = v1_arg1; m = v2_arg0; str2Ast = v2_arg1; } else { str1Ast = v2_arg0; y = v2_arg1; m = v1_arg0; str2Ast = v1_arg1; } zstring str1Value, str2Value; u.str.is_string(str1Ast, str1Value); u.str.is_string(str2Ast, str2Value); unsigned int str1Len = str1Value.length(); unsigned int str2Len = str2Value.length(); //---------------------------------------- //(a) |---str1---|----y----| // |--m--|-----str2-----| // //(b) |---str1---|----y----| // |-----m----|--str2---| // //(c) |---str1---|----y----| // |------m------|-str2-| //---------------------------------------- std::list overlapLen; overlapLen.push_back(0); for (unsigned int i = 1; i <= str1Len && i <= str2Len; i++) { if (str1Value.extract(str1Len - i, i) == str2Value.extract(0, i)) overlapLen.push_back(i); } //---------------------------------------------------------------- expr_ref commonVar(mgr); expr * xorFlag = nullptr; std::pair key1(concatAst1, concatAst2); std::pair key2(concatAst2, concatAst1); // check the entries in this map to make sure they're still in scope // before we use them. std::map, std::map >::iterator entry1 = varForBreakConcat.find(key1); std::map, std::map >::iterator entry2 = varForBreakConcat.find(key2); bool entry1InScope; if (entry1 == varForBreakConcat.end()) { entry1InScope = false; } else { if (internal_variable_set.find((entry1->second)[0]) == internal_variable_set.end() /* || internal_variable_set.find((entry1->second)[1]) == internal_variable_set.end() */) { entry1InScope = false; } else { entry1InScope = true; } } bool entry2InScope; if (entry2 == varForBreakConcat.end()) { entry2InScope = false; } else { if (internal_variable_set.find((entry2->second)[0]) == internal_variable_set.end() /* || internal_variable_set.find((entry2->second)[1]) == internal_variable_set.end() */) { entry2InScope = false; } else { entry2InScope = true; } } TRACE("str", tout << "entry 1 " << (entry1InScope ? "in scope" : "not in scope") << std::endl << "entry 2 " << (entry2InScope ? "in scope" : "not in scope") << std::endl;); if (!entry1InScope && !entry2InScope) { commonVar = mk_nonempty_str_var(); xorFlag = mk_internal_xor_var(); varForBreakConcat[key1][0] = commonVar; varForBreakConcat[key1][1] = xorFlag; } else { if (entry1InScope) { commonVar = (entry1->second)[0]; xorFlag = (entry1->second)[1]; } else { commonVar = (entry2->second)[0]; xorFlag = (entry2->second)[1]; } refresh_theory_var(commonVar); add_nonempty_constraint(commonVar); } bool overlapAssumptionUsed = false; expr_ref_vector arrangement_disjunction(mgr); int pos = 1; if (!avoidLoopCut || !has_self_cut(m, y)) { expr_ref_vector and_item(mgr); expr_ref str1_commonVar(mk_concat(str1Ast, commonVar), mgr); and_item.push_back(ctx.mk_eq_atom(m, str1_commonVar)); pos += 1; expr_ref commonVar_str2(mk_concat(commonVar, str2Ast), mgr); and_item.push_back(ctx.mk_eq_atom(y, commonVar_str2)); pos += 1; and_item.push_back(ctx.mk_eq_atom(mk_strlen(m), m_autil.mk_add(mk_strlen(str1Ast), mk_strlen(commonVar)) )); pos += 1; // addItems[0] = mk_length(t, commonVar); // addItems[1] = mk_length(t, str2Ast); // and_item[pos++] = Z3_mk_eq(ctx, or_item[option], Z3_mk_eq(ctx, mk_length(t, y), Z3_mk_add(ctx, 2, addItems))); expr_ref option1(mk_and(and_item), mgr); arrangement_disjunction.push_back(option1); add_theory_aware_branching_info(option1, 0.1, l_true); } else { loopDetected = true; TRACE("str", tout << "AVOID LOOP: SKIPPED." << std::endl;); TRACE("str", print_cut_var(m, tout); print_cut_var(y, tout);); // only add the overlap assumption one time if (!overlapAssumptionUsed) { arrangement_disjunction.push_back(m_theoryStrOverlapAssumption_term); overlapAssumptionUsed = true; } } for (unsigned int overLen : overlapLen) { zstring prefix = str1Value.extract(0, str1Len - overLen); zstring suffix = str2Value.extract(overLen, str2Len - overLen); expr_ref_vector and_item(mgr); expr_ref prefixAst(mk_string(prefix), mgr); expr_ref x_eq_prefix(ctx.mk_eq_atom(m, prefixAst), mgr); and_item.push_back(x_eq_prefix); pos += 1; and_item.push_back( ctx.mk_eq_atom(mk_strlen(m), mk_strlen(prefixAst))); pos += 1; // adding length constraint for _ = constStr seems slowing things down. expr_ref suffixAst(mk_string(suffix), mgr); expr_ref y_eq_suffix(ctx.mk_eq_atom(y, suffixAst), mgr); and_item.push_back(y_eq_suffix); pos += 1; and_item.push_back(ctx.mk_eq_atom(mk_strlen(y), mk_strlen(suffixAst))); pos += 1; expr_ref option2(mk_and(and_item), mgr); arrangement_disjunction.push_back(option2); double priority; // prefer the option "str1" = x if (prefix == str1Value) { priority = 0.5; } else { priority = 0.1; } add_theory_aware_branching_info(option2, priority, l_true); } // case 6: concat("str1", y) = concat(m, "str2") expr_ref implyR(mk_or(arrangement_disjunction), mgr); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom( ctx.mk_eq_atom(concatAst1, concatAst2), implyR ), mgr); assert_axiom_rw(ax_strong); } else { assert_implication(ctx.mk_eq_atom(concatAst1, concatAst2), implyR); } generate_mutual_exclusion(arrangement_disjunction); } bool theory_str::get_string_constant_eqc(expr * e, zstring & stringVal) { bool exists; expr * strExpr = get_eqc_value(e, exists); if (!exists) { return false;} u.str.is_string(strExpr, stringVal); return true; } /* * Look through the equivalence class of n to find a string constant. * Return that constant if it is found, and set hasEqcValue to true. * Otherwise, return n, and set hasEqcValue to false. */ expr * theory_str::get_eqc_value(expr * n, bool & hasEqcValue) { return z3str2_get_eqc_value(n, hasEqcValue); } // Simulate the behaviour of get_eqc_value() from Z3str2. // We only check m_find for a string constant. expr * theory_str::z3str2_get_eqc_value(expr * n , bool & hasEqcValue) { theory_var curr = get_var(n); if (curr != null_theory_var) { curr = m_find.find(curr); theory_var first = curr; do { expr* a = get_ast(curr); if (u.str.is_string(a)) { hasEqcValue = true; return a; } curr = m_find.next(curr); } while (curr != first && curr != null_theory_var); } hasEqcValue = false; return n; } bool theory_str::get_arith_value(expr* e, rational& val) const { ast_manager & m = get_manager(); (void)m; if (!ctx.e_internalized(e)) { return false; } // check root of the eqc for an integer constant // if an integer constant exists in the eqc, it should be the root enode * en_e = ctx.get_enode(e); enode * root_e = en_e->get_root(); if (m_autil.is_numeral(root_e->get_owner(), val) && val.is_int()) { TRACE("str", tout << mk_pp(e, get_manager()) << " ~= " << mk_pp(root_e->get_owner(), get_manager()) << std::endl;); return true; } else { TRACE("str", tout << "root of eqc of " << mk_pp(e, get_manager()) << " is not a numeral" << std::endl;); return false; } } bool theory_str::lower_bound(expr* _e, rational& lo) { if (opt_DisableIntegerTheoryIntegration) { TRACE("str", tout << "WARNING: integer theory integration disabled" << std::endl;); return false; } arith_value v(get_manager()); v.init(&ctx); bool strict; return v.get_lo_equiv(_e, lo, strict); } bool theory_str::upper_bound(expr* _e, rational& hi) { if (opt_DisableIntegerTheoryIntegration) { TRACE("str", tout << "WARNING: integer theory integration disabled" << std::endl;); return false; } arith_value v(get_manager()); v.init(&ctx); bool strict; return v.get_up_equiv(_e, hi, strict); } bool theory_str::get_len_value(expr* e, rational& val) { if (opt_DisableIntegerTheoryIntegration) { TRACE("str", tout << "WARNING: integer theory integration disabled" << std::endl;); return false; } ast_manager & m = get_manager(); TRACE("str", tout << "checking len value of " << mk_ismt2_pp(e, m) << std::endl;); rational val1; expr_ref len(m), len_val(m); expr* e1, *e2; ptr_vector todo; todo.push_back(e); val.reset(); while (!todo.empty()) { expr* c = todo.back(); todo.pop_back(); if (u.str.is_concat(to_app(c))) { e1 = to_app(c)->get_arg(0); e2 = to_app(c)->get_arg(1); todo.push_back(e1); todo.push_back(e2); } else if (u.str.is_string(to_app(c))) { zstring tmp; u.str.is_string(to_app(c), tmp); unsigned int sl = tmp.length(); val += rational(sl); } else { len = mk_strlen(c); // debugging TRACE("str", { tout << mk_pp(len, m) << ":" << std::endl << (ctx.is_relevant(len.get()) ? "relevant" : "not relevant") << std::endl << (ctx.e_internalized(len) ? "internalized" : "not internalized") << std::endl ; if (ctx.e_internalized(len)) { enode * e_len = ctx.get_enode(len); tout << "has " << e_len->get_num_th_vars() << " theory vars" << std::endl; // eqc debugging { tout << "dump equivalence class of " << mk_pp(len, get_manager()) << std::endl; enode * nNode = ctx.get_enode(len); enode * eqcNode = nNode; do { app * ast = eqcNode->get_owner(); tout << mk_pp(ast, get_manager()) << std::endl; eqcNode = eqcNode->get_next(); } while (eqcNode != nNode); } } }); if (ctx.e_internalized(len) && get_arith_value(len, val1)) { val += val1; TRACE("str", tout << "integer theory: subexpression " << mk_ismt2_pp(len, m) << " has length " << val1 << std::endl;); } else { TRACE("str", tout << "integer theory: subexpression " << mk_ismt2_pp(len, m) << " has no length assignment; bailing out" << std::endl;); return false; } } } TRACE("str", tout << "length of " << mk_ismt2_pp(e, m) << " is " << val << std::endl;); return val.is_int() && val.is_nonneg(); } /* * Decide whether n1 and n2 are already in the same equivalence class. * This only checks whether the core considers them to be equal; * they may not actually be equal. */ bool theory_str::in_same_eqc(expr * n1, expr * n2) { if (n1 == n2) return true; // similar to get_eqc_value(), make absolutely sure // that we've set this up properly for the context if (!ctx.e_internalized(n1)) { TRACE("str", tout << "WARNING: expression " << mk_ismt2_pp(n1, get_manager()) << " was not internalized" << std::endl;); ctx.internalize(n1, false); } if (!ctx.e_internalized(n2)) { TRACE("str", tout << "WARNING: expression " << mk_ismt2_pp(n2, get_manager()) << " was not internalized" << std::endl;); ctx.internalize(n2, false); } expr * curr = get_eqc_next(n1); while (curr != n1) { if (curr == n2) return true; curr = get_eqc_next(curr); } return false; } expr * theory_str::collect_eq_nodes(expr * n, expr_ref_vector & eqcSet) { expr * constStrNode = nullptr; expr * ex = n; do { if (u.str.is_string(to_app(ex))) { constStrNode = ex; } eqcSet.push_back(ex); ex = get_eqc_next(ex); } while (ex != n); return constStrNode; } /* * Collect constant strings (from left to right) in an AST node. */ void theory_str::get_const_str_asts_in_node(expr * node, expr_ref_vector & astList) { if (u.str.is_string(node)) { astList.push_back(node); //} else if (getNodeType(t, node) == my_Z3_Func) { } else if (is_app(node)) { app * func_app = to_app(node); unsigned int argCount = func_app->get_num_args(); for (unsigned int i = 0; i < argCount; i++) { expr * argAst = func_app->get_arg(i); get_const_str_asts_in_node(argAst, astList); } } } void theory_str::check_contain_by_eqc_val(expr * varNode, expr * constNode) { ast_manager & m = get_manager(); TRACE("str", tout << "varNode = " << mk_pp(varNode, m) << ", constNode = " << mk_pp(constNode, m) << std::endl;); expr_ref_vector litems(m); if (contain_pair_idx_map.contains(varNode)) { for (auto entry : contain_pair_idx_map[varNode]) { expr * strAst = entry.first; expr * substrAst = entry.second; expr * boolVar = nullptr; if (!contain_pair_bool_map.find(strAst, substrAst, boolVar)) { TRACE("str", tout << "warning: no entry for boolVar in contain_pair_bool_map" << std::endl;); } // we only want to inspect the Contains terms where either of strAst or substrAst // are equal to varNode. TRACE("t_str_detail", tout << "considering Contains with strAst = " << mk_pp(strAst, m) << ", substrAst = " << mk_pp(substrAst, m) << "..." << std::endl;); if (varNode != strAst && varNode != substrAst) { TRACE("str", tout << "varNode not equal to strAst or substrAst, skip" << std::endl;); continue; } TRACE("str", tout << "varNode matched one of strAst or substrAst. Continuing" << std::endl;); // varEqcNode is str if (strAst == varNode) { expr_ref implyR(m); litems.reset(); if (strAst != constNode) { litems.push_back(ctx.mk_eq_atom(strAst, constNode)); } zstring strConst; u.str.is_string(constNode, strConst); bool subStrHasEqcValue = false; expr * substrValue = get_eqc_value(substrAst, subStrHasEqcValue); if (substrValue != substrAst) { litems.push_back(ctx.mk_eq_atom(substrAst, substrValue)); } if (subStrHasEqcValue) { // subStr has an eqc constant value zstring subStrConst; u.str.is_string(substrValue, subStrConst); TRACE("t_str_detail", tout << "strConst = " << strConst << ", subStrConst = " << subStrConst << "\n";); if (strConst.contains(subStrConst)) { //implyR = ctx.mk_eq(ctx, boolVar, Z3_mk_true(ctx)); implyR = boolVar; } else { //implyR = Z3_mk_eq(ctx, boolVar, Z3_mk_false(ctx)); implyR = mk_not(m, boolVar); } } else { // ------------------------------------------------------------------------------------------------ // subStr doesn't have an eqc constant value // however, subStr equals to some concat(arg_1, arg_2, ..., arg_n) // if arg_j is a constant and is not a part of the strConst, it's sure that the contains is false // ** This check is needed here because the "strConst" and "strAst" may not be in a same eqc yet // ------------------------------------------------------------------------------------------------ // collect eqc concat std::set eqcConcats; get_concats_in_eqc(substrAst, eqcConcats); for (expr * aConcat : eqcConcats) { expr_ref_vector constList(m); bool counterEgFound = false; get_const_str_asts_in_node(aConcat, constList); for (auto const& cst : constList) { zstring pieceStr; u.str.is_string(cst, pieceStr); if (!strConst.contains(pieceStr)) { counterEgFound = true; if (aConcat != substrAst) { litems.push_back(ctx.mk_eq_atom(substrAst, aConcat)); } implyR = mk_not(m, boolVar); break; } } if (counterEgFound) { TRACE("str", tout << "Inconsistency found!" << std::endl;); break; } } } // add assertion if (implyR) { expr_ref implyLHS(mk_and(litems), m); assert_implication(implyLHS, implyR); } } // varEqcNode is subStr else if (substrAst == varNode) { expr_ref implyR(m); litems.reset(); if (substrAst != constNode) { litems.push_back(ctx.mk_eq_atom(substrAst, constNode)); } bool strHasEqcValue = false; expr * strValue = get_eqc_value(strAst, strHasEqcValue); if (strValue != strAst) { litems.push_back(ctx.mk_eq_atom(strAst, strValue)); } if (strHasEqcValue) { zstring strConst, subStrConst; u.str.is_string(strValue, strConst); u.str.is_string(constNode, subStrConst); if (strConst.contains(subStrConst)) { //implyR = Z3_mk_eq(ctx, boolVar, Z3_mk_true(ctx)); implyR = boolVar; } else { // implyR = Z3_mk_eq(ctx, boolVar, Z3_mk_false(ctx)); implyR = mk_not(m, boolVar); } } // add assertion if (implyR) { expr_ref implyLHS(mk_and(litems), m); assert_implication(implyLHS, implyR); } } } // for (itor1 : contains_map) } // if varNode in contain_pair_idx_map } void theory_str::check_contain_by_substr(expr * varNode, expr_ref_vector & willEqClass) { ast_manager & m = get_manager(); expr_ref_vector litems(m); if (contain_pair_idx_map.contains(varNode)) { for (auto entry : contain_pair_idx_map[varNode]) { expr * strAst = entry.first; expr * substrAst = entry.second; expr * boolVar = nullptr; if (!contain_pair_bool_map.find(strAst, substrAst, boolVar)) { TRACE("str", tout << "warning: no entry for boolVar in contain_pair_bool_map" << std::endl;); } // we only want to inspect the Contains terms where either of strAst or substrAst // are equal to varNode. TRACE("t_str_detail", tout << "considering Contains with strAst = " << mk_pp(strAst, m) << ", substrAst = " << mk_pp(substrAst, m) << "..." << std::endl;); if (varNode != strAst && varNode != substrAst) { TRACE("str", tout << "varNode not equal to strAst or substrAst, skip" << std::endl;); continue; } TRACE("str", tout << "varNode matched one of strAst or substrAst. Continuing" << std::endl;); if (substrAst == varNode) { bool strAstHasVal = false; expr * strValue = get_eqc_value(strAst, strAstHasVal); if (strAstHasVal) { TRACE("str", tout << mk_pp(strAst, m) << " has constant eqc value " << mk_pp(strValue, m) << std::endl;); if (strValue != strAst) { litems.push_back(ctx.mk_eq_atom(strAst, strValue)); } zstring strConst; u.str.is_string(strValue, strConst); // iterate eqc (also eqc-to-be) of substr for (auto itAst : willEqClass) { bool counterEgFound = false; if (u.str.is_concat(to_app(itAst))) { expr_ref_vector constList(m); // get constant strings in concat app * aConcat = to_app(itAst); get_const_str_asts_in_node(aConcat, constList); for (auto cst : constList) { zstring pieceStr; u.str.is_string(cst, pieceStr); if (!strConst.contains(pieceStr)) { TRACE("str", tout << "Inconsistency found!" << std::endl;); counterEgFound = true; if (aConcat != substrAst) { litems.push_back(ctx.mk_eq_atom(substrAst, aConcat)); } expr_ref implyLHS(mk_and(litems), m); expr_ref implyR(mk_not(m, boolVar), m); assert_implication(implyLHS, implyR); break; } } } if (counterEgFound) { break; } } } } } } // varNode in contain_pair_idx_map } bool theory_str::in_contain_idx_map(expr * n) { return contain_pair_idx_map.contains(n); } void theory_str::check_contain_by_eq_nodes(expr * n1, expr * n2) { ast_manager & m = get_manager(); if (in_contain_idx_map(n1) && in_contain_idx_map(n2)) { for (auto const& key1 : contain_pair_idx_map[n1]) { // keysItor1 is on set {<.., n1>, ..., , ...} //std::pair key1 = *keysItor1; if (key1.first == n1 && key1.second == n2) { expr_ref implyL(m); expr_ref implyR(contain_pair_bool_map[key1], m); if (n1 != n2) { implyL = ctx.mk_eq_atom(n1, n2); assert_implication(implyL, implyR); } else { assert_axiom(implyR); } } //for (keysItor2 = contain_pair_idx_map[n2].begin(); keysItor2 != contain_pair_idx_map[n2].end(); keysItor2++) { for (auto const& key2 : contain_pair_idx_map[n2]) { // keysItor2 is on set {<.., n2>, ..., , ...} //std::pair key2 = *keysItor2; // skip if the pair is eq if (key1 == key2) { continue; } // *************************** // Case 1: Contains(m, ...) /\ Contains(n, ) /\ m = n // *************************** if (key1.first == n1 && key2.first == n2) { expr * subAst1 = key1.second; expr * subAst2 = key2.second; bool subAst1HasValue = false; bool subAst2HasValue = false; expr * subValue1 = get_eqc_value(subAst1, subAst1HasValue); expr * subValue2 = get_eqc_value(subAst2, subAst2HasValue); TRACE("str", tout << "(Contains " << mk_pp(n1, m) << " " << mk_pp(subAst1, m) << ")" << std::endl; tout << "(Contains " << mk_pp(n2, m) << " " << mk_pp(subAst2, m) << ")" << std::endl; if (subAst1 != subValue1) { tout << mk_pp(subAst1, m) << " = " << mk_pp(subValue1, m) << std::endl; } if (subAst2 != subValue2) { tout << mk_pp(subAst2, m) << " = " << mk_pp(subValue2, m) << std::endl; } ); if (subAst1HasValue && subAst2HasValue) { expr_ref_vector litems1(m); if (n1 != n2) { litems1.push_back(ctx.mk_eq_atom(n1, n2)); } if (subValue1 != subAst1) { litems1.push_back(ctx.mk_eq_atom(subAst1, subValue1)); } if (subValue2 != subAst2) { litems1.push_back(ctx.mk_eq_atom(subAst2, subValue2)); } zstring subConst1, subConst2; u.str.is_string(subValue1, subConst1); u.str.is_string(subValue2, subConst2); expr_ref implyR(m); if (subConst1 == subConst2) { // key1.first = key2.first /\ key1.second = key2.second // ==> (containPairBoolMap[key1] = containPairBoolMap[key2]) implyR = ctx.mk_eq_atom(contain_pair_bool_map[key1], contain_pair_bool_map[key2]); } else if (subConst1.contains(subConst2)) { // key1.first = key2.first /\ Contains(key1.second, key2.second) // ==> (containPairBoolMap[key1] --> containPairBoolMap[key2]) implyR = rewrite_implication(contain_pair_bool_map[key1], contain_pair_bool_map[key2]); } else if (subConst2.contains(subConst1)) { // key1.first = key2.first /\ Contains(key2.second, key1.second) // ==> (containPairBoolMap[key2] --> containPairBoolMap[key1]) implyR = rewrite_implication(contain_pair_bool_map[key2], contain_pair_bool_map[key1]); } if (implyR) { if (litems1.empty()) { assert_axiom(implyR); } else { assert_implication(mk_and(litems1), implyR); } } } else { expr_ref_vector subAst1Eqc(m); expr_ref_vector subAst2Eqc(m); collect_eq_nodes(subAst1, subAst1Eqc); collect_eq_nodes(subAst2, subAst2Eqc); if (subAst1Eqc.contains(subAst2)) { // ----------------------------------------------------------- // * key1.first = key2.first /\ key1.second = key2.second // --> containPairBoolMap[key1] = containPairBoolMap[key2] // ----------------------------------------------------------- expr_ref_vector litems2(m); if (n1 != n2) { litems2.push_back(ctx.mk_eq_atom(n1, n2)); } if (subAst1 != subAst2) { litems2.push_back(ctx.mk_eq_atom(subAst1, subAst2)); } expr_ref implyR(ctx.mk_eq_atom(contain_pair_bool_map[key1], contain_pair_bool_map[key2]), m); if (litems2.empty()) { assert_axiom(implyR); } else { assert_implication(mk_and(litems2), implyR); } } else { // ----------------------------------------------------------- // * key1.first = key2.first // check eqc(key1.second) and eqc(key2.second) // ----------------------------------------------------------- //expr_ref_vector::iterator eqItorSub1 = subAst1Eqc.begin(); //for (; eqItorSub1 != subAst1Eqc.end(); eqItorSub1++) { for (auto eqSubVar1 : subAst1Eqc) { //expr_ref_vector::iterator eqItorSub2 = subAst2Eqc.begin(); //for (; eqItorSub2 != subAst2Eqc.end(); eqItorSub2++) { for (auto eqSubVar2 : subAst2Eqc) { // ------------ // key1.first = key2.first /\ containPairBoolMap[] // ==> (containPairBoolMap[key1] --> containPairBoolMap[key2]) // ------------ { expr_ref_vector litems3(m); if (n1 != n2) { litems3.push_back(ctx.mk_eq_atom(n1, n2)); } if (eqSubVar1 != subAst1) { litems3.push_back(ctx.mk_eq_atom(subAst1, eqSubVar1)); } if (eqSubVar2 != subAst2) { litems3.push_back(ctx.mk_eq_atom(subAst2, eqSubVar2)); } std::pair tryKey1 = std::make_pair(eqSubVar1, eqSubVar2); if (contain_pair_bool_map.contains(tryKey1)) { TRACE("str", tout << "(Contains " << mk_pp(eqSubVar1, m) << " " << mk_pp(eqSubVar2, m) << ")" << std::endl;); litems3.push_back(contain_pair_bool_map[tryKey1]); expr_ref implR(rewrite_implication(contain_pair_bool_map[key1], contain_pair_bool_map[key2]), m); assert_implication(mk_and(litems3), implR); } } // ------------ // key1.first = key2.first /\ containPairBoolMap[] // ==> (containPairBoolMap[key2] --> containPairBoolMap[key1]) // ------------ { expr_ref_vector litems4(m); if (n1 != n2) { litems4.push_back(ctx.mk_eq_atom(n1, n2)); } if (eqSubVar1 != subAst1) { litems4.push_back(ctx.mk_eq_atom(subAst1, eqSubVar1)); } if (eqSubVar2 != subAst2) { litems4.push_back(ctx.mk_eq_atom(subAst2, eqSubVar2)); } std::pair tryKey2 = std::make_pair(eqSubVar2, eqSubVar1); if (contain_pair_bool_map.contains(tryKey2)) { TRACE("str", tout << "(Contains " << mk_pp(eqSubVar2, m) << " " << mk_pp(eqSubVar1, m) << ")" << std::endl;); litems4.push_back(contain_pair_bool_map[tryKey2]); expr_ref implR(rewrite_implication(contain_pair_bool_map[key2], contain_pair_bool_map[key1]), m); assert_implication(mk_and(litems4), implR); } } } } } } } // *************************** // Case 2: Contains(..., m) /\ Contains(... , n) /\ m = n // *************************** else if (key1.second == n1 && key2.second == n2) { expr * str1 = key1.first; expr * str2 = key2.first; bool str1HasValue = false; bool str2HasValue = false; expr * strVal1 = get_eqc_value(str1, str1HasValue); expr * strVal2 = get_eqc_value(str2, str2HasValue); TRACE("str", tout << "(Contains " << mk_pp(str1, m) << " " << mk_pp(n1, m) << ")" << std::endl; tout << "(Contains " << mk_pp(str2, m) << " " << mk_pp(n2, m) << ")" << std::endl; if (str1 != strVal1) { tout << mk_pp(str1, m) << " = " << mk_pp(strVal1, m) << std::endl; } if (str2 != strVal2) { tout << mk_pp(str2, m) << " = " << mk_pp(strVal2, m) << std::endl; } ); if (str1HasValue && str2HasValue) { expr_ref_vector litems1(m); if (n1 != n2) { litems1.push_back(ctx.mk_eq_atom(n1, n2)); } if (strVal1 != str1) { litems1.push_back(ctx.mk_eq_atom(str1, strVal1)); } if (strVal2 != str2) { litems1.push_back(ctx.mk_eq_atom(str2, strVal2)); } zstring const1, const2; u.str.is_string(strVal1, const1); u.str.is_string(strVal2, const2); expr_ref implyR(m); if (const1 == const2) { // key1.second = key2.second /\ key1.first = key2.first // ==> (containPairBoolMap[key1] = containPairBoolMap[key2]) implyR = ctx.mk_eq_atom(contain_pair_bool_map[key1], contain_pair_bool_map[key2]); } else if (const1.contains(const2)) { // key1.second = key2.second /\ Contains(key1.first, key2.first) // ==> (containPairBoolMap[key2] --> containPairBoolMap[key1]) implyR = rewrite_implication(contain_pair_bool_map[key2], contain_pair_bool_map[key1]); } else if (const2.contains(const1)) { // key1.first = key2.first /\ Contains(key2.first, key1.first) // ==> (containPairBoolMap[key1] --> containPairBoolMap[key2]) implyR = rewrite_implication(contain_pair_bool_map[key1], contain_pair_bool_map[key2]); } if (implyR) { if (litems1.empty()) { assert_axiom(implyR); } else { assert_implication(mk_and(litems1), implyR); } } } else { expr_ref_vector str1Eqc(m); expr_ref_vector str2Eqc(m); collect_eq_nodes(str1, str1Eqc); collect_eq_nodes(str2, str2Eqc); if (str1Eqc.contains(str2)) { // ----------------------------------------------------------- // * key1.first = key2.first /\ key1.second = key2.second // --> containPairBoolMap[key1] = containPairBoolMap[key2] // ----------------------------------------------------------- expr_ref_vector litems2(m); if (n1 != n2) { litems2.push_back(ctx.mk_eq_atom(n1, n2)); } if (str1 != str2) { litems2.push_back(ctx.mk_eq_atom(str1, str2)); } expr_ref implyR(ctx.mk_eq_atom(contain_pair_bool_map[key1], contain_pair_bool_map[key2]), m); if (litems2.empty()) { assert_axiom(implyR); } else { assert_implication(mk_and(litems2), implyR); } } else { // ----------------------------------------------------------- // * key1.second = key2.second // check eqc(key1.first) and eqc(key2.first) // ----------------------------------------------------------- for (auto const& eqStrVar1 : str1Eqc) { for (auto const& eqStrVar2 : str2Eqc) { { expr_ref_vector litems3(m); if (n1 != n2) { litems3.push_back(ctx.mk_eq_atom(n1, n2)); } if (eqStrVar1 != str1) { litems3.push_back(ctx.mk_eq_atom(str1, eqStrVar1)); } if (eqStrVar2 != str2) { litems3.push_back(ctx.mk_eq_atom(str2, eqStrVar2)); } std::pair tryKey1 = std::make_pair(eqStrVar1, eqStrVar2); if (contain_pair_bool_map.contains(tryKey1)) { TRACE("str", tout << "(Contains " << mk_pp(eqStrVar1, m) << " " << mk_pp(eqStrVar2, m) << ")" << std::endl;); litems3.push_back(contain_pair_bool_map[tryKey1]); // ------------ // key1.second = key2.second /\ containPairBoolMap[] // ==> (containPairBoolMap[key2] --> containPairBoolMap[key1]) // ------------ expr_ref implR(rewrite_implication(contain_pair_bool_map[key2], contain_pair_bool_map[key1]), m); assert_implication(mk_and(litems3), implR); } } { expr_ref_vector litems4(m); if (n1 != n2) { litems4.push_back(ctx.mk_eq_atom(n1, n2)); } if (eqStrVar1 != str1) { litems4.push_back(ctx.mk_eq_atom(str1, eqStrVar1)); } if (eqStrVar2 != str2) { litems4.push_back(ctx.mk_eq_atom(str2, eqStrVar2)); } std::pair tryKey2 = std::make_pair(eqStrVar2, eqStrVar1); if (contain_pair_bool_map.contains(tryKey2)) { TRACE("str", tout << "(Contains " << mk_pp(eqStrVar2, m) << " " << mk_pp(eqStrVar1, m) << ")" << std::endl;); litems4.push_back(contain_pair_bool_map[tryKey2]); // ------------ // key1.first = key2.first /\ containPairBoolMap[] // ==> (containPairBoolMap[key1] --> containPairBoolMap[key2]) // ------------ expr_ref implR(rewrite_implication(contain_pair_bool_map[key1], contain_pair_bool_map[key2]), m); assert_implication(mk_and(litems4), implR); } } } } } } } } if (n1 == n2) { break; } } } // (in_contain_idx_map(n1) && in_contain_idx_map(n2)) } void theory_str::check_contain_in_new_eq(expr * n1, expr * n2) { if (contains_map.empty()) { return; } ast_manager & m = get_manager(); TRACE("str", tout << "consistency check for contains wrt. " << mk_pp(n1, m) << " and " << mk_pp(n2, m) << std::endl;); expr_ref_vector willEqClass(m); expr * constStrAst_1 = collect_eq_nodes(n1, willEqClass); expr * constStrAst_2 = collect_eq_nodes(n2, willEqClass); expr * constStrAst = (constStrAst_1 != nullptr) ? constStrAst_1 : constStrAst_2; TRACE("str", tout << "eqc of n1 is {"; for (expr * el : willEqClass) { tout << " " << mk_pp(el, m); } tout << std::endl; if (constStrAst == nullptr) { tout << "constStrAst = NULL" << std::endl; } else { tout << "constStrAst = " << mk_pp(constStrAst, m) << std::endl; } ); // step 1: we may have constant values for Contains checks now if (constStrAst != nullptr) { for (auto a : willEqClass) { if (a == constStrAst) { continue; } check_contain_by_eqc_val(a, constStrAst); } } else { // no concrete value to be put in eqc, solely based on context // Check here is used to detected the facts as follows: // * known: contains(Z, Y) /\ Z = "abcdefg" /\ Y = M // * new fact: M = concat(..., "jio", ...) // Note that in this branch, either M or concat(..., "jio", ...) has a constant value // So, only need to check // * "EQC(M) U EQC(concat(..., "jio", ...))" as substr and // * If strAst registered has an eqc constant in the context // ------------------------------------------------------------- for (auto a : willEqClass) { check_contain_by_substr(a, willEqClass); } } // ------------------------------------------ // step 2: check for b1 = contains(x, m), b2 = contains(y, n) // (1) x = y /\ m = n ==> b1 = b2 // (2) x = y /\ Contains(const(m), const(n)) ==> (b1 -> b2) // (3) x = y /\ Contains(const(n), const(m)) ==> (b2 -> b1) // (4) x = y /\ containPairBoolMap[] ==> (b1 -> b2) // (5) x = y /\ containPairBoolMap[] ==> (b2 -> b1) // (6) Contains(const(x), const(y)) /\ m = n ==> (b2 -> b1) // (7) Contains(const(y), const(x)) /\ m = n ==> (b1 -> b2) // (8) containPairBoolMap[] /\ m = n ==> (b2 -> b1) // (9) containPairBoolMap[] /\ m = n ==> (b1 -> b2) // ------------------------------------------ for (auto varAst1 : willEqClass) { for (auto varAst2 : willEqClass) { check_contain_by_eq_nodes(varAst1, varAst2); } } } expr * theory_str::dealias_node(expr * node, std::map & varAliasMap, std::map & concatAliasMap) { if (variable_set.find(node) != variable_set.end()) { return get_alias_index_ast(varAliasMap, node); } else if (u.str.is_concat(to_app(node))) { return get_alias_index_ast(concatAliasMap, node); } return node; } void theory_str::get_grounded_concats(unsigned depth, expr* node, std::map & varAliasMap, std::map & concatAliasMap, std::map & varConstMap, std::map & concatConstMap, std::map > & varEqConcatMap, std::map, std::set > > & groundedMap) { // ************************************************** // first deAlias the node if it is a var or concat // ************************************************** node = dealias_node(node, varAliasMap, concatAliasMap); if (groundedMap.find(node) != groundedMap.end()) { return; } IF_VERBOSE(100, verbose_stream() << "concats " << depth << "\n"; if (depth > 100) verbose_stream() << mk_pp(node, get_manager()) << "\n"; ); // haven't computed grounded concats for "node" (de-aliased) // --------------------------------------------------------- // const strings: node is de-aliased if (u.str.is_string(node)) { std::vector concatNodes; concatNodes.push_back(node); groundedMap[node][concatNodes].clear(); // no condition } // Concat functions else if (u.str.is_concat(to_app(node))) { // if "node" equals to a constant string, thenjust push the constant into the concat vector // Again "node" has been de-aliased at the very beginning if (concatConstMap.find(node) != concatConstMap.end()) { std::vector concatNodes; concatNodes.push_back(concatConstMap[node]); groundedMap[node][concatNodes].clear(); groundedMap[node][concatNodes].insert(ctx.mk_eq_atom(node, concatConstMap[node])); } // node doesn't have eq constant value. Process its children. else { // merge arg0 and arg1 expr * arg0 = to_app(node)->get_arg(0); expr * arg1 = to_app(node)->get_arg(1); expr * arg0DeAlias = dealias_node(arg0, varAliasMap, concatAliasMap); expr * arg1DeAlias = dealias_node(arg1, varAliasMap, concatAliasMap); get_grounded_concats(depth + 1, arg0DeAlias, varAliasMap, concatAliasMap, varConstMap, concatConstMap, varEqConcatMap, groundedMap); get_grounded_concats(depth + 1, arg1DeAlias, varAliasMap, concatAliasMap, varConstMap, concatConstMap, varEqConcatMap, groundedMap); std::map, std::set >::iterator arg0_grdItor = groundedMap[arg0DeAlias].begin(); std::map, std::set >::iterator arg1_grdItor; for (; arg0_grdItor != groundedMap[arg0DeAlias].end(); arg0_grdItor++) { arg1_grdItor = groundedMap[arg1DeAlias].begin(); for (; arg1_grdItor != groundedMap[arg1DeAlias].end(); arg1_grdItor++) { std::vector ndVec; ndVec.insert(ndVec.end(), arg0_grdItor->first.begin(), arg0_grdItor->first.end()); size_t arg0VecSize = arg0_grdItor->first.size(); size_t arg1VecSize = arg1_grdItor->first.size(); if (arg0VecSize > 0 && arg1VecSize > 0 && u.str.is_string(arg0_grdItor->first[arg0VecSize - 1]) && u.str.is_string(arg1_grdItor->first[0])) { ndVec.pop_back(); ndVec.push_back(mk_concat(arg0_grdItor->first[arg0VecSize - 1], arg1_grdItor->first[0])); for (size_t i = 1; i < arg1VecSize; i++) { ndVec.push_back(arg1_grdItor->first[i]); } } else { ndVec.insert(ndVec.end(), arg1_grdItor->first.begin(), arg1_grdItor->first.end()); } // only insert if we don't know "node = concat(ndVec)" since one set of condition leads to this is enough if (groundedMap[node].find(ndVec) == groundedMap[node].end()) { groundedMap[node][ndVec]; if (arg0 != arg0DeAlias) { groundedMap[node][ndVec].insert(ctx.mk_eq_atom(arg0, arg0DeAlias)); } groundedMap[node][ndVec].insert(arg0_grdItor->second.begin(), arg0_grdItor->second.end()); if (arg1 != arg1DeAlias) { groundedMap[node][ndVec].insert(ctx.mk_eq_atom(arg1, arg1DeAlias)); } groundedMap[node][ndVec].insert(arg1_grdItor->second.begin(), arg1_grdItor->second.end()); } } } } } // string variables else if (variable_set.find(node) != variable_set.end()) { // deAliasedVar = Constant if (varConstMap.find(node) != varConstMap.end()) { std::vector concatNodes; concatNodes.push_back(varConstMap[node]); groundedMap[node][concatNodes].clear(); groundedMap[node][concatNodes].insert(ctx.mk_eq_atom(node, varConstMap[node])); } // deAliasedVar = someConcat else if (varEqConcatMap.find(node) != varEqConcatMap.end()) { expr * eqConcat = varEqConcatMap[node].begin()->first; expr * deAliasedEqConcat = dealias_node(eqConcat, varAliasMap, concatAliasMap); get_grounded_concats(depth + 1, deAliasedEqConcat, varAliasMap, concatAliasMap, varConstMap, concatConstMap, varEqConcatMap, groundedMap); std::map, std::set >::iterator grdItor = groundedMap[deAliasedEqConcat].begin(); for (; grdItor != groundedMap[deAliasedEqConcat].end(); grdItor++) { std::vector ndVec; ndVec.insert(ndVec.end(), grdItor->first.begin(), grdItor->first.end()); // only insert if we don't know "node = concat(ndVec)" since one set of condition leads to this is enough if (groundedMap[node].find(ndVec) == groundedMap[node].end()) { // condition: node = deAliasedEqConcat groundedMap[node][ndVec].insert(ctx.mk_eq_atom(node, deAliasedEqConcat)); // appending conditions for "deAliasedEqConcat = CONCAT(ndVec)" groundedMap[node][ndVec].insert(grdItor->second.begin(), grdItor->second.end()); } } } // node (has been de-aliased) != constant && node (has been de-aliased) != any concat // just push in the deAliasedVar else { std::vector concatNodes; concatNodes.push_back(node); groundedMap[node][concatNodes]; } } } void theory_str::print_grounded_concat(expr * node, std::map, std::set > > & groundedMap) { TRACE("str", tout << mk_pp(node, get_manager()) << std::endl;); if (groundedMap.find(node) != groundedMap.end()) { std::map, std::set >::iterator itor = groundedMap[node].begin(); for (; itor != groundedMap[node].end(); ++itor) { TRACE("str", tout << "\t[grounded] "; std::vector::const_iterator vIt = itor->first.begin(); for (; vIt != itor->first.end(); ++vIt) { tout << mk_pp(*vIt, get_manager()) << ", "; } tout << std::endl; tout << "\t[condition] "; std::set::iterator sIt = itor->second.begin(); for (; sIt != itor->second.end(); sIt++) { tout << mk_pp(*sIt, get_manager()) << ", "; } tout << std::endl; ); } } else { TRACE("str", tout << "not found" << std::endl;); } } bool theory_str::is_partial_in_grounded_concat(const std::vector & strVec, const std::vector & subStrVec) { size_t strCnt = strVec.size(); size_t subStrCnt = subStrVec.size(); if (strCnt == 0 || subStrCnt == 0) { return false; } // The assumption is that all consecutive constant strings are merged into one node if (strCnt < subStrCnt) { return false; } if (subStrCnt == 1) { zstring subStrVal; if (u.str.is_string(subStrVec[0], subStrVal)) { for (size_t i = 0; i < strCnt; i++) { zstring strVal; if (u.str.is_string(strVec[i], strVal)) { if (strVal.contains(subStrVal)) { return true; } } } } else { for (size_t i = 0; i < strCnt; i++) { if (strVec[i] == subStrVec[0]) { return true; } } } return false; } else { for (size_t i = 0; i <= (strCnt - subStrCnt); i++) { // The first node in subStrVect should be // * constant: a suffix of a note in strVec[i] // * variable: bool firstNodesOK = true; zstring subStrHeadVal; if (u.str.is_string(subStrVec[0], subStrHeadVal)) { zstring strHeadVal; if (u.str.is_string(strVec[i], strHeadVal)) { if (strHeadVal.length() >= subStrHeadVal.length()) { zstring suffix = strHeadVal.extract(strHeadVal.length() - subStrHeadVal.length(), subStrHeadVal.length()); if (suffix != subStrHeadVal) { firstNodesOK = false; } } else { firstNodesOK = false; } } else { if (subStrVec[0] != strVec[i]) { firstNodesOK = false; } } } if (!firstNodesOK) { continue; } // middle nodes bool midNodesOK = true; for (size_t j = 1; j < subStrCnt - 1; j++) { if (subStrVec[j] != strVec[i + j]) { midNodesOK = false; break; } } if (!midNodesOK) { continue; } // tail nodes size_t tailIdx = i + subStrCnt - 1; zstring subStrTailVal; if (u.str.is_string(subStrVec[subStrCnt - 1], subStrTailVal)) { zstring strTailVal; if (u.str.is_string(strVec[tailIdx], strTailVal)) { if (strTailVal.length() >= subStrTailVal.length()) { zstring prefix = strTailVal.extract(0, subStrTailVal.length()); if (prefix == subStrTailVal) { return true; } else { continue; } } else { continue; } } } else { if (subStrVec[subStrCnt - 1] == strVec[tailIdx]) { return true; } else { continue; } } } return false; } } void theory_str::check_subsequence(expr* str, expr* strDeAlias, expr* subStr, expr* subStrDeAlias, expr* boolVar, std::map, std::set > > & groundedMap) { ast_manager & m = get_manager(); std::map, std::set >::iterator itorStr = groundedMap[strDeAlias].begin(); std::map, std::set >::iterator itorSubStr; for (; itorStr != groundedMap[strDeAlias].end(); itorStr++) { itorSubStr = groundedMap[subStrDeAlias].begin(); for (; itorSubStr != groundedMap[subStrDeAlias].end(); itorSubStr++) { bool contain = is_partial_in_grounded_concat(itorStr->first, itorSubStr->first); if (contain) { expr_ref_vector litems(m); if (str != strDeAlias) { litems.push_back(ctx.mk_eq_atom(str, strDeAlias)); } if (subStr != subStrDeAlias) { litems.push_back(ctx.mk_eq_atom(subStr, subStrDeAlias)); } //litems.insert(itorStr->second.begin(), itorStr->second.end()); //litems.insert(itorSubStr->second.begin(), itorSubStr->second.end()); for (std::set::const_iterator i1 = itorStr->second.begin(); i1 != itorStr->second.end(); ++i1) { litems.push_back(*i1); } for (std::set::const_iterator i1 = itorSubStr->second.begin(); i1 != itorSubStr->second.end(); ++i1) { litems.push_back(*i1); } expr_ref implyR(boolVar, m); if (litems.empty()) { assert_axiom(implyR); } else { expr_ref implyL(mk_and(litems), m); assert_implication(implyL, implyR); } } } } } void theory_str::compute_contains(std::map & varAliasMap, std::map & concatAliasMap, std::map & varConstMap, std::map & concatConstMap, std::map > & varEqConcatMap) { std::map, std::set > > groundedMap; for (auto const& kv : contain_pair_bool_map) { expr* containBoolVar = kv.get_value(); expr* str = kv.get_key1(); expr* subStr = kv.get_key2(); expr* strDeAlias = dealias_node(str, varAliasMap, concatAliasMap); expr* subStrDeAlias = dealias_node(subStr, varAliasMap, concatAliasMap); get_grounded_concats(0, strDeAlias, varAliasMap, concatAliasMap, varConstMap, concatConstMap, varEqConcatMap, groundedMap); get_grounded_concats(0, subStrDeAlias, varAliasMap, concatAliasMap, varConstMap, concatConstMap, varEqConcatMap, groundedMap); // debugging print_grounded_concat(strDeAlias, groundedMap); print_grounded_concat(subStrDeAlias, groundedMap); check_subsequence(str, strDeAlias, subStr, subStrDeAlias, containBoolVar, groundedMap); } } bool theory_str::can_concat_eq_str(expr * concat, zstring& str) { unsigned int strLen = str.length(); if (u.str.is_concat(to_app(concat))) { ptr_vector args; get_nodes_in_concat(concat, args); expr * ml_node = args[0]; expr * mr_node = args[args.size() - 1]; zstring ml_str; if (u.str.is_string(ml_node, ml_str)) { unsigned int ml_len = ml_str.length(); if (ml_len > strLen) { return false; } unsigned int cLen = ml_len; if (ml_str != str.extract(0, cLen)) { return false; } } zstring mr_str; if (u.str.is_string(mr_node, mr_str)) { unsigned int mr_len = mr_str.length(); if (mr_len > strLen) { return false; } unsigned int cLen = mr_len; if (mr_str != str.extract(strLen - cLen, cLen)) { return false; } } unsigned int sumLen = 0; for (unsigned int i = 0 ; i < args.size() ; i++) { expr * oneArg = args[i]; zstring arg_str; if (u.str.is_string(oneArg, arg_str)) { if (!str.contains(arg_str)) { return false; } sumLen += arg_str.length(); } } if (sumLen > strLen) { return false; } } return true; } bool theory_str::can_concat_eq_concat(expr * concat1, expr * concat2) { if (u.str.is_concat(to_app(concat1)) && u.str.is_concat(to_app(concat2))) { { // Suppose concat1 = (Concat X Y) and concat2 = (Concat M N). expr * concat1_mostL = getMostLeftNodeInConcat(concat1); expr * concat2_mostL = getMostLeftNodeInConcat(concat2); // if both X and M are constant strings, check whether they have the same prefix zstring concat1_mostL_str, concat2_mostL_str; if (u.str.is_string(concat1_mostL, concat1_mostL_str) && u.str.is_string(concat2_mostL, concat2_mostL_str)) { unsigned int cLen = std::min(concat1_mostL_str.length(), concat2_mostL_str.length()); if (concat1_mostL_str.extract(0, cLen) != concat2_mostL_str.extract(0, cLen)) { return false; } } } { // Similarly, if both Y and N are constant strings, check whether they have the same suffix expr * concat1_mostR = getMostRightNodeInConcat(concat1); expr * concat2_mostR = getMostRightNodeInConcat(concat2); zstring concat1_mostR_str, concat2_mostR_str; if (u.str.is_string(concat1_mostR, concat1_mostR_str) && u.str.is_string(concat2_mostR, concat2_mostR_str)) { unsigned int cLen = std::min(concat1_mostR_str.length(), concat2_mostR_str.length()); if (concat1_mostR_str.extract(concat1_mostR_str.length() - cLen, cLen) != concat2_mostR_str.extract(concat2_mostR_str.length() - cLen, cLen)) { return false; } } } } return true; } /* * Check whether n1 and n2 could be equal. * Returns true if n1 could equal n2 (maybe), * and false if n1 is definitely not equal to n2 (no). */ bool theory_str::can_two_nodes_eq(expr * n1, expr * n2) { app * n1_curr = to_app(n1); app * n2_curr = to_app(n2); // case 0: n1_curr is const string, n2_curr is const string zstring n1_curr_str, n2_curr_str; if (u.str.is_string(n1_curr, n1_curr_str) && u.str.is_string(n2_curr, n2_curr_str)) { TRACE("str", tout << "checking string constants: n1=" << n1_curr_str << ", n2=" << n2_curr_str << std::endl;); if (n1_curr_str == n2_curr_str) { // TODO(mtrberzi) potential correction: if n1_curr != n2_curr, // assert that these two terms are in fact equal, because they ought to be return true; } else { return false; } } // case 1: n1_curr is concat, n2_curr is const string else if (u.str.is_concat(n1_curr) && u.str.is_string(n2_curr)) { zstring n2_curr_str; u.str.is_string(n2_curr, n2_curr_str); if (!can_concat_eq_str(n1_curr, n2_curr_str)) { return false; } } // case 2: n2_curr is concat, n1_curr is const string else if (u.str.is_concat(n2_curr) && u.str.is_string(n1_curr)) { zstring n1_curr_str; u.str.is_string(n1_curr, n1_curr_str); if (!can_concat_eq_str(n2_curr, n1_curr_str)) { return false; } } // case 3: both are concats else if (u.str.is_concat(n1_curr) && u.str.is_concat(n2_curr)) { if (!can_concat_eq_concat(n1_curr, n2_curr)) { return false; } } return true; } // was checkLength2ConstStr() in Z3str2 // returns true if everything is OK, or false if inconsistency detected // - note that these are different from the semantics in Z3str2 bool theory_str::check_length_const_string(expr * n1, expr * constStr) { ast_manager & mgr = get_manager(); zstring tmp; u.str.is_string(constStr, tmp); rational strLen(tmp.length()); if (u.str.is_concat(to_app(n1))) { ptr_vector args; expr_ref_vector items(mgr); get_nodes_in_concat(n1, args); rational sumLen(0); for (unsigned int i = 0; i < args.size(); ++i) { rational argLen; bool argLen_exists = get_len_value(args[i], argLen); if (argLen_exists) { if (!u.str.is_string(args[i])) { items.push_back(ctx.mk_eq_atom(mk_strlen(args[i]), mk_int(argLen))); } TRACE("str", tout << "concat arg: " << mk_pp(args[i], mgr) << " has len = " << argLen.to_string() << std::endl;); sumLen += argLen; if (sumLen > strLen) { items.push_back(ctx.mk_eq_atom(n1, constStr)); expr_ref toAssert(mgr.mk_not(mk_and(items)), mgr); TRACE("str", tout << "inconsistent length: concat (len = " << sumLen << ") <==> string constant (len = " << strLen << ")" << std::endl;); assert_axiom(toAssert); return false; } } } } else { // !is_concat(n1) rational oLen; bool oLen_exists = get_len_value(n1, oLen); if (oLen_exists && oLen != strLen) { TRACE("str", tout << "inconsistent length: var (len = " << oLen << ") <==> string constant (len = " << strLen << ")" << std::endl;); expr_ref l(ctx.mk_eq_atom(n1, constStr), mgr); expr_ref r(ctx.mk_eq_atom(mk_strlen(n1), mk_strlen(constStr)), mgr); assert_implication(l, r); return false; } } rational unused; if (get_len_value(n1, unused) == false) { expr_ref l(ctx.mk_eq_atom(n1, constStr), mgr); expr_ref r(ctx.mk_eq_atom(mk_strlen(n1), mk_strlen(constStr)), mgr); assert_implication(l, r); } return true; } bool theory_str::check_length_concat_concat(expr * n1, expr * n2) { ast_manager & mgr = get_manager(); ptr_vector concat1Args; ptr_vector concat2Args; get_nodes_in_concat(n1, concat1Args); get_nodes_in_concat(n2, concat2Args); bool concat1LenFixed = true; bool concat2LenFixed = true; expr_ref_vector items(mgr); rational sum1(0), sum2(0); for (unsigned int i = 0; i < concat1Args.size(); ++i) { expr * oneArg = concat1Args[i]; rational argLen; bool argLen_exists = get_len_value(oneArg, argLen); if (argLen_exists) { sum1 += argLen; if (!u.str.is_string(oneArg)) { items.push_back(ctx.mk_eq_atom(mk_strlen(oneArg), mk_int(argLen))); } } else { concat1LenFixed = false; } } for (unsigned int i = 0; i < concat2Args.size(); ++i) { expr * oneArg = concat2Args[i]; rational argLen; bool argLen_exists = get_len_value(oneArg, argLen); if (argLen_exists) { sum2 += argLen; if (!u.str.is_string(oneArg)) { items.push_back(ctx.mk_eq_atom(mk_strlen(oneArg), mk_int(argLen))); } } else { concat2LenFixed = false; } } items.push_back(ctx.mk_eq_atom(n1, n2)); bool conflict = false; if (concat1LenFixed && concat2LenFixed) { if (sum1 != sum2) { conflict = true; } } else if (!concat1LenFixed && concat2LenFixed) { if (sum1 > sum2) { conflict = true; } } else if (concat1LenFixed && !concat2LenFixed) { if (sum1 < sum2) { conflict = true; } } if (conflict) { TRACE("str", tout << "inconsistent length detected in concat <==> concat" << std::endl;); expr_ref toAssert(mgr.mk_not(mk_and(items)), mgr); assert_axiom(toAssert); return false; } return true; } bool theory_str::check_length_concat_var(expr * concat, expr * var) { ast_manager & mgr = get_manager(); rational varLen; bool varLen_exists = get_len_value(var, varLen); if (!varLen_exists) { return true; } else { rational sumLen(0); ptr_vector args; expr_ref_vector items(mgr); get_nodes_in_concat(concat, args); for (unsigned int i = 0; i < args.size(); ++i) { expr * oneArg = args[i]; rational argLen; bool argLen_exists = get_len_value(oneArg, argLen); if (argLen_exists) { if (!u.str.is_string(oneArg) && !argLen.is_zero()) { items.push_back(ctx.mk_eq_atom(mk_strlen(oneArg), mk_int(argLen))); } sumLen += argLen; if (sumLen > varLen) { TRACE("str", tout << "inconsistent length detected in concat <==> var" << std::endl;); items.push_back(ctx.mk_eq_atom(mk_strlen(var), mk_int(varLen))); items.push_back(ctx.mk_eq_atom(concat, var)); expr_ref toAssert(mgr.mk_not(mk_and(items)), mgr); assert_axiom(toAssert); return false; } } } return true; } } bool theory_str::check_length_var_var(expr * var1, expr * var2) { ast_manager & mgr = get_manager(); rational var1Len, var2Len; bool var1Len_exists = get_len_value(var1, var1Len); bool var2Len_exists = get_len_value(var2, var2Len); if (var1Len_exists && var2Len_exists && var1Len != var2Len) { TRACE("str", tout << "inconsistent length detected in var <==> var" << std::endl;); expr_ref_vector items(mgr); items.push_back(ctx.mk_eq_atom(mk_strlen(var1), mk_int(var1Len))); items.push_back(ctx.mk_eq_atom(mk_strlen(var2), mk_int(var2Len))); items.push_back(ctx.mk_eq_atom(var1, var2)); expr_ref toAssert(mgr.mk_not(mk_and(items)), mgr); assert_axiom(toAssert); return false; } return true; } // returns true if everything is OK, or false if inconsistency detected // - note that these are different from the semantics in Z3str2 bool theory_str::check_length_eq_var_concat(expr * n1, expr * n2) { // n1 and n2 are not const string: either variable or concat bool n1Concat = u.str.is_concat(to_app(n1)); bool n2Concat = u.str.is_concat(to_app(n2)); if (n1Concat && n2Concat) { return check_length_concat_concat(n1, n2); } // n1 is concat, n2 is variable else if (n1Concat && (!n2Concat)) { return check_length_concat_var(n1, n2); } // n1 is variable, n2 is concat else if ((!n1Concat) && n2Concat) { return check_length_concat_var(n2, n1); } // n1 and n2 are both variables else { return check_length_var_var(n1, n2); } return true; } // returns false if an inconsistency is detected, or true if no inconsistencies were found // - note that these are different from the semantics of checkLengConsistency() in Z3str2 bool theory_str::check_length_consistency(expr * n1, expr * n2) { if (u.str.is_string(n1) && u.str.is_string(n2)) { // consistency has already been checked in can_two_nodes_eq(). return true; } else if (u.str.is_string(n1) && (!u.str.is_string(n2))) { return check_length_const_string(n2, n1); } else if (u.str.is_string(n2) && (!u.str.is_string(n1))) { return check_length_const_string(n1, n2); } else { // n1 and n2 are vars or concats return check_length_eq_var_concat(n1, n2); } return true; } // Modified signature: returns true if nothing was learned, or false if at least one axiom was asserted. // (This is used for deferred consistency checking) bool theory_str::check_concat_len_in_eqc(expr * concat) { bool no_assertions = true; expr * eqc_n = concat; do { if (u.str.is_concat(to_app(eqc_n))) { rational unused; bool status = infer_len_concat(eqc_n, unused); if (status) { no_assertions = false; } } eqc_n = get_eqc_next(eqc_n); } while (eqc_n != concat); return no_assertions; } // Convert a regular expression to an e-NFA using Thompson's construction void nfa::convert_re(expr * e, unsigned & start, unsigned & end, seq_util & u) { start = next_id(); end = next_id(); if (u.re.is_to_re(e)) { app * a = to_app(e); expr * arg_str = a->get_arg(0); zstring str; if (u.str.is_string(arg_str, str)) { if (str.length() == 0) { // transitioning on the empty string is handled specially TRACE("str", tout << "empty string epsilon-move " << start << " --> " << end << std::endl;); make_epsilon_move(start, end); } else { TRACE("str", tout << "build NFA for '" << str << "'" << "\n";); /* * For an n-character string, we make (n-1) intermediate states, * labelled i_(0) through i_(n-2). * Then we construct the following transitions: * start --str[0]--> i_(0) --str[1]--> i_(1) --...--> i_(n-2) --str[n-1]--> final */ unsigned last = start; for (int i = 0; i <= ((int)str.length()) - 2; ++i) { unsigned i_state = next_id(); make_transition(last, str[i], i_state); TRACE("str", tout << "string transition " << last << "--" << str[i] << "--> " << i_state << "\n";); last = i_state; } make_transition(last, str[(str.length() - 1)], end); TRACE("str", tout << "string transition " << last << "--" << str[(str.length() - 1)] << "--> " << end << "\n";); } } else { // ! u.str.is_string(arg_str, str) TRACE("str", tout << "WARNING: invalid string constant in str.to.re! Cancelling." << std::endl;); u.get_manager().raise_exception("invalid term in str.to.re, argument must be a string constant"); m_valid = false; return; } } else if (u.re.is_concat(e)){ app * a = to_app(e); expr * re1 = a->get_arg(0); expr * re2 = a->get_arg(1); unsigned start1, end1; convert_re(re1, start1, end1, u); unsigned start2, end2; convert_re(re2, start2, end2, u); // start --e--> start1 --...--> end1 --e--> start2 --...--> end2 --e--> end make_epsilon_move(start, start1); make_epsilon_move(end1, start2); make_epsilon_move(end2, end); TRACE("str", tout << "concat NFA: start = " << start << ", end = " << end << std::endl;); } else if (u.re.is_union(e)) { app * a = to_app(e); expr * re1 = a->get_arg(0); expr * re2 = a->get_arg(1); unsigned start1, end1; convert_re(re1, start1, end1, u); unsigned start2, end2; convert_re(re2, start2, end2, u); // start --e--> start1 ; start --e--> start2 // end1 --e--> end ; end2 --e--> end make_epsilon_move(start, start1); make_epsilon_move(start, start2); make_epsilon_move(end1, end); make_epsilon_move(end2, end); TRACE("str", tout << "union NFA: start = " << start << ", end = " << end << std::endl;); } else if (u.re.is_star(e)) { app * a = to_app(e); expr * subex = a->get_arg(0); unsigned start_subex, end_subex; convert_re(subex, start_subex, end_subex, u); // start --e--> start_subex, start --e--> end // end_subex --e--> start_subex, end_subex --e--> end make_epsilon_move(start, start_subex); make_epsilon_move(start, end); make_epsilon_move(end_subex, start_subex); make_epsilon_move(end_subex, end); TRACE("str", tout << "star NFA: start = " << start << ", end = " << end << std::endl;); } else if (u.re.is_range(e)) { // range('a', 'z') // start --'a'--> end // start --'b'--> end // ... // start --'z'--> end app * a = to_app(e); expr * c1 = a->get_arg(0); expr * c2 = a->get_arg(1); zstring s_c1, s_c2; u.str.is_string(c1, s_c1); u.str.is_string(c2, s_c2); unsigned int id1 = s_c1[0]; unsigned int id2 = s_c2[0]; if (id1 > id2) { unsigned int tmp = id1; id1 = id2; id2 = tmp; } for (unsigned int i = id1; i <= id2; ++i) { char ch = (char)i; make_transition(start, ch, end); } TRACE("str", tout << "range NFA: start = " << start << ", end = " << end << std::endl;); } else if (u.re.is_full_seq(e)) { // effectively the same as .* where . can be any single character // start --e--> tmp // tmp --e--> end // tmp --C--> tmp for every character C unsigned tmp = next_id(); make_epsilon_move(start, tmp); make_epsilon_move(tmp, end); for (unsigned int i = 0; i < 256; ++i) { char ch = (char)i; make_transition(tmp, ch, tmp); } TRACE("str", tout << "re.all NFA: start = " << start << ", end = " << end << std::endl;); } else if (u.re.is_full_char(e)) { // effectively . (match any one character) for (unsigned int i = 0; i < 256; ++i) { char ch = (char)i; make_transition(start, ch, end); } TRACE("str", tout << "re.allchar NFA: start = " << start << ", end = " << end << std::endl;); } else { TRACE("str", tout << "invalid regular expression" << std::endl;); m_valid = false; return; } } void nfa::epsilon_closure(unsigned start, std::set & closure) { std::deque worklist; closure.insert(start); worklist.push_back(start); while(!worklist.empty()) { unsigned state = worklist.front(); worklist.pop_front(); if (epsilon_map.find(state) != epsilon_map.end()) { for (std::set::iterator it = epsilon_map[state].begin(); it != epsilon_map[state].end(); ++it) { unsigned new_state = *it; if (closure.find(new_state) == closure.end()) { closure.insert(new_state); worklist.push_back(new_state); } } } } } bool nfa::matches(zstring input) { /* * Keep a set of all states the NFA can currently be in. * Initially this is the e-closure of m_start_state * For each character A in the input string, * the set of next states contains * all states in transition_map[S][A] for each S in current_states, * and all states in epsilon_map[S] for each S in current_states. * After consuming the entire input string, * the match is successful iff current_states contains m_end_state. */ std::set current_states; epsilon_closure(m_start_state, current_states); for (unsigned i = 0; i < input.length(); ++i) { char A = (char)input[i]; std::set next_states; for (std::set::iterator it = current_states.begin(); it != current_states.end(); ++it) { unsigned S = *it; // check transition_map if (transition_map[S].find(A) != transition_map[S].end()) { next_states.insert(transition_map[S][A]); } } // take e-closure over next_states to compute the actual next_states std::set epsilon_next_states; for (std::set::iterator it = next_states.begin(); it != next_states.end(); ++it) { unsigned S = *it; std::set closure; epsilon_closure(S, closure); epsilon_next_states.insert(closure.begin(), closure.end()); } current_states = epsilon_next_states; } if (current_states.find(m_end_state) != current_states.end()) { return true; } else { return false; } } /* * strArgmt::solve_concat_eq_str() * Solve concatenations of the form: * const == Concat(const, X) * const == Concat(X, const) */ void theory_str::solve_concat_eq_str(expr * concat, expr * str) { ast_manager & m = get_manager(); TRACE("str", tout << mk_ismt2_pp(concat, m) << " == " << mk_ismt2_pp(str, m) << std::endl;); zstring const_str; if (u.str.is_concat(to_app(concat)) && u.str.is_string(to_app(str), const_str)) { app * a_concat = to_app(concat); SASSERT(a_concat->get_num_args() == 2); expr * a1 = a_concat->get_arg(0); expr * a2 = a_concat->get_arg(1); if (const_str.empty()) { TRACE("str", tout << "quick path: concat == \"\"" << std::endl;); // assert the following axiom: // ( (Concat a1 a2) == "" ) -> ( (a1 == "") AND (a2 == "") ) expr_ref premise(ctx.mk_eq_atom(concat, str), m); expr_ref c1(ctx.mk_eq_atom(a1, str), m); expr_ref c2(ctx.mk_eq_atom(a2, str), m); expr_ref conclusion(m.mk_and(c1, c2), m); assert_implication(premise, conclusion); return; } bool arg1_has_eqc_value = false; bool arg2_has_eqc_value = false; expr * arg1 = get_eqc_value(a1, arg1_has_eqc_value); expr * arg2 = get_eqc_value(a2, arg2_has_eqc_value); expr_ref newConcat(m); if (arg1 != a1 || arg2 != a2) { TRACE("str", tout << "resolved concat argument(s) to eqc string constants" << std::endl;); expr_ref_vector item1(m); if (a1 != arg1) { item1.push_back(ctx.mk_eq_atom(a1, arg1)); } if (a2 != arg2) { item1.push_back(ctx.mk_eq_atom(a2, arg2)); } expr_ref implyL1(mk_and(item1), m); newConcat = mk_concat(arg1, arg2); if (newConcat != str) { expr_ref implyR1(ctx.mk_eq_atom(concat, newConcat), m); assert_implication(implyL1, implyR1); } } else { newConcat = concat; } if (newConcat == str) { return; } if (!u.str.is_concat(to_app(newConcat))) { return; } if (arg1_has_eqc_value && arg2_has_eqc_value) { // Case 1: Concat(const, const) == const TRACE("str", tout << "Case 1: Concat(const, const) == const" << std::endl;); zstring arg1_str, arg2_str; u.str.is_string(arg1, arg1_str); u.str.is_string(arg2, arg2_str); zstring result_str = arg1_str + arg2_str; if (result_str != const_str) { // Inconsistency TRACE("str", tout << "inconsistency detected: \"" << arg1_str << "\" + \"" << arg2_str << "\" != \"" << const_str << "\"" << "\n";); expr_ref equality(ctx.mk_eq_atom(concat, str), m); expr_ref diseq(mk_not(m, equality), m); assert_axiom(diseq); return; } } else if (!arg1_has_eqc_value && arg2_has_eqc_value) { // Case 2: Concat(var, const) == const TRACE("str", tout << "Case 2: Concat(var, const) == const" << std::endl;); zstring arg2_str; u.str.is_string(arg2, arg2_str); unsigned int resultStrLen = const_str.length(); unsigned int arg2StrLen = arg2_str.length(); if (resultStrLen < arg2StrLen) { // Inconsistency TRACE("str", tout << "inconsistency detected: \"" << arg2_str << "\" is longer than \"" << const_str << "\"," << " so cannot be concatenated with anything to form it" << "\n";); expr_ref equality(ctx.mk_eq_atom(newConcat, str), m); expr_ref diseq(mk_not(m, equality), m); assert_axiom(diseq); return; } else { int varStrLen = resultStrLen - arg2StrLen; zstring firstPart = const_str.extract(0, varStrLen); zstring secondPart = const_str.extract(varStrLen, arg2StrLen); if (arg2_str != secondPart) { // Inconsistency TRACE("str", tout << "inconsistency detected: " << "suffix of concatenation result expected \"" << secondPart << "\", " << "actually \"" << arg2_str << "\"" << "\n";); expr_ref equality(ctx.mk_eq_atom(newConcat, str), m); expr_ref diseq(mk_not(m, equality), m); assert_axiom(diseq); return; } else { expr_ref tmpStrConst(mk_string(firstPart), m); expr_ref premise(ctx.mk_eq_atom(newConcat, str), m); expr_ref conclusion(ctx.mk_eq_atom(arg1, tmpStrConst), m); assert_implication(premise, conclusion); return; } } } else if (arg1_has_eqc_value && !arg2_has_eqc_value) { // Case 3: Concat(const, var) == const TRACE("str", tout << "Case 3: Concat(const, var) == const" << std::endl;); zstring arg1_str; u.str.is_string(arg1, arg1_str); unsigned int resultStrLen = const_str.length(); unsigned int arg1StrLen = arg1_str.length(); if (resultStrLen < arg1StrLen) { // Inconsistency TRACE("str", tout << "inconsistency detected: \"" << arg1_str << "\" is longer than \"" << const_str << "\"," << " so cannot be concatenated with anything to form it" << "\n";); expr_ref equality(ctx.mk_eq_atom(newConcat, str), m); expr_ref diseq(m.mk_not(equality), m); assert_axiom(diseq); return; } else { int varStrLen = resultStrLen - arg1StrLen; zstring firstPart = const_str.extract(0, arg1StrLen); zstring secondPart = const_str.extract(arg1StrLen, varStrLen); if (arg1_str != firstPart) { // Inconsistency TRACE("str", tout << "inconsistency detected: " << "prefix of concatenation result expected \"" << secondPart << "\", " << "actually \"" << arg1_str << "\"" << "\n";); expr_ref equality(ctx.mk_eq_atom(newConcat, str), m); expr_ref diseq(m.mk_not(equality), m); assert_axiom(diseq); return; } else { expr_ref tmpStrConst(mk_string(secondPart), m); expr_ref premise(ctx.mk_eq_atom(newConcat, str), m); expr_ref conclusion(ctx.mk_eq_atom(arg2, tmpStrConst), m); assert_implication(premise, conclusion); return; } } } else { // Case 4: Concat(var, var) == const TRACE("str", tout << "Case 4: Concat(var, var) == const" << std::endl;); if (eval_concat(arg1, arg2) == nullptr) { rational arg1Len, arg2Len; bool arg1Len_exists = get_len_value(arg1, arg1Len); bool arg2Len_exists = get_len_value(arg2, arg2Len); rational concatStrLen((unsigned)const_str.length()); if (arg1Len_exists || arg2Len_exists) { expr_ref ax_l1(ctx.mk_eq_atom(concat, str), m); expr_ref ax_l2(m); zstring prefixStr, suffixStr; if (arg1Len_exists) { if (arg1Len.is_neg()) { TRACE("str", tout << "length conflict: arg1Len = " << arg1Len << ", concatStrLen = " << concatStrLen << std::endl;); expr_ref toAssert(m_autil.mk_ge(mk_strlen(arg1), mk_int(0)), m); assert_axiom(toAssert); return; } else if (arg1Len > concatStrLen) { TRACE("str", tout << "length conflict: arg1Len = " << arg1Len << ", concatStrLen = " << concatStrLen << std::endl;); expr_ref ax_r1(m_autil.mk_le(mk_strlen(arg1), mk_int(concatStrLen)), m); assert_implication(ax_l1, ax_r1); return; } prefixStr = const_str.extract(0, arg1Len.get_unsigned()); rational concat_minus_arg1 = concatStrLen - arg1Len; suffixStr = const_str.extract(arg1Len.get_unsigned(), concat_minus_arg1.get_unsigned()); ax_l2 = ctx.mk_eq_atom(mk_strlen(arg1), mk_int(arg1Len)); } else { // arg2's length is available if (arg2Len.is_neg()) { TRACE("str", tout << "length conflict: arg2Len = " << arg2Len << ", concatStrLen = " << concatStrLen << std::endl;); expr_ref toAssert(m_autil.mk_ge(mk_strlen(arg2), mk_int(0)), m); assert_axiom(toAssert); return; } else if (arg2Len > concatStrLen) { TRACE("str", tout << "length conflict: arg2Len = " << arg2Len << ", concatStrLen = " << concatStrLen << std::endl;); expr_ref ax_r1(m_autil.mk_le(mk_strlen(arg2), mk_int(concatStrLen)), m); assert_implication(ax_l1, ax_r1); return; } rational concat_minus_arg2 = concatStrLen - arg2Len; prefixStr = const_str.extract(0, concat_minus_arg2.get_unsigned()); suffixStr = const_str.extract(concat_minus_arg2.get_unsigned(), arg2Len.get_unsigned()); ax_l2 = ctx.mk_eq_atom(mk_strlen(arg2), mk_int(arg2Len)); } // consistency check if (u.str.is_concat(to_app(arg1)) && !can_concat_eq_str(arg1, prefixStr)) { expr_ref ax_r(m.mk_not(ax_l2), m); assert_implication(ax_l1, ax_r); return; } if (u.str.is_concat(to_app(arg2)) && !can_concat_eq_str(arg2, suffixStr)) { expr_ref ax_r(m.mk_not(ax_l2), m); assert_implication(ax_l1, ax_r); return; } expr_ref_vector r_items(m); r_items.push_back(ctx.mk_eq_atom(arg1, mk_string(prefixStr))); r_items.push_back(ctx.mk_eq_atom(arg2, mk_string(suffixStr))); if (!arg1Len_exists) { r_items.push_back(ctx.mk_eq_atom(mk_strlen(arg1), mk_int(prefixStr.length()))); } if (!arg2Len_exists) { r_items.push_back(ctx.mk_eq_atom(mk_strlen(arg2), mk_int(suffixStr.length()))); } expr_ref lhs(m.mk_and(ax_l1, ax_l2), m); expr_ref rhs(mk_and(r_items), m); assert_implication(lhs, rhs); } else { /* ! (arg1Len != 1 || arg2Len != 1) */ expr_ref xorFlag(m); std::pair key1(arg1, arg2); std::pair key2(arg2, arg1); // check the entries in this map to make sure they're still in scope // before we use them. std::map, std::map >::iterator entry1 = varForBreakConcat.find(key1); std::map, std::map >::iterator entry2 = varForBreakConcat.find(key2); bool entry1InScope; if (entry1 == varForBreakConcat.end()) { TRACE("str", tout << "key1 no entry" << std::endl;); entry1InScope = false; } else { // OVERRIDE. entry1InScope = true; TRACE("str", tout << "key1 entry" << std::endl;); /* if (internal_variable_set.find((entry1->second)[0]) == internal_variable_set.end()) { TRACE("str", tout << "key1 entry not in scope" << std::endl;); entry1InScope = false; } else { TRACE("str", tout << "key1 entry in scope" << std::endl;); entry1InScope = true; } */ } bool entry2InScope; if (entry2 == varForBreakConcat.end()) { TRACE("str", tout << "key2 no entry" << std::endl;); entry2InScope = false; } else { // OVERRIDE. entry2InScope = true; TRACE("str", tout << "key2 entry" << std::endl;); /* if (internal_variable_set.find((entry2->second)[0]) == internal_variable_set.end()) { TRACE("str", tout << "key2 entry not in scope" << std::endl;); entry2InScope = false; } else { TRACE("str", tout << "key2 entry in scope" << std::endl;); entry2InScope = true; } */ } TRACE("str", tout << "entry 1 " << (entry1InScope ? "in scope" : "not in scope") << std::endl << "entry 2 " << (entry2InScope ? "in scope" : "not in scope") << std::endl;); if (!entry1InScope && !entry2InScope) { xorFlag = mk_internal_xor_var(); varForBreakConcat[key1][0] = xorFlag; } else if (entry1InScope) { xorFlag = varForBreakConcat[key1][0]; } else { // entry2InScope xorFlag = varForBreakConcat[key2][0]; } int concatStrLen = const_str.length(); int and_count = 1; expr_ref_vector arrangement_disjunction(m); for (int i = 0; i < concatStrLen + 1; ++i) { expr_ref_vector and_items(m); zstring prefixStr = const_str.extract(0, i); zstring suffixStr = const_str.extract(i, concatStrLen - i); // skip invalid options if (u.str.is_concat(to_app(arg1)) && !can_concat_eq_str(arg1, prefixStr)) { continue; } if (u.str.is_concat(to_app(arg2)) && !can_concat_eq_str(arg2, suffixStr)) { continue; } expr_ref prefixAst(mk_string(prefixStr), m); expr_ref arg1_eq (ctx.mk_eq_atom(arg1, prefixAst), m); and_items.push_back(arg1_eq); and_count += 1; expr_ref suffixAst(mk_string(suffixStr), m); expr_ref arg2_eq (ctx.mk_eq_atom(arg2, suffixAst), m); and_items.push_back(arg2_eq); and_count += 1; arrangement_disjunction.push_back(mk_and(and_items)); } expr_ref implyL(ctx.mk_eq_atom(concat, str), m); expr_ref implyR1(m); if (arrangement_disjunction.empty()) { // negate expr_ref concat_eq_str(ctx.mk_eq_atom(concat, str), m); expr_ref negate_ast(m.mk_not(concat_eq_str), m); assert_axiom(negate_ast); } else { implyR1 = mk_or(arrangement_disjunction); if (m_params.m_StrongArrangements) { expr_ref ax_strong(ctx.mk_eq_atom(implyL, implyR1), m); assert_axiom(ax_strong); } else { assert_implication(implyL, implyR1); } generate_mutual_exclusion(arrangement_disjunction); } } /* (arg1Len != 1 || arg2Len != 1) */ } /* if (Concat(arg1, arg2) == nullptr) */ } } } void theory_str::handle_equality(expr * lhs, expr * rhs) { ast_manager & m = get_manager(); // both terms must be of sort String sort * lhs_sort = m.get_sort(lhs); sort * rhs_sort = m.get_sort(rhs); sort * str_sort = u.str.mk_string_sort(); // Pick up new terms added during the search (e.g. recursive function expansion). if (!existing_toplevel_exprs.contains(lhs)) { existing_toplevel_exprs.insert(lhs); set_up_axioms(lhs); propagate(); } if (!existing_toplevel_exprs.contains(rhs)) { existing_toplevel_exprs.insert(rhs); set_up_axioms(rhs); propagate(); } if (lhs_sort != str_sort || rhs_sort != str_sort) { TRACE("str", tout << "skip equality: not String sort" << std::endl;); return; } if (u.str.is_concat(to_app(lhs)) && u.str.is_concat(to_app(rhs))) { bool nn1HasEqcValue = false; bool nn2HasEqcValue = false; expr * nn1_value = get_eqc_value(lhs, nn1HasEqcValue); expr * nn2_value = get_eqc_value(rhs, nn2HasEqcValue); if (nn1HasEqcValue && !nn2HasEqcValue) { simplify_parent(rhs, nn1_value); } if (!nn1HasEqcValue && nn2HasEqcValue) { simplify_parent(lhs, nn2_value); } expr * nn1_arg0 = to_app(lhs)->get_arg(0); expr * nn1_arg1 = to_app(lhs)->get_arg(1); expr * nn2_arg0 = to_app(rhs)->get_arg(0); expr * nn2_arg1 = to_app(rhs)->get_arg(1); if (nn1_arg0 == nn2_arg0 && in_same_eqc(nn1_arg1, nn2_arg1)) { TRACE("str", tout << "skip: lhs arg0 == rhs arg0" << std::endl;); return; } if (nn1_arg1 == nn2_arg1 && in_same_eqc(nn1_arg0, nn2_arg0)) { TRACE("str", tout << "skip: lhs arg1 == rhs arg1" << std::endl;); return; } } if (opt_DeferEQCConsistencyCheck) { TRACE("str", tout << "opt_DeferEQCConsistencyCheck is set; deferring new_eq_check call" << std::endl;); } else { // newEqCheck() -- check consistency wrt. existing equivalence classes if (!new_eq_check(lhs, rhs)) { return; } } // BEGIN new_eq_handler() in strTheory check_eqc_empty_string(lhs, rhs); instantiate_str_eq_length_axiom(ctx.get_enode(lhs), ctx.get_enode(rhs)); // group terms by equivalence class (groupNodeInEqc()) std::set eqc_concat_lhs; std::set eqc_var_lhs; std::set eqc_const_lhs; group_terms_by_eqc(lhs, eqc_concat_lhs, eqc_var_lhs, eqc_const_lhs); std::set eqc_concat_rhs; std::set eqc_var_rhs; std::set eqc_const_rhs; group_terms_by_eqc(rhs, eqc_concat_rhs, eqc_var_rhs, eqc_const_rhs); TRACE("str", tout << "lhs eqc:" << std::endl; tout << "Concats:" << std::endl; for (std::set::iterator it = eqc_concat_lhs.begin(); it != eqc_concat_lhs.end(); ++it) { expr * ex = *it; tout << mk_ismt2_pp(ex, get_manager()) << std::endl; } tout << "Variables:" << std::endl; for (std::set::iterator it = eqc_var_lhs.begin(); it != eqc_var_lhs.end(); ++it) { expr * ex = *it; tout << mk_ismt2_pp(ex, get_manager()) << std::endl; } tout << "Constants:" << std::endl; for (std::set::iterator it = eqc_const_lhs.begin(); it != eqc_const_lhs.end(); ++it) { expr * ex = *it; tout << mk_ismt2_pp(ex, get_manager()) << std::endl; } tout << "rhs eqc:" << std::endl; tout << "Concats:" << std::endl; for (std::set::iterator it = eqc_concat_rhs.begin(); it != eqc_concat_rhs.end(); ++it) { expr * ex = *it; tout << mk_ismt2_pp(ex, get_manager()) << std::endl; } tout << "Variables:" << std::endl; for (std::set::iterator it = eqc_var_rhs.begin(); it != eqc_var_rhs.end(); ++it) { expr * ex = *it; tout << mk_ismt2_pp(ex, get_manager()) << std::endl; } tout << "Constants:" << std::endl; for (std::set::iterator it = eqc_const_rhs.begin(); it != eqc_const_rhs.end(); ++it) { expr * ex = *it; tout << mk_ismt2_pp(ex, get_manager()) << std::endl; } ); // step 1: Concat == Concat check_eqc_concat_concat(eqc_concat_lhs, eqc_concat_rhs); // step 2: Concat == Constant if (!eqc_const_lhs.empty()) { expr * conStr = *(eqc_const_lhs.begin()); std::set::iterator itor2 = eqc_concat_rhs.begin(); for (; itor2 != eqc_concat_rhs.end(); itor2++) { solve_concat_eq_str(*itor2, conStr); } } else if (!eqc_const_rhs.empty()) { expr* conStr = *(eqc_const_rhs.begin()); std::set::iterator itor1 = eqc_concat_lhs.begin(); for (; itor1 != eqc_concat_lhs.end(); itor1++) { solve_concat_eq_str(*itor1, conStr); } } // simplify parents wrt. the equivalence class of both sides bool nn1HasEqcValue = false; bool nn2HasEqcValue = false; // we want the Z3str2 eqc check here... expr * nn1_value = z3str2_get_eqc_value(lhs, nn1HasEqcValue); expr * nn2_value = z3str2_get_eqc_value(rhs, nn2HasEqcValue); if (nn1HasEqcValue && !nn2HasEqcValue) { simplify_parent(rhs, nn1_value); } if (!nn1HasEqcValue && nn2HasEqcValue) { simplify_parent(lhs, nn2_value); } } // Check that a string's length can be 0 iff it is the empty string. void theory_str::check_eqc_empty_string(expr * lhs, expr * rhs) { ast_manager & m = get_manager(); rational nn1Len, nn2Len; bool nn1Len_exists = get_len_value(lhs, nn1Len); bool nn2Len_exists = get_len_value(rhs, nn2Len); expr_ref emptyStr(mk_string(""), m); if (nn1Len_exists && nn1Len.is_zero()) { if (!in_same_eqc(lhs, emptyStr) && rhs != emptyStr) { expr_ref eql(ctx.mk_eq_atom(mk_strlen(lhs), mk_int(0)), m); expr_ref eqr(ctx.mk_eq_atom(lhs, emptyStr), m); expr_ref toAssert(ctx.mk_eq_atom(eql, eqr), m); assert_axiom(toAssert); } } if (nn2Len_exists && nn2Len.is_zero()) { if (!in_same_eqc(rhs, emptyStr) && lhs != emptyStr) { expr_ref eql(ctx.mk_eq_atom(mk_strlen(rhs), mk_int(0)), m); expr_ref eqr(ctx.mk_eq_atom(rhs, emptyStr), m); expr_ref toAssert(ctx.mk_eq_atom(eql, eqr), m); assert_axiom(toAssert); } } } void theory_str::check_eqc_concat_concat(std::set & eqc_concat_lhs, std::set & eqc_concat_rhs) { ast_manager & m = get_manager(); (void)m; int hasCommon = 0; if (!eqc_concat_lhs.empty() && !eqc_concat_rhs.empty()) { std::set::iterator itor1 = eqc_concat_lhs.begin(); std::set::iterator itor2 = eqc_concat_rhs.begin(); for (; itor1 != eqc_concat_lhs.end(); itor1++) { if (eqc_concat_rhs.find(*itor1) != eqc_concat_rhs.end()) { hasCommon = 1; break; } } for (; itor2 != eqc_concat_rhs.end(); itor2++) { if (eqc_concat_lhs.find(*itor2) != eqc_concat_lhs.end()) { hasCommon = 1; break; } } if (hasCommon == 0) { if (opt_ConcatOverlapAvoid) { bool found = false; // check each pair and take the first ones that won't immediately overlap for (itor1 = eqc_concat_lhs.begin(); itor1 != eqc_concat_lhs.end() && !found; ++itor1) { expr * concat_lhs = *itor1; for (itor2 = eqc_concat_rhs.begin(); itor2 != eqc_concat_rhs.end() && !found; ++itor2) { expr * concat_rhs = *itor2; if (will_result_in_overlap(concat_lhs, concat_rhs)) { TRACE("str", tout << "Concats " << mk_pp(concat_lhs, m) << " and " << mk_pp(concat_rhs, m) << " will result in overlap; skipping." << std::endl;); } else { TRACE("str", tout << "Concats " << mk_pp(concat_lhs, m) << " and " << mk_pp(concat_rhs, m) << " won't overlap. Simplifying here." << std::endl;); simplify_concat_equality(concat_lhs, concat_rhs); found = true; break; } } } if (!found) { TRACE("str", tout << "All pairs of concats expected to overlap, falling back." << std::endl;); simplify_concat_equality(*(eqc_concat_lhs.begin()), *(eqc_concat_rhs.begin())); } } else { // default behaviour simplify_concat_equality(*(eqc_concat_lhs.begin()), *(eqc_concat_rhs.begin())); } } } } bool theory_str::is_var(expr * e) const { ast_manager & m = get_manager(); sort * ex_sort = m.get_sort(e); sort * str_sort = u.str.mk_string_sort(); // non-string-sort terms cannot be string variables if (ex_sort != str_sort) return false; // string constants cannot be variables if (u.str.is_string(e)) return false; if (u.str.is_concat(e) || u.str.is_at(e) || u.str.is_extract(e) || u.str.is_replace(e) || u.str.is_itos(e)) return false; if (m.is_ite(e)) return false; return true; } void theory_str::set_up_axioms(expr * ex) { ast_manager & m = get_manager(); // workaround for #3756: // the map existing_toplevel_exprs is never cleared on backtracking. // to ensure the expressions are valid we persist validity of the // expression throughout the lifetime of theory_str m_trail.push_back(ex); sort * ex_sort = m.get_sort(ex); sort * str_sort = u.str.mk_string_sort(); sort * bool_sort = m.mk_bool_sort(); family_id m_arith_fid = m.mk_family_id("arith"); sort * int_sort = m.mk_sort(m_arith_fid, INT_SORT); if (ex_sort == str_sort) { TRACE("str", tout << "setting up axioms for " << mk_ismt2_pp(ex, get_manager()) << ": expr is of sort String" << std::endl;); // set up basic string axioms enode * n = ctx.get_enode(ex); SASSERT(n); m_basicstr_axiom_todo.push_back(n); TRACE("str", tout << "add " << mk_pp(ex, m) << " to m_basicstr_axiom_todo" << std::endl;); if (is_app(ex)) { app * ap = to_app(ex); if (u.str.is_concat(ap)) { // if ex is a concat, set up concat axioms later m_concat_axiom_todo.push_back(n); // we also want to check whether we can eval this concat, // in case the rewriter did not totally finish with this term m_concat_eval_todo.push_back(n); } else if (u.str.is_at(ap) || u.str.is_extract(ap) || u.str.is_replace(ap)) { m_library_aware_axiom_todo.push_back(n); } else if (u.str.is_itos(ap)) { TRACE("str", tout << "found string-integer conversion term: " << mk_pp(ex, get_manager()) << std::endl;); string_int_conversion_terms.push_back(ap); m_library_aware_axiom_todo.push_back(n); } else if (is_var(ex)) { // if ex is a variable, add it to our list of variables TRACE("str", tout << "tracking variable " << mk_ismt2_pp(ap, get_manager()) << std::endl;); variable_set.insert(ex); ctx.mark_as_relevant(ex); // this might help?? theory_var v = mk_var(n); TRACE("str", tout << "variable " << mk_ismt2_pp(ap, get_manager()) << " is #" << v << std::endl;); (void)v; } } } else if (ex_sort == bool_sort && !is_quantifier(ex)) { TRACE("str", tout << "setting up axioms for " << mk_ismt2_pp(ex, get_manager()) << ": expr is of sort Bool" << std::endl;); // set up axioms for boolean terms ensure_enode(ex); if (ctx.e_internalized(ex)) { enode * n = ctx.get_enode(ex); SASSERT(n); if (is_app(ex)) { app * ap = to_app(ex); if (u.str.is_prefix(ap) || u.str.is_suffix(ap) || u.str.is_contains(ap) || u.str.is_in_re(ap)) { m_library_aware_axiom_todo.push_back(n); } } } else { TRACE("str", tout << "WARNING: Bool term " << mk_ismt2_pp(ex, get_manager()) << " not internalized. Delaying axiom setup to prevent a crash." << std::endl;); ENSURE(!search_started); // infinite loop prevention m_delayed_axiom_setup_terms.push_back(ex); return; } } else if (ex_sort == int_sort) { TRACE("str", tout << "setting up axioms for " << mk_ismt2_pp(ex, get_manager()) << ": expr is of sort Int" << std::endl;); // set up axioms for integer terms enode * n = ensure_enode(ex); SASSERT(n); if (is_app(ex)) { app * ap = to_app(ex); if (u.str.is_index(ap)) { m_library_aware_axiom_todo.push_back(n); } else if (u.str.is_stoi(ap)) { TRACE("str", tout << "found string-integer conversion term: " << mk_pp(ex, get_manager()) << std::endl;); string_int_conversion_terms.push_back(ap); m_library_aware_axiom_todo.push_back(n); } } } else { if (u.str.is_non_string_sequence(ex)) { TRACE("str", tout << "ERROR: Z3str3 does not support non-string sequence terms. Aborting." << std::endl;); m.raise_exception("Z3str3 does not support non-string sequence terms."); } TRACE("str", tout << "setting up axioms for " << mk_ismt2_pp(ex, get_manager()) << ": expr is of wrong sort, ignoring" << std::endl;); } // if expr is an application, recursively inspect all arguments if (is_app(ex)) { app * term = to_app(ex); unsigned num_args = term->get_num_args(); for (unsigned i = 0; i < num_args; i++) { set_up_axioms(term->get_arg(i)); } } } void theory_str::add_theory_assumptions(expr_ref_vector & assumptions) { TRACE("str", tout << "add overlap assumption for theory_str" << std::endl;); const char* strOverlap = "!!TheoryStrOverlapAssumption!!"; sort * s = get_manager().mk_bool_sort(); m_theoryStrOverlapAssumption_term = expr_ref(mk_fresh_const(strOverlap, s), get_manager()); assumptions.push_back(get_manager().mk_not(m_theoryStrOverlapAssumption_term)); } lbool theory_str::validate_unsat_core(expr_ref_vector & unsat_core) { app * target_term = to_app(get_manager().mk_not(m_theoryStrOverlapAssumption_term)); ctx.internalize(target_term, false); enode* e1 = ctx.get_enode(target_term); for (unsigned i = 0; i < unsat_core.size(); ++i) { app * core_term = to_app(unsat_core.get(i)); // not sure if this is the correct way to compare terms in this context if (!ctx.e_internalized(core_term)) continue; enode *e2 = ctx.get_enode(core_term); if (e1 == e2) { TRACE("str", tout << "overlap detected in unsat core, changing UNSAT to UNKNOWN" << std::endl;); return l_undef; } } return l_false; } void theory_str::init_search_eh() { reset_internal_data_structures(); TRACE("str", tout << "dumping all asserted formulas:" << std::endl; unsigned nFormulas = ctx.get_num_asserted_formulas(); for (unsigned i = 0; i < nFormulas; ++i) { expr * ex = ctx.get_asserted_formula(i); tout << mk_pp(ex, get_manager()) << (ctx.is_relevant(ex) ? " (rel)" : " (NOT REL)") << std::endl; } ); TRACE("str", expr_ref_vector formulas(get_manager()); ctx.get_assignments(formulas); tout << "dumping all formulas:" << std::endl; for (expr_ref_vector::iterator i = formulas.begin(); i != formulas.end(); ++i) { expr * ex = *i; tout << mk_pp(ex, get_manager()) << (ctx.is_relevant(ex) ? "" : " (NOT REL)") << std::endl; } ); /* * Recursive descent through all asserted formulas to set up axioms. * Note that this is just the input structure and not necessarily things * that we know to be true or false. We're just doing this to see * which terms are explicitly mentioned. */ unsigned nFormulas = ctx.get_num_asserted_formulas(); for (unsigned i = 0; i < nFormulas; ++i) { expr * ex = ctx.get_asserted_formula(i); set_up_axioms(ex); } TRACE("str", tout << "search started" << std::endl;); search_started = true; } void theory_str::new_eq_eh(theory_var x, theory_var y) { //TRACE("str", tout << "new eq: v#" << x << " = v#" << y << std::endl;); TRACE("str", tout << "new eq: " << mk_ismt2_pp(get_enode(x)->get_owner(), get_manager()) << " = " << mk_ismt2_pp(get_enode(y)->get_owner(), get_manager()) << std::endl;); candidate_model.reset(); /* if (m_find.find(x) == m_find.find(y)) { return; } */ handle_equality(get_enode(x)->get_owner(), get_enode(y)->get_owner()); // replicate Z3str2 behaviour: merge eqc **AFTER** handle_equality m_find.merge(x, y); } void theory_str::new_diseq_eh(theory_var x, theory_var y) { //TRACE("str", tout << "new diseq: v#" << x << " != v#" << y << std::endl;); TRACE("str", tout << "new diseq: " << mk_ismt2_pp(get_enode(x)->get_owner(), get_manager()) << " != " << mk_ismt2_pp(get_enode(y)->get_owner(), get_manager()) << std::endl;); candidate_model.reset(); } void theory_str::relevant_eh(app * n) { TRACE("str", tout << "relevant: " << mk_ismt2_pp(n, get_manager()) << std::endl;); } void theory_str::assign_eh(bool_var v, bool is_true) { candidate_model.reset(); expr * e = ctx.bool_var2expr(v); TRACE("str", tout << "assert: v" << v << " " << mk_pp(e, get_manager()) << " is_true: " << is_true << std::endl;); DEBUG_CODE( for (auto * f : existing_toplevel_exprs) { SASSERT(f->get_ref_count() > 0); }); if (!existing_toplevel_exprs.contains(e)) { existing_toplevel_exprs.insert(e); set_up_axioms(e); propagate(); } // heuristics if (u.str.is_prefix(e)) { check_consistency_prefix(e, is_true); } else if (u.str.is_suffix(e)) { check_consistency_suffix(e, is_true); } else if (u.str.is_contains(e)) { check_consistency_contains(e, is_true); } } // terms like int.to.str cannot start with / end with / contain non-digit characters // in the future this could be expanded to regex checks as well void theory_str::check_consistency_prefix(expr * e, bool is_true) { context & ctx = get_context(); ast_manager & m = get_manager(); expr * needle; expr * haystack; u.str.is_prefix(e, needle, haystack); TRACE("str", tout << "check consistency of prefix predicate: " << mk_pp(needle, m) << " prefixof " << mk_pp(haystack, m) << std::endl;); zstring needleStringConstant; if (get_string_constant_eqc(needle, needleStringConstant)) { if (u.str.is_itos(haystack) && is_true) { // needle cannot contain non-digit characters for (unsigned i = 0; i < needleStringConstant.length(); ++i) { if (! ('0' <= needleStringConstant[i] && needleStringConstant[i] <= '9')) { TRACE("str", tout << "conflict: needle = \"" << needleStringConstant << "\" contains non-digit character, but is a prefix of int-to-string term" << std::endl;); expr_ref premise(ctx.mk_eq_atom(needle, mk_string(needleStringConstant)), m); expr_ref conclusion(m.mk_not(e), m); expr_ref conflict(rewrite_implication(premise, conclusion), m); assert_axiom_rw(conflict); return; } } } } } void theory_str::check_consistency_suffix(expr * e, bool is_true) { context & ctx = get_context(); ast_manager & m = get_manager(); expr * needle; expr * haystack; u.str.is_suffix(e, needle, haystack); TRACE("str", tout << "check consistency of suffix predicate: " << mk_pp(needle, m) << " suffixof " << mk_pp(haystack, m) << std::endl;); zstring needleStringConstant; if (get_string_constant_eqc(needle, needleStringConstant)) { if (u.str.is_itos(haystack) && is_true) { // needle cannot contain non-digit characters for (unsigned i = 0; i < needleStringConstant.length(); ++i) { if (! ('0' <= needleStringConstant[i] && needleStringConstant[i] <= '9')) { TRACE("str", tout << "conflict: needle = \"" << needleStringConstant << "\" contains non-digit character, but is a suffix of int-to-string term" << std::endl;); expr_ref premise(ctx.mk_eq_atom(needle, mk_string(needleStringConstant)), m); expr_ref conclusion(m.mk_not(e), m); expr_ref conflict(rewrite_implication(premise, conclusion), m); assert_axiom_rw(conflict); return; } } } } } void theory_str::check_consistency_contains(expr * e, bool is_true) { context & ctx = get_context(); ast_manager & m = get_manager(); expr * needle; expr * haystack; u.str.is_contains(e, haystack, needle); // first string contains second one TRACE("str", tout << "check consistency of contains predicate: " << mk_pp(haystack, m) << " contains " << mk_pp(needle, m) << std::endl;); zstring needleStringConstant; if (get_string_constant_eqc(needle, needleStringConstant)) { if (u.str.is_itos(haystack) && is_true) { // needle cannot contain non-digit characters for (unsigned i = 0; i < needleStringConstant.length(); ++i) { if (! ('0' <= needleStringConstant[i] && needleStringConstant[i] <= '9')) { TRACE("str", tout << "conflict: needle = \"" << needleStringConstant << "\" contains non-digit character, but int-to-string term contains it" << std::endl;); expr_ref premise(ctx.mk_eq_atom(needle, mk_string(needleStringConstant)), m); expr_ref conclusion(m.mk_not(e), m); expr_ref conflict(rewrite_implication(premise, conclusion), m); assert_axiom_rw(conflict); return; } } } } } void theory_str::push_scope_eh() { theory::push_scope_eh(); m_trail_stack.push_scope(); sLevel += 1; TRACE("str", tout << "push to " << sLevel << std::endl;); TRACE_CODE(if (is_trace_enabled("t_str_dump_assign_on_scope_change")) { dump_assignments(); }); candidate_model.reset(); } void theory_str::recursive_check_variable_scope(expr * ex) { ast_manager & m = get_manager(); if (is_app(ex)) { app * a = to_app(ex); if (a->get_num_args() == 0) { // we only care about string variables sort * s = m.get_sort(ex); sort * string_sort = u.str.mk_string_sort(); if (s != string_sort) { return; } // base case: string constant / var if (u.str.is_string(a)) { return; } else { // assume var if (variable_set.find(ex) == variable_set.end() && internal_variable_set.find(ex) == internal_variable_set.end()) { TRACE("str", tout << "WARNING: possible reference to out-of-scope variable " << mk_pp(ex, m) << std::endl;); } } } else { for (unsigned i = 0; i < a->get_num_args(); ++i) { recursive_check_variable_scope(a->get_arg(i)); } } } } void theory_str::check_variable_scope() { if (!opt_CheckVariableScope) { return; } if (!is_trace_enabled("t_str_detail")) { return; } TRACE("str", tout << "checking scopes of variables in the current assignment" << std::endl;); ast_manager & m = get_manager(); expr_ref_vector assignments(m); ctx.get_assignments(assignments); for (expr_ref_vector::iterator i = assignments.begin(); i != assignments.end(); ++i) { expr * ex = *i; recursive_check_variable_scope(ex); } } void theory_str::add_persisted_axiom(expr * a) { m_persisted_axioms.push_back(a); } void theory_str::pop_scope_eh(unsigned num_scopes) { sLevel -= num_scopes; TRACE("str", tout << "pop " << num_scopes << " to " << sLevel << std::endl;); candidate_model.reset(); TRACE_CODE(if (is_trace_enabled("t_str_dump_assign_on_scope_change")) { dump_assignments(); }); // list of expr* to remove from cut_var_map ptr_vector cutvarmap_removes; obj_map >::iterator varItor = cut_var_map.begin(); while (varItor != cut_var_map.end()) { std::stack & val = cut_var_map[varItor->m_key]; while ((!val.empty()) && (val.top()->level != 0) && (val.top()->level >= sLevel)) { // TRACE("str", tout << "remove cut info for " << mk_pp(e, get_manager()) << std::endl; print_cut_var(e, tout);); // T_cut * aCut = val.top(); val.pop(); // dealloc(aCut); } if (val.empty()) { cutvarmap_removes.insert(varItor->m_key); } varItor++; } if (!cutvarmap_removes.empty()) { ptr_vector::iterator it = cutvarmap_removes.begin(); for (; it != cutvarmap_removes.end(); ++it) { expr * ex = *it; cut_var_map.remove(ex); } } ptr_vector new_m_basicstr; for (ptr_vector::iterator it = m_basicstr_axiom_todo.begin(); it != m_basicstr_axiom_todo.end(); ++it) { enode * e = *it; TRACE("str", tout << "consider deleting " << mk_pp(e->get_owner(), get_manager()) << ", enode scope level is " << e->get_iscope_lvl() << std::endl;); if (e->get_iscope_lvl() <= (unsigned)sLevel) { new_m_basicstr.push_back(e); } } m_basicstr_axiom_todo.reset(); m_basicstr_axiom_todo = new_m_basicstr; if (ctx.is_searching()) { for (expr * e : m_persisted_axioms) { TRACE("str", tout << "persist axiom: " << mk_pp(e, get_manager()) << std::endl;); m_persisted_axiom_todo.push_back(e); } } m_trail_stack.pop_scope(num_scopes); theory::pop_scope_eh(num_scopes); //check_variable_scope(); } void theory_str::dump_assignments() { TRACE_CODE( ast_manager & m = get_manager(); tout << "dumping all assignments:" << std::endl; expr_ref_vector assignments(m); ctx.get_assignments(assignments); for (expr_ref_vector::iterator i = assignments.begin(); i != assignments.end(); ++i) { expr * ex = *i; tout << mk_ismt2_pp(ex, m) << (ctx.is_relevant(ex) ? "" : " (NOT REL)") << std::endl; } ); } // returns true if needle appears as a subterm anywhere under haystack, // or if needle appears in the same EQC as a subterm anywhere under haystack bool theory_str::term_appears_as_subterm(expr * needle, expr * haystack) { if (in_same_eqc(needle, haystack)) { return true; } if (is_app(haystack)) { app * a_haystack = to_app(haystack); for (unsigned i = 0; i < a_haystack->get_num_args(); ++i) { expr * subterm = a_haystack->get_arg(i); if (term_appears_as_subterm(needle, subterm)) { return true; } } } // not found return false; } void theory_str::classify_ast_by_type(expr * node, std::map & varMap, std::map & concatMap, std::map & unrollMap) { // check whether the node is a string variable; // testing set membership here bypasses several expensive checks. // note that internal variables don't count if they're only length tester / value tester vars. if (variable_set.find(node) != variable_set.end()) { if (varMap[node] != 1) { TRACE("str", tout << "new variable: " << mk_pp(node, get_manager()) << std::endl;); } varMap[node] = 1; } // check whether the node is a function that we want to inspect else if (is_app(node)) { app * aNode = to_app(node); if (u.str.is_length(aNode)) { // Length return; } else if (u.str.is_concat(aNode)) { expr * arg0 = aNode->get_arg(0); expr * arg1 = aNode->get_arg(1); bool arg0HasEq = false; bool arg1HasEq = false; expr * arg0Val = get_eqc_value(arg0, arg0HasEq); expr * arg1Val = get_eqc_value(arg1, arg1HasEq); int canskip = 0; zstring tmp; u.str.is_string(arg0Val, tmp); if (arg0HasEq && tmp.empty()) { canskip = 1; } u.str.is_string(arg1Val, tmp); if (canskip == 0 && arg1HasEq && tmp.empty()) { canskip = 1; } if (canskip == 0 && concatMap.find(node) == concatMap.end()) { concatMap[node] = 1; } } // recursively visit all arguments for (unsigned i = 0; i < aNode->get_num_args(); ++i) { expr * arg = aNode->get_arg(i); classify_ast_by_type(arg, varMap, concatMap, unrollMap); } } } // NOTE: this function used to take an argument `Z3_ast node`; // it was not used and so was removed from the signature void theory_str::classify_ast_by_type_in_positive_context(std::map & varMap, std::map & concatMap, std::map & unrollMap) { ast_manager & m = get_manager(); expr_ref_vector assignments(m); ctx.get_assignments(assignments); for (expr_ref_vector::iterator it = assignments.begin(); it != assignments.end(); ++it) { expr * argAst = *it; // the original code jumped through some hoops to check whether the AST node // is a function, then checked whether that function is "interesting". // however, the only thing that's considered "interesting" is an equality predicate. // so we bypass a huge amount of work by doing the following... if (m.is_eq(argAst)) { TRACE("str", tout << "eq ast " << mk_pp(argAst, m) << " is between args of sort " << m.get_sort(to_app(argAst)->get_arg(0))->get_name() << std::endl;); classify_ast_by_type(argAst, varMap, concatMap, unrollMap); } } } inline expr * theory_str::get_alias_index_ast(std::map & aliasIndexMap, expr * node) { if (aliasIndexMap.find(node) != aliasIndexMap.end()) return aliasIndexMap[node]; else return node; } inline expr * theory_str::getMostLeftNodeInConcat(expr * node) { app * aNode = to_app(node); if (!u.str.is_concat(aNode)) { return node; } else { expr * concatArgL = aNode->get_arg(0); return getMostLeftNodeInConcat(concatArgL); } } inline expr * theory_str::getMostRightNodeInConcat(expr * node) { app * aNode = to_app(node); if (!u.str.is_concat(aNode)) { return node; } else { expr * concatArgR = aNode->get_arg(1); return getMostRightNodeInConcat(concatArgR); } } void theory_str::trace_ctx_dep(std::ofstream & tout, std::map & aliasIndexMap, std::map & var_eq_constStr_map, std::map > & var_eq_concat_map, std::map > & var_eq_unroll_map, std::map & concat_eq_constStr_map, std::map > & concat_eq_concat_map, std::map > & unrollGroupMap) { #ifdef _TRACE ast_manager & mgr = get_manager(); { tout << "(0) alias: variables" << std::endl; std::map > aliasSumMap; std::map::iterator itor0 = aliasIndexMap.begin(); for (; itor0 != aliasIndexMap.end(); itor0++) { aliasSumMap[itor0->second][itor0->first] = 1; } std::map >::iterator keyItor = aliasSumMap.begin(); for (; keyItor != aliasSumMap.end(); keyItor++) { tout << " * "; tout << mk_pp(keyItor->first, mgr); tout << " : "; std::map::iterator innerItor = keyItor->second.begin(); for (; innerItor != keyItor->second.end(); innerItor++) { tout << mk_pp(innerItor->first, mgr); tout << ", "; } tout << std::endl; } tout << std::endl; } { tout << "(1) var = constStr:" << std::endl; std::map::iterator itor1 = var_eq_constStr_map.begin(); for (; itor1 != var_eq_constStr_map.end(); itor1++) { tout << " * "; tout << mk_pp(itor1->first, mgr); tout << " = "; tout << mk_pp(itor1->second, mgr); if (!in_same_eqc(itor1->first, itor1->second)) { tout << " (not true in ctx)"; } tout << std::endl; } tout << std::endl; } { tout << "(2) var = concat:" << std::endl; std::map >::iterator itor2 = var_eq_concat_map.begin(); for (; itor2 != var_eq_concat_map.end(); itor2++) { tout << " * "; tout << mk_pp(itor2->first, mgr); tout << " = { "; std::map::iterator i_itor = itor2->second.begin(); for (; i_itor != itor2->second.end(); i_itor++) { tout << mk_pp(i_itor->first, mgr); tout << ", "; } tout << std::endl; } tout << std::endl; } { tout << "(3) var = unrollFunc:" << std::endl; std::map >::iterator itor2 = var_eq_unroll_map.begin(); for (; itor2 != var_eq_unroll_map.end(); itor2++) { tout << " * " << mk_pp(itor2->first, mgr) << " = { "; std::map::iterator i_itor = itor2->second.begin(); for (; i_itor != itor2->second.end(); i_itor++) { tout << mk_pp(i_itor->first, mgr) << ", "; } tout << " }" << std::endl; } tout << std::endl; } { tout << "(4) concat = constStr:" << std::endl; std::map::iterator itor3 = concat_eq_constStr_map.begin(); for (; itor3 != concat_eq_constStr_map.end(); itor3++) { tout << " * "; tout << mk_pp(itor3->first, mgr); tout << " = "; tout << mk_pp(itor3->second, mgr); tout << std::endl; } tout << std::endl; } { tout << "(5) eq concats:" << std::endl; std::map >::iterator itor4 = concat_eq_concat_map.begin(); for (; itor4 != concat_eq_concat_map.end(); itor4++) { if (itor4->second.size() > 1) { std::map::iterator i_itor = itor4->second.begin(); tout << " * "; for (; i_itor != itor4->second.end(); i_itor++) { tout << mk_pp(i_itor->first, mgr); tout << " , "; } tout << std::endl; } } tout << std::endl; } { tout << "(6) eq unrolls:" << std::endl; std::map >::iterator itor5 = unrollGroupMap.begin(); for (; itor5 != unrollGroupMap.end(); itor5++) { tout << " * "; std::set::iterator i_itor = itor5->second.begin(); for (; i_itor != itor5->second.end(); i_itor++) { tout << mk_pp(*i_itor, mgr) << ", "; } tout << std::endl; } tout << std::endl; } { tout << "(7) unroll = concats:" << std::endl; std::map >::iterator itor5 = unrollGroupMap.begin(); for (; itor5 != unrollGroupMap.end(); itor5++) { tout << " * "; expr * unroll = itor5->first; tout << mk_pp(unroll, mgr) << std::endl; enode * e_curr = ctx.get_enode(unroll); enode * e_curr_end = e_curr; do { app * curr = e_curr->get_owner(); if (u.str.is_concat(curr)) { tout << " >>> " << mk_pp(curr, mgr) << std::endl; } e_curr = e_curr->get_next(); } while (e_curr != e_curr_end); tout << std::endl; } tout << std::endl; } #else return; #endif // _TRACE } /* * Dependence analysis from current context assignment * - "freeVarMap" contains a set of variables that doesn't constrained by Concats. * But it's possible that it's bounded by unrolls * For the case of * (1) var1 = unroll(r1, t1) * var1 is in the freeVarMap * > should unroll r1 for var1 * (2) var1 = unroll(r1, t1) /\ var1 = Concat(var2, var3) * var2, var3 are all in freeVar * > should split the unroll function so that var2 and var3 are bounded by new unrolls */ int theory_str::ctx_dep_analysis(std::map & strVarMap, std::map & freeVarMap, std::map > & unrollGroupMap, std::map > & var_eq_concat_map) { std::map concatMap; std::map unrollMap; std::map aliasIndexMap; std::map var_eq_constStr_map; std::map concat_eq_constStr_map; std::map > var_eq_unroll_map; std::map > concat_eq_concat_map; std::map > depMap; ast_manager & m = get_manager(); // note that the old API concatenated these assignments into // a massive conjunction; we may have the opportunity to avoid that here expr_ref_vector assignments(m); ctx.get_assignments(assignments); // Step 1: get variables / concat AST appearing in the context // the thing we iterate over should just be variable_set - internal_variable_set // so we avoid computing the set difference (but this might be slower) for (expr* var : variable_set) { //for(obj_hashtable::iterator it = variable_set.begin(); it != variable_set.end(); ++it) { //expr* var = *it; if (internal_variable_set.find(var) == internal_variable_set.end()) { TRACE("str", tout << "new variable: " << mk_pp(var, m) << std::endl;); strVarMap[var] = 1; } } classify_ast_by_type_in_positive_context(strVarMap, concatMap, unrollMap); // Step 2: collect alias relation // e.g. suppose we have the equivalence class {x, y, z}; // then we set aliasIndexMap[y] = x // and aliasIndexMap[z] = x std::map::iterator varItor = strVarMap.begin(); for (; varItor != strVarMap.end(); ++varItor) { if (aliasIndexMap.find(varItor->first) != aliasIndexMap.end()) { continue; } expr * aRoot = nullptr; expr * curr = varItor->first; do { if (variable_set.find(curr) != variable_set.end()) { if (aRoot == nullptr) { aRoot = curr; } else { aliasIndexMap[curr] = aRoot; } } curr = get_eqc_next(curr); } while (curr != varItor->first); } // Step 3: Collect interested cases varItor = strVarMap.begin(); for (; varItor != strVarMap.end(); ++varItor) { expr * deAliasNode = get_alias_index_ast(aliasIndexMap, varItor->first); // Case 1: variable = string constant // e.g. z = "str1" ::= var_eq_constStr_map[z] = "str1" if (var_eq_constStr_map.find(deAliasNode) == var_eq_constStr_map.end()) { bool nodeHasEqcValue = false; expr * nodeValue = get_eqc_value(deAliasNode, nodeHasEqcValue); if (nodeHasEqcValue) { var_eq_constStr_map[deAliasNode] = nodeValue; } } // Case 2: var_eq_concat // e.g. z = concat("str1", b) ::= var_eq_concat[z][concat(c, "str2")] = 1 // var_eq_unroll // e.g. z = unroll(...) ::= var_eq_unroll[z][unroll(...)] = 1 if (var_eq_concat_map.find(deAliasNode) == var_eq_concat_map.end()) { expr * curr = get_eqc_next(deAliasNode); while (curr != deAliasNode) { app * aCurr = to_app(curr); // collect concat if (u.str.is_concat(aCurr)) { expr * arg0 = aCurr->get_arg(0); expr * arg1 = aCurr->get_arg(1); bool arg0HasEqcValue = false; bool arg1HasEqcValue = false; expr * arg0_value = get_eqc_value(arg0, arg0HasEqcValue); expr * arg1_value = get_eqc_value(arg1, arg1HasEqcValue); bool is_arg0_emptyStr = false; if (arg0HasEqcValue) { zstring strval; u.str.is_string(arg0_value, strval); if (strval.empty()) { is_arg0_emptyStr = true; } } bool is_arg1_emptyStr = false; if (arg1HasEqcValue) { zstring strval; u.str.is_string(arg1_value, strval); if (strval.empty()) { is_arg1_emptyStr = true; } } if (!is_arg0_emptyStr && !is_arg1_emptyStr) { var_eq_concat_map[deAliasNode][curr] = 1; } } curr = get_eqc_next(curr); } } } // for(varItor in strVarMap) // -------------------------------------------------- // * collect aliasing relation among eq concats // e.g EQC={concat1, concat2, concat3} // concats_eq_Index_map[concat2] = concat1 // concats_eq_Index_map[concat3] = concat1 // -------------------------------------------------- std::map concats_eq_index_map; std::map::iterator concatItor = concatMap.begin(); for(; concatItor != concatMap.end(); ++concatItor) { if (concats_eq_index_map.find(concatItor->first) != concats_eq_index_map.end()) { continue; } expr * aRoot = nullptr; expr * curr = concatItor->first; do { if (u.str.is_concat(to_app(curr))) { if (aRoot == nullptr) { aRoot = curr; } else { concats_eq_index_map[curr] = aRoot; } } curr = get_eqc_next(curr); } while (curr != concatItor->first); } concatItor = concatMap.begin(); for(; concatItor != concatMap.end(); ++concatItor) { expr * deAliasConcat = nullptr; if (concats_eq_index_map.find(concatItor->first) != concats_eq_index_map.end()) { deAliasConcat = concats_eq_index_map[concatItor->first]; } else { deAliasConcat = concatItor->first; } // (3) concat_eq_conststr, e.g. concat(a,b) = "str1" if (concat_eq_constStr_map.find(deAliasConcat) == concat_eq_constStr_map.end()) { bool nodeHasEqcValue = false; expr * nodeValue = get_eqc_value(deAliasConcat, nodeHasEqcValue); if (nodeHasEqcValue) { concat_eq_constStr_map[deAliasConcat] = nodeValue; } } // (4) concat_eq_concat, e.g. // concat(a,b) = concat("str1", c) AND z = concat(a,b) AND z = concat(e,f) if (concat_eq_concat_map.find(deAliasConcat) == concat_eq_concat_map.end()) { expr * curr = deAliasConcat; do { if (u.str.is_concat(to_app(curr))) { // curr cannot be reduced if (concatMap.find(curr) != concatMap.end()) { concat_eq_concat_map[deAliasConcat][curr] = 1; } } curr = get_eqc_next(curr); } while (curr != deAliasConcat); } } // print some debugging info TRACE("str", trace_ctx_dep(tout, aliasIndexMap, var_eq_constStr_map, var_eq_concat_map, var_eq_unroll_map, concat_eq_constStr_map, concat_eq_concat_map, unrollGroupMap);); if (!contain_pair_bool_map.empty()) { compute_contains(aliasIndexMap, concats_eq_index_map, var_eq_constStr_map, concat_eq_constStr_map, var_eq_concat_map); } // step 4: dependence analysis // (1) var = string constant for (std::map::iterator itor = var_eq_constStr_map.begin(); itor != var_eq_constStr_map.end(); ++itor) { expr * var = get_alias_index_ast(aliasIndexMap, itor->first); expr * strAst = itor->second; depMap[var][strAst] = 1; } // (2) var = concat for (std::map >::iterator itor = var_eq_concat_map.begin(); itor != var_eq_concat_map.end(); ++itor) { expr * var = get_alias_index_ast(aliasIndexMap, itor->first); for (std::map::iterator itor1 = itor->second.begin(); itor1 != itor->second.end(); ++itor1) { expr * concat = itor1->first; std::map inVarMap; std::map inConcatMap; std::map inUnrollMap; classify_ast_by_type(concat, inVarMap, inConcatMap, inUnrollMap); for (std::map::iterator itor2 = inVarMap.begin(); itor2 != inVarMap.end(); ++itor2) { expr * varInConcat = get_alias_index_ast(aliasIndexMap, itor2->first); if (!(depMap[var].find(varInConcat) != depMap[var].end() && depMap[var][varInConcat] == 1)) { depMap[var][varInConcat] = 2; } } } } for (std::map >::iterator itor = var_eq_unroll_map.begin(); itor != var_eq_unroll_map.end(); itor++) { expr * var = get_alias_index_ast(aliasIndexMap, itor->first); for (std::map::iterator itor1 = itor->second.begin(); itor1 != itor->second.end(); itor1++) { expr * unrollFunc = itor1->first; std::map inVarMap; std::map inConcatMap; std::map inUnrollMap; classify_ast_by_type(unrollFunc, inVarMap, inConcatMap, inUnrollMap); for (std::map::iterator itor2 = inVarMap.begin(); itor2 != inVarMap.end(); itor2++) { expr * varInFunc = get_alias_index_ast(aliasIndexMap, itor2->first); TRACE("str", tout << "var in unroll = " << mk_ismt2_pp(itor2->first, m) << std::endl << "dealiased var = " << mk_ismt2_pp(varInFunc, m) << std::endl;); // it's possible that we have both (Unroll $$_regVar_0 $$_unr_0) /\ (Unroll abcd $$_unr_0), // while $$_regVar_0 = "abcd" // have to exclude such cases bool varHasValue = false; get_eqc_value(varInFunc, varHasValue); if (varHasValue) continue; if (depMap[var].find(varInFunc) == depMap[var].end()) { depMap[var][varInFunc] = 6; } } } } // (3) concat = string constant for (std::map::iterator itor = concat_eq_constStr_map.begin(); itor != concat_eq_constStr_map.end(); itor++) { expr * concatAst = itor->first; expr * constStr = itor->second; std::map inVarMap; std::map inConcatMap; std::map inUnrollMap; classify_ast_by_type(concatAst, inVarMap, inConcatMap, inUnrollMap); for (std::map::iterator itor2 = inVarMap.begin(); itor2 != inVarMap.end(); itor2++) { expr * varInConcat = get_alias_index_ast(aliasIndexMap, itor2->first); if (!(depMap[varInConcat].find(constStr) != depMap[varInConcat].end() && depMap[varInConcat][constStr] == 1)) depMap[varInConcat][constStr] = 3; } } // (4) equivalent concats // - possibility 1 : concat("str", v1) = concat(concat(v2, v3), v4) = concat(v5, v6) // ==> v2, v5 are constrained by "str" // - possibility 2 : concat(v1, "str") = concat(v2, v3) = concat(v4, v5) // ==> v2, v4 are constrained by "str" //-------------------------------------------------------------- std::map mostLeftNodes; std::map mostRightNodes; std::map mLIdxMap; std::map > mLMap; std::map mRIdxMap; std::map > mRMap; std::set nSet; for (std::map >::iterator itor = concat_eq_concat_map.begin(); itor != concat_eq_concat_map.end(); itor++) { mostLeftNodes.clear(); mostRightNodes.clear(); expr * mLConst = nullptr; expr * mRConst = nullptr; for (std::map::iterator itor1 = itor->second.begin(); itor1 != itor->second.end(); itor1++) { expr * concatNode = itor1->first; expr * mLNode = getMostLeftNodeInConcat(concatNode); zstring strval; if (u.str.is_string(to_app(mLNode), strval)) { if (mLConst == nullptr && strval.empty()) { mLConst = mLNode; } } else { mostLeftNodes[mLNode] = concatNode; } expr * mRNode = getMostRightNodeInConcat(concatNode); if (u.str.is_string(to_app(mRNode), strval)) { if (mRConst == nullptr && strval.empty()) { mRConst = mRNode; } } else { mostRightNodes[mRNode] = concatNode; } } if (mLConst != nullptr) { // ------------------------------------------------------------------------------------- // The left most variable in a concat is constrained by a constant string in eqc concat // ------------------------------------------------------------------------------------- // e.g. Concat(x, ...) = Concat("abc", ...) // ------------------------------------------------------------------------------------- for (std::map::iterator itor1 = mostLeftNodes.begin(); itor1 != mostLeftNodes.end(); itor1++) { expr * deVar = get_alias_index_ast(aliasIndexMap, itor1->first); if (depMap[deVar].find(mLConst) == depMap[deVar].end() || depMap[deVar][mLConst] != 1) { depMap[deVar][mLConst] = 4; } } } { // ------------------------------------------------------------------------------------- // The left most variables in eqc concats are constrained by each other // ------------------------------------------------------------------------------------- // e.g. concat(x, ...) = concat(u, ...) = ... // x and u are constrained by each other // ------------------------------------------------------------------------------------- nSet.clear(); std::map::iterator itl = mostLeftNodes.begin(); for (; itl != mostLeftNodes.end(); itl++) { bool lfHasEqcValue = false; get_eqc_value(itl->first, lfHasEqcValue); if (lfHasEqcValue) continue; expr * deVar = get_alias_index_ast(aliasIndexMap, itl->first); nSet.insert(deVar); } if (nSet.size() > 1) { int lId = -1; for (std::set::iterator itor2 = nSet.begin(); itor2 != nSet.end(); itor2++) { if (mLIdxMap.find(*itor2) != mLIdxMap.end()) { lId = mLIdxMap[*itor2]; break; } } if (lId == -1) lId = static_cast(mLMap.size()); for (std::set::iterator itor2 = nSet.begin(); itor2 != nSet.end(); itor2++) { bool itorHasEqcValue = false; get_eqc_value(*itor2, itorHasEqcValue); if (itorHasEqcValue) continue; mLIdxMap[*itor2] = lId; mLMap[lId].insert(*itor2); } } } if (mRConst != nullptr) { for (std::map::iterator itor1 = mostRightNodes.begin(); itor1 != mostRightNodes.end(); itor1++) { expr * deVar = get_alias_index_ast(aliasIndexMap, itor1->first); if (depMap[deVar].find(mRConst) == depMap[deVar].end() || depMap[deVar][mRConst] != 1) { depMap[deVar][mRConst] = 5; } } } { nSet.clear(); std::map::iterator itr = mostRightNodes.begin(); for (; itr != mostRightNodes.end(); itr++) { expr * deVar = get_alias_index_ast(aliasIndexMap, itr->first); nSet.insert(deVar); } if (nSet.size() > 1) { int rId = -1; std::set::iterator itor2 = nSet.begin(); for (; itor2 != nSet.end(); itor2++) { if (mRIdxMap.find(*itor2) != mRIdxMap.end()) { rId = mRIdxMap[*itor2]; break; } } if (rId == -1) rId = static_cast(mRMap.size()); for (itor2 = nSet.begin(); itor2 != nSet.end(); itor2++) { bool rHasEqcValue = false; get_eqc_value(*itor2, rHasEqcValue); if (rHasEqcValue) continue; mRIdxMap[*itor2] = rId; mRMap[rId].insert(*itor2); } } } } // print the dependence map TRACE("str", tout << "Dependence Map" << std::endl; for(std::map >::iterator itor = depMap.begin(); itor != depMap.end(); itor++) { tout << mk_pp(itor->first, m); rational nnLen; bool nnLen_exists = get_len_value(itor->first, nnLen); tout << " [len = " << (nnLen_exists ? nnLen.to_string() : "?") << "] \t-->\t"; for (std::map::iterator itor1 = itor->second.begin(); itor1 != itor->second.end(); itor1++) { tout << mk_pp(itor1->first, m) << "(" << itor1->second << "), "; } tout << std::endl; } ); // step, errr, 5: compute free variables based on the dependence map // the case dependence map is empty, every var in VarMap is free //--------------------------------------------------------------- // remove L/R most var in eq concat since they are constrained with each other std::map > lrConstrainedMap; for (std::map >::iterator itor = mLMap.begin(); itor != mLMap.end(); itor++) { for (std::set::iterator it1 = itor->second.begin(); it1 != itor->second.end(); it1++) { std::set::iterator it2 = it1; it2++; for (; it2 != itor->second.end(); it2++) { expr * n1 = *it1; expr * n2 = *it2; lrConstrainedMap[n1][n2] = 1; lrConstrainedMap[n2][n1] = 1; } } } for (std::map >::iterator itor = mRMap.begin(); itor != mRMap.end(); itor++) { for (std::set::iterator it1 = itor->second.begin(); it1 != itor->second.end(); it1++) { std::set::iterator it2 = it1; it2++; for (; it2 != itor->second.end(); it2++) { expr * n1 = *it1; expr * n2 = *it2; lrConstrainedMap[n1][n2] = 1; lrConstrainedMap[n2][n1] = 1; } } } if (depMap.empty()) { std::map::iterator itor = strVarMap.begin(); for (; itor != strVarMap.end(); itor++) { expr * var = get_alias_index_ast(aliasIndexMap, itor->first); if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) { freeVarMap[var] = 1; } else { int lrConstrained = 0; std::map::iterator lrit = freeVarMap.begin(); for (; lrit != freeVarMap.end(); lrit++) { if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) { lrConstrained = 1; break; } } if (lrConstrained == 0) { freeVarMap[var] = 1; } } } } else { // if the keys in aliasIndexMap are not contained in keys in depMap, they are free // e.g., x= y /\ x = z /\ t = "abc" // aliasIndexMap[y]= x, aliasIndexMap[z] = x // depMap t ~ "abc"(1) // x should be free std::map::iterator itor2 = strVarMap.begin(); for (; itor2 != strVarMap.end(); itor2++) { if (aliasIndexMap.find(itor2->first) != aliasIndexMap.end()) { expr * var = aliasIndexMap[itor2->first]; if (depMap.find(var) == depMap.end()) { if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) { freeVarMap[var] = 1; } else { int lrConstrained = 0; std::map::iterator lrit = freeVarMap.begin(); for (; lrit != freeVarMap.end(); lrit++) { if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) { lrConstrained = 1; break; } } if (lrConstrained == 0) { freeVarMap[var] = 1; } } } } else if (aliasIndexMap.find(itor2->first) == aliasIndexMap.end()) { // if a variable is not in aliasIndexMap and not in depMap, it's free if (depMap.find(itor2->first) == depMap.end()) { expr * var = itor2->first; if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) { freeVarMap[var] = 1; } else { int lrConstrained = 0; std::map::iterator lrit = freeVarMap.begin(); for (; lrit != freeVarMap.end(); lrit++) { if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) { lrConstrained = 1; break; } } if (lrConstrained == 0) { freeVarMap[var] = 1; } } } } } std::map >::iterator itor = depMap.begin(); for (; itor != depMap.end(); itor++) { for (std::map::iterator itor1 = itor->second.begin(); itor1 != itor->second.end(); itor1++) { if (variable_set.find(itor1->first) != variable_set.end()) { // expr type = var expr * var = get_alias_index_ast(aliasIndexMap, itor1->first); // if a var is dep on itself and all dependence are type 2, it's a free variable // e.g {y --> x(2), y(2), m --> m(2), n(2)} y,m are free { if (depMap.find(var) == depMap.end()) { if (freeVarMap.find(var) == freeVarMap.end()) { if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) { freeVarMap[var] = 1; } else { int lrConstrained = 0; std::map::iterator lrit = freeVarMap.begin(); for (; lrit != freeVarMap.end(); lrit++) { if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) { lrConstrained = 1; break; } } if (lrConstrained == 0) { freeVarMap[var] = 1; } } } else { freeVarMap[var] = freeVarMap[var] + 1; } } } } } } } return 0; } // Check agreement between integer and string theories for the term a = (str.to-int S). // Returns true if axioms were added, and false otherwise. bool theory_str::finalcheck_str2int(app * a) { SASSERT(u.str.is_stoi(a)); bool axiomAdd = false; ast_manager & m = get_manager(); expr * S = a->get_arg(0); // check integer theory rational Ival; bool Ival_exists = get_arith_value(a, Ival); if (Ival_exists) { TRACE("str", tout << "integer theory assigns " << mk_pp(a, m) << " = " << Ival.to_string() << std::endl;); // if that value is not -1, we can assert (str.to.int S) = Ival --> S = "Ival" if (!Ival.is_minus_one()) { zstring Ival_str(Ival.to_string().c_str()); expr_ref premise(ctx.mk_eq_atom(a, m_autil.mk_numeral(Ival, true)), m); expr_ref conclusion(ctx.mk_eq_atom(S, mk_string(Ival_str)), m); expr_ref axiom(rewrite_implication(premise, conclusion), m); if (!string_int_axioms.contains(axiom)) { string_int_axioms.insert(axiom); assert_axiom(axiom); m_trail_stack.push(insert_obj_trail(string_int_axioms, axiom)); axiomAdd = true; } } } else { TRACE("str", tout << "integer theory has no assignment for " << mk_pp(a, m) << std::endl;); expr_ref is_zero(ctx.mk_eq_atom(a, m_autil.mk_int(0)), m); /* literal is_zero_l = */ mk_literal(is_zero); axiomAdd = true; TRACE("str", ctx.display(tout);); } bool S_hasEqcValue; expr * S_str = get_eqc_value(S, S_hasEqcValue); if (S_hasEqcValue) { zstring str; u.str.is_string(S_str, str); bool valid = true; rational convertedRepresentation(0); rational ten(10); if (str.length() == 0) { valid = false; } else { for (unsigned i = 0; i < str.length(); ++i) { if (!('0' <= str[i] && str[i] <= '9')) { valid = false; break; } else { // accumulate char digit = (int)str[i]; std::string sDigit(1, digit); int val = atoi(sDigit.c_str()); convertedRepresentation = (ten * convertedRepresentation) + rational(val); } } } // TODO this duplicates code a bit, we can simplify the branch on "conclusion" only if (valid) { expr_ref premise(ctx.mk_eq_atom(S, mk_string(str)), m); expr_ref conclusion(ctx.mk_eq_atom(a, m_autil.mk_numeral(convertedRepresentation, true)), m); expr_ref axiom(rewrite_implication(premise, conclusion), m); if (!string_int_axioms.contains(axiom)) { string_int_axioms.insert(axiom); assert_axiom(axiom); m_trail_stack.push(insert_obj_trail(string_int_axioms, axiom)); axiomAdd = true; } } else { expr_ref premise(ctx.mk_eq_atom(S, mk_string(str)), m); expr_ref conclusion(ctx.mk_eq_atom(a, m_autil.mk_numeral(rational::minus_one(), true)), m); expr_ref axiom(rewrite_implication(premise, conclusion), m); if (!string_int_axioms.contains(axiom)) { string_int_axioms.insert(axiom); assert_axiom(axiom); m_trail_stack.push(insert_obj_trail(string_int_axioms, axiom)); axiomAdd = true; } } } return axiomAdd; } bool theory_str::finalcheck_int2str(app * a) { SASSERT(u.str.is_itos(a)); bool axiomAdd = false; ast_manager & m = get_manager(); expr * N = a->get_arg(0); // check string theory bool Sval_expr_exists; expr * Sval_expr = get_eqc_value(a, Sval_expr_exists); if (Sval_expr_exists) { zstring Sval; u.str.is_string(Sval_expr, Sval); TRACE("str", tout << "string theory assigns " << mk_pp(a, m) << " = \"" << Sval << "\"\n";); // empty string --> integer value < 0 if (Sval.empty()) { // ignore this. we should already assert the axiom for what happens when the string is "" } else { // check for leading zeroes. if the first character is '0', the entire string must be "0" char firstChar = (int)Sval[0]; if (firstChar == '0' && !(Sval == zstring("0"))) { TRACE("str", tout << "str.from-int argument " << Sval << " contains leading zeroes" << std::endl;); expr_ref axiom(m.mk_not(ctx.mk_eq_atom(a, mk_string(Sval))), m); assert_axiom(axiom); return true; } // nonempty string --> convert to correct integer value, or disallow it rational convertedRepresentation(0); rational ten(10); bool conversionOK = true; for (unsigned i = 0; i < Sval.length(); ++i) { char digit = (int)Sval[i]; if (isdigit((int)digit)) { std::string sDigit(1, digit); int val = atoi(sDigit.c_str()); convertedRepresentation = (ten * convertedRepresentation) + rational(val); } else { // not a digit, invalid TRACE("str", tout << "str.from-int argument contains non-digit character '" << digit << "'" << std::endl;); conversionOK = false; break; } } if (conversionOK) { expr_ref premise(ctx.mk_eq_atom(a, mk_string(Sval)), m); expr_ref conclusion(ctx.mk_eq_atom(N, m_autil.mk_numeral(convertedRepresentation, true)), m); expr_ref axiom(rewrite_implication(premise, conclusion), m); if (!string_int_axioms.contains(axiom)) { string_int_axioms.insert(axiom); assert_axiom(axiom); m_trail_stack.push(insert_obj_trail(string_int_axioms, axiom)); axiomAdd = true; } } else { expr_ref axiom(m.mk_not(ctx.mk_eq_atom(a, mk_string(Sval))), m); // always assert this axiom because this is a conflict clause assert_axiom(axiom); axiomAdd = true; } } } else { TRACE("str", tout << "string theory has no assignment for " << mk_pp(a, m) << std::endl;); // see if the integer theory has assigned N yet arith_value v(m); v.init(&ctx); rational Nval; if (v.get_value(N, Nval)) { expr_ref premise(ctx.mk_eq_atom(N, mk_int(Nval)), m); expr_ref conclusion(m); if (Nval.is_neg()) { // negative argument -> "" conclusion = expr_ref(ctx.mk_eq_atom(a, mk_string("")), m); } else { // non-negative argument -> convert to string of digits zstring Nval_str(Nval.to_string().c_str()); conclusion = expr_ref(ctx.mk_eq_atom(a, mk_string(Nval_str)), m); } expr_ref axiom(rewrite_implication(premise, conclusion), m); assert_axiom(axiom); axiomAdd = true; } else { TRACE("str", tout << "integer theory has no assignment for " << mk_pp(N, m) << std::endl;); expr_ref is_zero(ctx.mk_eq_atom(N, m_autil.mk_int(0)), m); /* literal is_zero_l = */ mk_literal(is_zero); axiomAdd = true; TRACE("str", ctx.display(tout);); } } return axiomAdd; } void theory_str::collect_var_concat(expr * node, std::set & varSet, std::set & concatSet) { if (variable_set.find(node) != variable_set.end()) { varSet.insert(node); } else if (is_app(node)) { app * aNode = to_app(node); if (u.str.is_length(aNode)) { // Length return; } if (u.str.is_concat(aNode)) { if (concatSet.find(node) == concatSet.end()) { concatSet.insert(node); } } // recursively visit all arguments for (unsigned i = 0; i < aNode->get_num_args(); ++i) { expr * arg = aNode->get_arg(i); collect_var_concat(arg, varSet, concatSet); } } } bool theory_str::propagate_length_within_eqc(expr * var) { bool res = false; ast_manager & m = get_manager(); TRACE("str", tout << "propagate_length_within_eqc: " << mk_ismt2_pp(var, m) << std::endl ;); rational varLen; if (! get_len_value(var, varLen)) { bool hasLen = false; expr * nodeWithLen= var; do { if (get_len_value(nodeWithLen, varLen)) { hasLen = true; break; } nodeWithLen = get_eqc_next(nodeWithLen); } while (nodeWithLen != var); if (hasLen) { // var = nodeWithLen --> |var| = |nodeWithLen| expr_ref_vector l_items(m); expr_ref varEqNode(ctx.mk_eq_atom(var, nodeWithLen), m); l_items.push_back(varEqNode); expr_ref nodeWithLenExpr (mk_strlen(nodeWithLen), m); expr_ref varLenExpr (mk_int(varLen), m); expr_ref lenEqNum(ctx.mk_eq_atom(nodeWithLenExpr, varLenExpr), m); l_items.push_back(lenEqNum); expr_ref axl(m.mk_and(l_items.size(), l_items.c_ptr()), m); expr_ref varLen(mk_strlen(var), m); expr_ref axr(ctx.mk_eq_atom(varLen, mk_int(varLen)), m); assert_implication(axl, axr); TRACE("str", tout << mk_ismt2_pp(axl, m) << std::endl << " ---> " << std::endl << mk_ismt2_pp(axr, m);); res = true; } } return res; } bool theory_str::propagate_length(std::set & varSet, std::set & concatSet, std::map & exprLenMap) { ast_manager & m = get_manager(); expr_ref_vector assignments(m); ctx.get_assignments(assignments); bool axiomAdded = false; // collect all concats in context for (expr_ref_vector::iterator it = assignments.begin(); it != assignments.end(); ++it) { if (! ctx.is_relevant(*it)) { continue; } if (m.is_eq(*it)) { collect_var_concat(*it, varSet, concatSet); } } // iterate each concat // if a concat doesn't have length info, check if the length of all leaf nodes can be resolved for (std::set::iterator it = concatSet.begin(); it != concatSet.end(); it++) { expr * concat = *it; rational lenValue; expr_ref concatlenExpr (mk_strlen(concat), m) ; bool allLeafResolved = true; if (! get_arith_value(concatlenExpr, lenValue)) { // the length of concat is unresolved yet if (get_len_value(concat, lenValue)) { // but all leaf nodes have length information TRACE("str", tout << "* length pop-up: " << mk_ismt2_pp(concat, m) << "| = " << lenValue << std::endl;); std::set leafNodes; get_unique_non_concat_nodes(concat, leafNodes); expr_ref_vector l_items(m); for (std::set::iterator leafIt = leafNodes.begin(); leafIt != leafNodes.end(); ++leafIt) { rational leafLenValue; if (get_len_value(*leafIt, leafLenValue)) { expr_ref leafItLenExpr (mk_strlen(*leafIt), m); expr_ref leafLenValueExpr (mk_int(leafLenValue), m); expr_ref lcExpr (ctx.mk_eq_atom(leafItLenExpr, leafLenValueExpr), m); l_items.push_back(lcExpr); } else { allLeafResolved = false; break; } } if (allLeafResolved) { expr_ref axl(m.mk_and(l_items.size(), l_items.c_ptr()), m); expr_ref lenValueExpr (mk_int(lenValue), m); expr_ref axr(ctx.mk_eq_atom(concatlenExpr, lenValueExpr), m); assert_implication(axl, axr); TRACE("str", tout << mk_ismt2_pp(axl, m) << std::endl << " ---> " << std::endl << mk_ismt2_pp(axr, m)<< std::endl;); axiomAdded = true; } } } } // if no concat length is propagated, check the length of variables. if (! axiomAdded) { for (std::set::iterator it = varSet.begin(); it != varSet.end(); it++) { expr * var = *it; rational lenValue; expr_ref varlen (mk_strlen(var), m) ; if (! get_arith_value(varlen, lenValue)) { if (propagate_length_within_eqc(var)) { axiomAdded = true; } } } } return axiomAdded; } void theory_str::get_unique_non_concat_nodes(expr * node, std::set & argSet) { app * a_node = to_app(node); if (!u.str.is_concat(a_node)) { argSet.insert(node); return; } else { SASSERT(a_node->get_num_args() == 2); expr * leftArg = a_node->get_arg(0); expr * rightArg = a_node->get_arg(1); get_unique_non_concat_nodes(leftArg, argSet); get_unique_non_concat_nodes(rightArg, argSet); } } final_check_status theory_str::final_check_eh() { ast_manager & m = get_manager(); //expr_ref_vector assignments(m); //ctx.get_assignments(assignments); if (opt_VerifyFinalCheckProgress) { finalCheckProgressIndicator = false; } TRACE("str", tout << "final check" << std::endl;); TRACE_CODE(if (is_trace_enabled("t_str_dump_assign")) { dump_assignments(); }); check_variable_scope(); if (opt_DeferEQCConsistencyCheck) { TRACE("str", tout << "performing deferred EQC consistency check" << std::endl;); std::set eqc_roots; for (ptr_vector::const_iterator it = ctx.begin_enodes(); it != ctx.end_enodes(); ++it) { enode * e = *it; enode * root = e->get_root(); eqc_roots.insert(root); } bool found_inconsistency = false; for (std::set::iterator it = eqc_roots.begin(); it != eqc_roots.end(); ++it) { enode * e = *it; app * a = e->get_owner(); if (!(m.get_sort(a) == u.str.mk_string_sort())) { TRACE("str", tout << "EQC root " << mk_pp(a, m) << " not a string term; skipping" << std::endl;); } else { TRACE("str", tout << "EQC root " << mk_pp(a, m) << " is a string term. Checking this EQC" << std::endl;); // first call check_concat_len_in_eqc() on each member of the eqc enode * e_it = e; enode * e_root = e_it; do { bool status = check_concat_len_in_eqc(e_it->get_owner()); if (!status) { TRACE("str", tout << "concat-len check asserted an axiom on " << mk_pp(e_it->get_owner(), m) << std::endl;); found_inconsistency = true; } e_it = e_it->get_next(); } while (e_it != e_root); // now grab any two distinct elements from the EQC and call new_eq_check() on them enode * e1 = e; enode * e2 = e1->get_next(); if (e1 != e2) { TRACE("str", tout << "deferred new_eq_check() over EQC of " << mk_pp(e1->get_owner(), m) << " and " << mk_pp(e2->get_owner(), m) << std::endl;); bool result = new_eq_check(e1->get_owner(), e2->get_owner()); if (!result) { TRACE("str", tout << "new_eq_check found inconsistencies" << std::endl;); found_inconsistency = true; } } } } if (found_inconsistency) { TRACE("str", tout << "Found inconsistency in final check! Returning to search." << std::endl;); return FC_CONTINUE; } else { TRACE("str", tout << "Deferred consistency check passed. Continuing in final check." << std::endl;); } } // run dependence analysis to find free string variables std::map varAppearInAssign; std::map freeVar_map; std::map > unrollGroup_map; std::map > var_eq_concat_map; int conflictInDep = ctx_dep_analysis(varAppearInAssign, freeVar_map, unrollGroup_map, var_eq_concat_map); if (conflictInDep == -1) { m_stats.m_solved_by = 2; return FC_DONE; } // enhancement: improved backpropagation of string constants into var=concat terms bool backpropagation_occurred = false; for (std::map >::iterator veqc_map_it = var_eq_concat_map.begin(); veqc_map_it != var_eq_concat_map.end(); ++veqc_map_it) { expr * var = veqc_map_it->first; for (std::map::iterator concat_map_it = veqc_map_it->second.begin(); concat_map_it != veqc_map_it->second.end(); ++concat_map_it) { app * concat = to_app(concat_map_it->first); expr * concat_lhs = concat->get_arg(0); expr * concat_rhs = concat->get_arg(1); // If the concat LHS and RHS both have a string constant in their EQC, // but the var does not, then we assert an axiom of the form // (lhs = "lhs" AND rhs = "rhs") --> (Concat lhs rhs) = "lhsrhs" bool concat_lhs_haseqc, concat_rhs_haseqc, var_haseqc; expr * concat_lhs_str = get_eqc_value(concat_lhs, concat_lhs_haseqc); expr * concat_rhs_str = get_eqc_value(concat_rhs, concat_rhs_haseqc); get_eqc_value(var, var_haseqc); if (concat_lhs_haseqc && concat_rhs_haseqc && !var_haseqc) { TRACE("str", tout << "backpropagate into " << mk_pp(var, m) << " = " << mk_pp(concat, m) << std::endl << "LHS ~= " << mk_pp(concat_lhs_str, m) << " RHS ~= " << mk_pp(concat_rhs_str, m) << std::endl;); zstring lhsString, rhsString; u.str.is_string(concat_lhs_str, lhsString); u.str.is_string(concat_rhs_str, rhsString); zstring concatString = lhsString + rhsString; // special handling: don't assert that string constants are equal to themselves expr_ref_vector lhs_terms(m); if (!u.str.is_string(concat_lhs)) { lhs_terms.push_back(ctx.mk_eq_atom(concat_lhs, concat_lhs_str)); } if (!u.str.is_string(concat_rhs)) { lhs_terms.push_back(ctx.mk_eq_atom(concat_rhs, concat_rhs_str)); } if (lhs_terms.empty()) { // no assumptions on LHS expr_ref rhs(ctx.mk_eq_atom(concat, mk_string(concatString)), m); assert_axiom(rhs); } else { expr_ref lhs(mk_and(lhs_terms), m); expr_ref rhs(ctx.mk_eq_atom(concat, mk_string(concatString)), m); assert_implication(lhs, rhs); } backpropagation_occurred = true; } } } if (backpropagation_occurred) { TRACE("str", tout << "Resuming search due to axioms added by backpropagation." << std::endl;); return FC_CONTINUE; } // enhancement: improved backpropagation of length information { std::set varSet; std::set concatSet; std::map exprLenMap; bool length_propagation_occurred = propagate_length(varSet, concatSet, exprLenMap); if (length_propagation_occurred) { TRACE("str", tout << "Resuming search due to axioms added by length propagation." << std::endl;); return FC_CONTINUE; } } solve_regex_automata(); bool needToAssignFreeVars = false; expr_ref_vector free_variables(m); std::set unused_internal_variables; { // Z3str2 free variables check std::map::iterator itor = varAppearInAssign.begin(); for (; itor != varAppearInAssign.end(); ++itor) { /* std::string vName = std::string(Z3_ast_to_string(ctx, itor->first)); if (vName.length() >= 3 && vName.substr(0, 3) == "$$_") continue; */ if (internal_variable_set.find(itor->first) != internal_variable_set.end()) { // this can be ignored, I think TRACE("str", tout << "free internal variable " << mk_pp(itor->first, m) << " ignored" << std::endl;); continue; } bool hasEqcValue = false; get_eqc_value(itor->first, hasEqcValue); if (!hasEqcValue) { TRACE("str", tout << "found free variable " << mk_pp(itor->first, m) << std::endl;); needToAssignFreeVars = true; free_variables.push_back(itor->first); // break; } else { // debug // TRACE("str", tout << "variable " << mk_pp(itor->first, m) << " = " << mk_pp(eqcString, m) << std::endl;); } } } if (!needToAssignFreeVars) { // check string-int terms bool addedStrIntAxioms = false; for (unsigned i = 0; i < string_int_conversion_terms.size(); ++i) { app * ex = to_app(string_int_conversion_terms[i].get()); if (u.str.is_stoi(ex)) { bool axiomAdd = finalcheck_str2int(ex); if (axiomAdd) { addedStrIntAxioms = true; } } else if (u.str.is_itos(ex)) { bool axiomAdd = finalcheck_int2str(ex); if (axiomAdd) { addedStrIntAxioms = true; } } else { UNREACHABLE(); } } if (addedStrIntAxioms) { TRACE("str", tout << "Resuming search due to addition of string-integer conversion axioms." << std::endl;); return FC_CONTINUE; } // We must be be 100% certain that if there are any regex constraints, // the string assignment for each variable is consistent with the automaton. // The (probably) easiest way to do this is to ensure // that we have path constraints set up for every assigned regex term. if (!regex_terms.empty()) { for (obj_hashtable::iterator it = regex_terms.begin(); it != regex_terms.end(); ++it) { expr * str_in_re = *it; expr * str; expr * re; u.str.is_in_re(str_in_re, str, re); lbool current_assignment = ctx.get_assignment(str_in_re); if (current_assignment == l_undef) { continue; } if (!regex_terms_with_path_constraints.contains(str_in_re)) { TRACE("str", tout << "assigned regex term " << mk_pp(str_in_re, m) << " has no path constraints -- continuing search" << std::endl;); return FC_CONTINUE; } } // foreach (str.in.re in regex_terms) } if (unused_internal_variables.empty()) { TRACE("str", tout << "All variables are assigned. Done!" << std::endl;); m_stats.m_solved_by = 2; return FC_DONE; } else { TRACE("str", tout << "Assigning decoy values to free internal variables." << std::endl;); for (std::set::iterator it = unused_internal_variables.begin(); it != unused_internal_variables.end(); ++it) { expr * var = *it; expr_ref assignment(m.mk_eq(var, mk_string("**unused**")), m); assert_axiom(assignment); } return FC_CONTINUE; } } CTRACE("str", needToAssignFreeVars, tout << "Need to assign values to the following free variables:" << std::endl; for (expr* v : free_variables) { tout << mk_ismt2_pp(v, m) << std::endl; } tout << "freeVar_map has the following entries:" << std::endl; for (auto const& kv : freeVar_map) { expr * var = kv.first; tout << mk_ismt2_pp(var, m) << std::endl; } ); // ----------------------------------------------------------- // variables in freeVar are those not bounded by Concats // classify variables in freeVarMap: // (1) freeVar = unroll(r1, t1) // (2) vars are not bounded by either concat or unroll // ----------------------------------------------------------- std::map > fv_unrolls_map; // erase var bounded by an unroll function from freeVar_map for (std::map >::iterator fvIt3 = fv_unrolls_map.begin(); fvIt3 != fv_unrolls_map.end(); fvIt3++) { expr * var = fvIt3->first; TRACE("str", tout << "erase free variable " << mk_pp(var, m) << " from freeVar_map, it is bounded by an Unroll" << std::endl;); freeVar_map.erase(var); } // collect the case: // * Concat(X, Y) = unroll(r1, t1) /\ Concat(X, Y) = unroll(r2, t2) // concatEqUnrollsMap[Concat(X, Y)] = {unroll(r1, t1), unroll(r2, t2)} std::map > concatEqUnrollsMap; for (std::map >::iterator urItor = unrollGroup_map.begin(); urItor != unrollGroup_map.end(); urItor++) { expr * unroll = urItor->first; expr * curr = unroll; do { if (u.str.is_concat(to_app(curr))) { concatEqUnrollsMap[curr].insert(unroll); concatEqUnrollsMap[curr].insert(unrollGroup_map[unroll].begin(), unrollGroup_map[unroll].end()); } enode * e_curr = ctx.get_enode(curr); curr = e_curr->get_next()->get_owner(); // curr = get_eqc_next(curr); } while (curr != unroll); } std::map > concatFreeArgsEqUnrollsMap; std::set fvUnrollSet; for (std::map >::iterator concatItor = concatEqUnrollsMap.begin(); concatItor != concatEqUnrollsMap.end(); concatItor++) { expr * concat = concatItor->first; expr * concatArg1 = to_app(concat)->get_arg(0); expr * concatArg2 = to_app(concat)->get_arg(1); bool arg1Bounded = false; bool arg2Bounded = false; // arg1 if (variable_set.find(concatArg1) != variable_set.end()) { if (freeVar_map.find(concatArg1) == freeVar_map.end()) { arg1Bounded = true; } else { fvUnrollSet.insert(concatArg1); } } else if (u.str.is_concat(to_app(concatArg1))) { if (concatEqUnrollsMap.find(concatArg1) == concatEqUnrollsMap.end()) { arg1Bounded = true; } } // arg2 if (variable_set.find(concatArg2) != variable_set.end()) { if (freeVar_map.find(concatArg2) == freeVar_map.end()) { arg2Bounded = true; } else { fvUnrollSet.insert(concatArg2); } } else if (u.str.is_concat(to_app(concatArg2))) { if (concatEqUnrollsMap.find(concatArg2) == concatEqUnrollsMap.end()) { arg2Bounded = true; } } if (!arg1Bounded && !arg2Bounded) { concatFreeArgsEqUnrollsMap[concat].insert( concatEqUnrollsMap[concat].begin(), concatEqUnrollsMap[concat].end()); } } for (std::set::iterator vItor = fvUnrollSet.begin(); vItor != fvUnrollSet.end(); vItor++) { TRACE("str", tout << "remove " << mk_pp(*vItor, m) << " from freeVar_map" << std::endl;); freeVar_map.erase(*vItor); } // Assign free variables std::set fSimpUnroll; { TRACE("str", tout << "free var map (#" << freeVar_map.size() << "):" << std::endl; for (std::map::iterator freeVarItor1 = freeVar_map.begin(); freeVarItor1 != freeVar_map.end(); freeVarItor1++) { expr * freeVar = freeVarItor1->first; rational lenValue; bool lenValue_exists = get_len_value(freeVar, lenValue); tout << mk_pp(freeVar, m) << " [depCnt = " << freeVarItor1->second << ", length = " << (lenValue_exists ? lenValue.to_string() : "?") << "]" << std::endl; } ); } { // TODO if we're using fixed-length testing, do we care about finding free variables any more? // that work might be useless TRACE("str", tout << "using fixed-length model construction" << std::endl;); arith_value v(get_manager()); v.init(&ctx); final_check_status arith_fc_status = v.final_check(); if (arith_fc_status != FC_DONE) { TRACE("str", tout << "arithmetic solver not done yet, continuing search" << std::endl;); return FC_CONTINUE; } TRACE("str", tout << "arithmetic solver done in final check" << std::endl;); expr_ref_vector assignments(m); ctx.get_assignments(assignments); expr_ref_vector precondition(m); expr_ref_vector cex(m); lbool model_status = fixed_length_model_construction(assignments, precondition, free_variables, candidate_model, cex); if (model_status == l_true) { m_stats.m_solved_by = 2; return FC_DONE; } else if (model_status == l_false) { // whatever came back in CEX is the conflict clause. // negate its conjunction and assert that expr_ref conflict(m.mk_not(mk_and(cex)), m); assert_axiom(conflict); add_persisted_axiom(conflict); return FC_CONTINUE; } else { // model_status == l_undef TRACE("str", tout << "fixed-length model construction found missing side conditions; continuing search" << std::endl;); return FC_CONTINUE; } } if (opt_VerifyFinalCheckProgress && !finalCheckProgressIndicator) { TRACE("str", tout << "BUG: no progress in final check, giving up!!" << std::endl;); m.raise_exception("no progress in theory_str final check"); } return FC_CONTINUE; // since by this point we've added axioms } inline zstring int_to_string(int i) { std::stringstream ss; ss << i; std::string str = ss.str(); return zstring(str.c_str()); } inline std::string longlong_to_string(long long i) { std::stringstream ss; ss << i; return ss.str(); } void theory_str::get_concats_in_eqc(expr * n, std::set & concats) { expr * eqcNode = n; do { if (u.str.is_concat(to_app(eqcNode))) { concats.insert(eqcNode); } eqcNode = get_eqc_next(eqcNode); } while (eqcNode != n); } void theory_str::get_var_in_eqc(expr * n, std::set & varSet) { expr * eqcNode = n; do { if (variable_set.find(eqcNode) != variable_set.end()) { varSet.insert(eqcNode); } eqcNode = get_eqc_next(eqcNode); } while (eqcNode != n); } bool cmpvarnames(expr * lhs, expr * rhs) { symbol lhs_name = to_app(lhs)->get_decl()->get_name(); symbol rhs_name = to_app(rhs)->get_decl()->get_name(); return lhs_name.str() < rhs_name.str(); } void theory_str::init_model(model_generator & mg) { //TRACE("str", tout << "initializing model" << std::endl; display(tout);); m_factory = alloc(str_value_factory, get_manager(), get_family_id()); mg.register_factory(m_factory); } /* * Helper function for mk_value(). * Attempts to resolve the expression 'n' to a string constant. * Stronger than get_eqc_value() in that it will perform recursive descent * through every subexpression and attempt to resolve those to concrete values as well. * Returns the concrete value obtained from this process, * guaranteed to satisfy m_strutil.is_string(), * if one could be obtained, * or else returns NULL if no concrete value was derived. */ app * theory_str::mk_value_helper(app * n) { if (u.str.is_string(n)) { return n; } else if (u.str.is_concat(n)) { // recursively call this function on each argument SASSERT(n->get_num_args() == 2); expr * a0 = n->get_arg(0); expr * a1 = n->get_arg(1); app * a0_conststr = mk_value_helper(to_app(a0)); app * a1_conststr = mk_value_helper(to_app(a1)); if (a0_conststr != nullptr && a1_conststr != nullptr) { zstring a0_s, a1_s; u.str.is_string(a0_conststr, a0_s); u.str.is_string(a1_conststr, a1_s); zstring result = a0_s + a1_s; return to_app(mk_string(result)); } } zstring assignedValue; if (candidate_model.find(n, assignedValue)) { return to_app(mk_string(assignedValue)); } // fallback path // try to find some constant string, anything, in the equivalence class of n if (!candidate_model.empty()) { zstring val; if (candidate_model.find(n, val)) { return to_app(mk_string(val)); } } bool hasEqc = false; expr * n_eqc = get_eqc_value(n, hasEqc); if (hasEqc) { return to_app(n_eqc); } else { theory_var curr = get_var(n); if (curr != null_theory_var) { curr = m_find.find(curr); theory_var first = curr; do { expr* a = get_ast(curr); zstring val; if (candidate_model.find(a, val)) { return to_app(mk_string(val)); } curr = m_find.next(curr); } while (curr != first && curr != null_theory_var); } // fail to find return nullptr; } } model_value_proc * theory_str::mk_value(enode * n, model_generator & mg) { TRACE("str", tout << "mk_value for: " << mk_ismt2_pp(n->get_owner(), get_manager()) << " (sort " << mk_ismt2_pp(get_manager().get_sort(n->get_owner()), get_manager()) << ")" << std::endl;); ast_manager & m = get_manager(); app_ref owner(m); owner = n->get_owner(); // If the owner is not internalized, it doesn't have an enode associated. SASSERT(ctx.e_internalized(owner)); app * val = mk_value_helper(owner); if (val != nullptr) { return alloc(expr_wrapper_proc, val); } else { TRACE("str", tout << "WARNING: failed to find a concrete value, falling back" << std::endl;); std::ostringstream unused; unused << "**UNUSED**" << (m_unused_id++); return alloc(expr_wrapper_proc, to_app(mk_string(unused.str().c_str()))); } } void theory_str::finalize_model(model_generator & mg) {} void theory_str::display(std::ostream & out) const { out << "TODO: theory_str display" << std::endl; } unsigned theory_str::get_refine_length(expr* ex, expr_ref_vector& extra_deps){ ast_manager & m = get_manager(); TRACE("str_fl", tout << "finding length for " << mk_ismt2_pp(ex, m) << std::endl;); if (u.str.is_string(ex)) { bool str_exists; expr * str = get_eqc_value(ex, str_exists); SASSERT(str_exists); zstring str_const; u.str.is_string(str, str_const); return str_const.length(); } else if (u.str.is_itos(ex)) { expr* fromInt = nullptr; u.str.is_itos(ex, fromInt); arith_value v(m); v.init(&ctx); rational val; VERIFY(v.get_value(fromInt, val)); std::string s = std::to_string(val.get_int32()); extra_deps.push_back(ctx.mk_eq_atom(fromInt, mk_int(val))); return static_cast(s.length()); } else if (u.str.is_at(ex)) { expr* substrBase = nullptr; expr* substrPos = nullptr; u.str.is_at(ex, substrBase, substrPos); arith_value v(m); v.init(&ctx); rational pos; VERIFY(v.get_value(substrPos, pos)); extra_deps.push_back(ctx.mk_eq_atom(substrPos, mk_int(pos))); return 1; } else if (u.str.is_extract(ex)) { expr* substrBase = nullptr; expr* substrPos = nullptr; expr* substrLen = nullptr; u.str.is_extract(ex, substrBase, substrPos, substrLen); arith_value v(m); v.init(&ctx); rational len, pos; VERIFY(v.get_value(substrLen, len)); VERIFY(v.get_value(substrPos, pos)); extra_deps.push_back(ctx.mk_eq_atom(substrPos, mk_int(pos))); return len.get_unsigned(); } else if (u.str.is_replace(ex)) { TRACE("str_fl", tout << "replace is like contains---not in conjunctive fragment!" << std::endl;); UNREACHABLE(); } //find asserts that it exists return fixed_length_used_len_terms.find(ex); } expr* theory_str::refine(expr* lhs, expr* rhs, rational offset) { // TRACE("str", tout << "refine with " << offset.get_unsigned() << std::endl;); if (offset >= rational(0)) { ++m_stats.m_refine_eq; return refine_eq(lhs, rhs, offset.get_unsigned()); } // Let's just giveup if we find ourselves in the disjunctive fragment. if (offset == rational(-1)) { // negative equation ++m_stats.m_refine_neq; return refine_dis(lhs, rhs); } if (offset == rational(-2)) { // function like contains, prefix,... SASSERT(rhs == lhs); ++m_stats.m_refine_f; return refine_function(lhs); } if (offset == rational(-3)) { // negated function SASSERT(rhs == lhs); ++m_stats.m_refine_nf; ast_manager & m = get_manager(); return refine_function(m.mk_not(lhs)); } UNREACHABLE(); return nullptr; } expr* theory_str::refine_eq(expr* lhs, expr* rhs, unsigned offset) { TRACE("str_fl", tout << "refine eq " << offset << std::endl;); ast_manager & m = get_manager(); expr_ref_vector Gamma(m); expr_ref_vector Delta(m); if (!flatten(lhs, Gamma) || !flatten(rhs, Delta)){ UNREACHABLE(); } expr_ref_vector extra_deps(m); // find len(Gamma[:i]) unsigned left_count = 0, left_length = 0, last_length = 0; while(left_count < Gamma.size() && left_length <= offset) { last_length = get_refine_length(Gamma.get(left_count), extra_deps); left_length += last_length; left_count++; } left_count--; SASSERT(left_count >= 0 && left_count < Gamma.size()); left_length -= last_length; expr* left_sublen = nullptr; for (unsigned i = 0; i < left_count; i++) { expr* len; if (!u.str.is_string(to_app(Gamma.get(i)))) { len = u.str.mk_length(Gamma.get(i)); } else { len = mk_int(offset - left_length); } if (left_sublen == nullptr) { left_sublen = len; } else { left_sublen = m_autil.mk_add(left_sublen, len); } } if (offset - left_length != 0) { if (left_sublen == nullptr) { left_sublen = mk_int(offset - left_length); } else { left_sublen = m_autil.mk_add(left_sublen, mk_int(offset - left_length)); } } expr* extra_left_cond = nullptr; if (!u.str.is_string(to_app(Gamma.get(left_count)))) { extra_left_cond = m_autil.mk_ge(u.str.mk_length(Gamma.get(left_count)), mk_int(offset - left_length + 1)); } // find len(Delta[:j]) unsigned right_count = 0, right_length = 0; last_length = 0; while(right_count < Delta.size() && right_length <= offset) { last_length = get_refine_length(Delta.get(right_count), extra_deps); right_length += last_length; right_count++; } right_count--; SASSERT(right_count >= 0 && right_count < Delta.size()); right_length -= last_length; expr* right_sublen = nullptr; for (unsigned i = 0; i < right_count; i++) { expr* len; if (!u.str.is_string(to_app(Delta.get(i)))) { len = u.str.mk_length(Delta.get(i)); } else { len = mk_int(offset - right_length); } if (right_sublen == nullptr) { right_sublen = len; } else { right_sublen = m_autil.mk_add(right_sublen, len); } } if (offset - right_length != 0) { if (right_sublen == nullptr) { right_sublen = mk_int(offset - right_length); } else { right_sublen = m_autil.mk_add(right_sublen, mk_int(offset - right_length)); } } expr* extra_right_cond = nullptr; if (!u.str.is_string(to_app(Delta.get(right_count)))) { extra_right_cond = m_autil.mk_ge(u.str.mk_length(Delta.get(right_count)), mk_int(offset - right_length + 1)); } // Offset tells us that Gamma[i+1:]) != Delta[j+1:] // so learn that len(Gamma[:i]) != len(Delta[:j]) expr_ref_vector diseqs(m); diseqs.push_back(ctx.mk_eq_atom(lhs, rhs)); if (left_sublen != right_sublen) { //nullptr actually means zero if (left_sublen == nullptr) { left_sublen = mk_int(0); } if (right_sublen == nullptr) { right_sublen = mk_int(0); } // len(Gamma[:i]) == len(Delta[:j]) expr* sublen_eq = ctx.mk_eq_atom(left_sublen, right_sublen); TRACE("str", tout << "sublen_eq " << mk_pp(sublen_eq, m) << std::endl;); diseqs.push_back(sublen_eq); } if (extra_left_cond != nullptr) { TRACE("str", tout << "extra_left_cond " << mk_pp(extra_left_cond, m) << std::endl;); diseqs.push_back(extra_left_cond); } if (extra_right_cond != nullptr) { TRACE("str", tout << "extra_right_cond " << mk_pp(extra_right_cond, m) << std::endl;); diseqs.push_back(extra_right_cond); } if (extra_deps.size() > 0) { diseqs.push_back(m.mk_and(extra_deps.size(), extra_deps.c_ptr())); TRACE("str", tout << "extra_deps " << mk_pp(diseqs.get(diseqs.size()-1), m) << std::endl;); } expr* final_diseq = m.mk_and(diseqs.size(), diseqs.c_ptr()); TRACE("str", tout << "learning not " << mk_pp(final_diseq, m) << std::endl;); return final_diseq; } expr* theory_str::refine_dis(expr* lhs, expr* rhs) { ast_manager & m = get_manager(); expr_ref lesson(m); lesson = m.mk_not(ctx.mk_eq_atom(lhs, rhs)); TRACE("str", tout << "learning not " << mk_pp(lesson, m) << std::endl;); return lesson; } expr* theory_str::refine_function(expr* f) { //Can we learn something better? TRACE("str", tout << "learning not " << mk_pp(f, get_manager()) << std::endl;); return f; } bool theory_str::flatten(expr* ex, expr_ref_vector & flat) { ast_manager & m = get_manager(); // TRACE("str", tout << "ex " << mk_pp(ex, m) << " target " << target << " length " << length << " sublen " << mk_pp(sublen, m) << " extra " << mk_pp(extra, m) << std::endl;); sort * ex_sort = m.get_sort(ex); sort * str_sort = u.str.mk_string_sort(); if (ex_sort == str_sort) { if (is_app(ex)) { app * ap = to_app(ex); if(u.str.is_concat(ap)){ unsigned num_args = ap->get_num_args(); bool success = true; for (unsigned i = 0; i < num_args; i++) { success = success && flatten(ap->get_arg(i), flat); } return success; } else { flat.push_back(ex); return true; } } } TRACE("str", tout << "non string term!" << mk_pp(ex, m) << std::endl;); return false; } }; /* namespace smt */