/*++ Copyright (c) 2011 Microsoft Corporation Module Name: polynomial_factorization.cpp Abstract: Testing of factorization. Author: Dejan (t-dejanj) 2011-11-29 Notes: --*/ #include"upolynomial_factorization_int.h" #include"timeit.h" #include"polynomial.h" #if 0 #include"polynomial_factorization.h" #endif using namespace std; // some prime numbers unsigned primes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 }; // [i,l]: how many factors the Knuth example has over p_i, when i = 0 it's Z, p_1 = 2, for l=0 distinct, for l = 1 total unsigned knuth_factors[2][11] = { // x^8 + x^6 + 10*x^4 + 10*x^3 + 8*x^2 + 2*x + 8 {2, 2, 3, 3, 2, 3, 1, 4, 3, 1, 1}, {8, 2, 3, 3, 2, 3, 1, 4, 3, 1, 1}, }; // [k,l,i]: how many factors the S_k has over p_i, when i = 0 it's Z, p_1 = 2, for l=0 distinct, for l = 1 total unsigned swinnerton_dyer_factors[5][2][11] = { // S1 = (x^2) - 2 { // 2, 3, 5, 7,11,13,17,19,23,29, Z {1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1}, {2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1} }, // S2 = (x^4) - 10*(x^2) + 1 { {1, 1, 2, 2, 2, 2, 2, 2, 4, 2, 1}, {4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 1} }, // S3 = (x^8) - 40*(x^6) + 352*(x^4) - 960*(x^2) + 576 { {1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 1}, {8, 6, 4, 4, 4, 4, 4, 4, 4, 4, 1} }, // S4 = (x^16) - 136*(x^14) + 6476*(x^12) - 141912*(x^10) + 1513334*(x^8) - 7453176*(x^6) + 13950764*(x^4) - 5596840*(x^2) + 46225 { {1, 4, 3, 4, 8, 8, 8, 8, 8, 8, 1}, {16, 12, 10, 8, 8, 8, 8, 8, 8, 8, 1} }, // SA = S1*S2*S3*S4 { //p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, Z { 2, 6, 3, 6, 15, 11, 16, 15, 18, 15, 1}, {30, 21, 17, 16, 15, 15, 16, 15, 18, 15, 1} } }; int random_polynomial[20][2][11] = { { // 3*x^10 + 2*x^9 + 4*x^8 + 4*x^7 + 4*x^6 + x^5 + 3*x^2 + 3*x { 4, 3, 4, 4, 3, 4, 4, 4, 3, 4, 2 }, { 7, 7, 4, 4, 3, 4, 4, 4, 3, 4, 2 }, }, { // 4*x^9 + 4*x^8 + x^7 + x^6 + 2*x^5 + 3*x^4 + 4*x^2 + 4*x { 2, 2, 3, 3, 4, 2, 5, 3, 4, 2, 2 }, { 5, 2, 3, 3, 4, 2, 5, 3, 5, 2, 2 }, }, { // 3*x^10 + 4*x^9 + 3*x^8 + x^6 + 4*x^5 + 4*x^4 + x^2 { 3, 2, 4, 4, 5, 3, 4, 2, 4, 5, 2 }, { 6, 3, 5, 5, 6, 4, 5, 3, 5, 7, 3 }, }, { // x^10 + 4*x^9 + x^8 + 3*x^7 + 3*x^4 + 3*x^3 + x^2 + 4*x { 3, 4, 4, 3, 3, 3, 4, 4, 5, 3, 2 }, { 8, 4, 4, 3, 3, 3, 4, 4, 5, 3, 2 }, }, { // x^9 + 2*x^8 + 3*x^7 + x^6 + 2*x^5 + 4*x^4 + 3*x^2 { 3, 3, 3, 3, 4, 4, 4, 3, 3, 4, 2 }, { 5, 6, 4, 5, 5, 6, 5, 4, 4, 5, 3 }, }, { // x^10 + x^9 + 4*x^7 + x^6 + 3*x^5 + x^4 + x^3 + x { 3, 2, 3, 3, 3, 5, 3, 2, 4, 4, 2 }, { 3, 2, 3, 3, 3, 5, 3, 2, 4, 4, 2 }, }, { // 4*x^10 + 4*x^9 + x^8 + 2*x^7 + 3*x^6 + 4*x^5 + 3*x^4 + x^3 + 2*x^2 + 4*x { 3, 3, 2, 5, 3, 4, 2, 4, 5, 5, 2 }, { 5, 3, 2, 5, 3, 4, 2, 4, 5, 5, 2 }, }, { // 3*x^10 + 4*x^9 + 3*x^8 + x^7 + x^6 + 2*x^5 + x^4 + 2*x^3 + 2*x^2 + x { 3, 4, 6, 4, 4, 4, 4, 6, 6, 4, 3 }, { 4, 4, 7, 4, 4, 4, 4, 6, 6, 4, 3 }, }, { // 4*x^10 + x^9 + x^7 + 2*x^5 + 3*x^3 + x^2 + 4*x { 3, 3, 3, 4, 4, 5, 4, 5, 2, 4, 2 }, { 4, 4, 3, 4, 4, 5, 4, 5, 2, 4, 2 }, }, { // x^10 + 3*x^9 + 3*x^8 + x^7 + 3*x^6 + 3*x^5 + 3*x^4 + x^2 + 3*x { 2, 3, 4, 4, 3, 3, 4, 3, 3, 4, 2 }, { 2, 4, 5, 4, 3, 3, 4, 3, 3, 4, 2 }, }, { // x^10 + x^9 + 2*x^8 + x^7 + 4*x^6 + 2*x^5 + 3*x^4 + 4*x^3 + x^2 + 2*x { 3, 4, 4, 3, 3, 3, 3, 4, 5, 3, 2 }, { 4, 4, 4, 3, 3, 3, 3, 4, 5, 3, 2 }, }, { // 3*x^9 + x^8 + 3*x^7 + 3*x^6 + x^5 + 2*x^4 + 4*x^3 + 4*x^2 + 3*x { 4, 3, 3, 3, 5, 3, 6, 4, 2, 2, 2 }, { 6, 4, 3, 3, 5, 3, 6, 4, 2, 2, 2 }, }, { // 2*x^10 + 3*x^9 + 2*x^8 + 4*x^7 + x^6 + 3*x^5 + 2*x^3 + 3*x^2 + 2*x + 2 { 3, 3, 3, 5, 4, 5, 6, 7, 4, 6, 3 }, { 8, 4, 3, 7, 4, 5, 6, 7, 4, 7, 3 }, }, { // 3*x^10 + x^9 + 4*x^8 + 2*x^7 + x^6 + 4*x^5 + x^4 + 3*x^3 + x + 2 { 3, 3, 3, 2, 6, 4, 4, 4, 3, 3, 2 }, { 3, 3, 3, 2, 6, 5, 4, 5, 3, 3, 2 }, }, { // 4*x^10 + 2*x^9 + x^8 + x^6 + x^5 + 3*x^4 + 4*x^3 + x^2 + x { 3, 4, 2, 4, 4, 4, 4, 2, 3, 3, 2 }, { 6, 4, 2, 4, 4, 4, 4, 2, 3, 3, 2 }, }, { // 4*x^10 + 2*x^7 + 4*x^6 + 2*x^3 + x { 1, 3, 3, 3, 4, 4, 4, 3, 3, 2, 2 }, { 1, 3, 3, 3, 4, 4, 4, 3, 3, 2, 2 }, }, { // 4*x^10 + x^9 + x^8 + 4*x^7 + 4*x^4 + 2*x^2 + x + 4 { 3, 4, 2, 5, 3, 6, 3, 6, 3, 3, 2 }, { 3, 6, 2, 5, 3, 6, 3, 6, 3, 3, 2 }, }, { // 3*x^10 + 2*x^8 + x^7 + x^6 + 3*x^4 + 3*x^3 + 4*x^2 + 3*x { 4, 3, 4, 3, 3, 3, 2, 4, 4, 3, 2 }, { 5, 4, 4, 3, 3, 3, 2, 4, 4, 3, 2 }, }, { // x^10 + 2*x^9 + 2*x^6 + 4*x^3 + 4*x^2 { 1, 2, 2, 3, 3, 4, 3, 3, 3, 3, 2 }, { 10, 3, 3, 4, 4, 6, 4, 4, 4, 4, 3 }, }, { // x^10 + 2*x^9 + 2*x^8 + 4*x^7 + 4*x^6 + x^5 + x^3 + x^2 + 3*x { 2, 4, 2, 3, 3, 3, 5, 5, 6, 2, 2 }, { 2, 5, 2, 3, 3, 3, 5, 5, 6, 2, 2 }, } }; static void tst_square_free_finite_1() { polynomial::numeral_manager nm; polynomial::manager pm(nm); // example from Knuth, p. 442 polynomial_ref x(pm); x = pm.mk_polynomial(pm.mk_var()); // polynomials \prod_{i < p} (x - i)^i for (unsigned prime_i = 0; prime_i < 5; ++ prime_i) { int p = primes[prime_i]; // make the polynomial polynomial_ref f(pm); f = x - 1; for (int i = 2; i < p; ++ i) { f = f*((x + (-i))^i); } cout << "Factoring " << f << " into square-free over Z_" << p << endl; // convert to univariate over Z_p upolynomial::zp_manager upm(nm); upm.set_zp(p); upolynomial::numeral_vector f_u; upm.to_numeral_vector(f, f_u); cout << "Input: "; upm.display(cout, f_u); cout << endl; // factor it upolynomial::zp_factors f_factors(upm); cout << "Start: " << f_factors << endl; upolynomial::zp_square_free_factor(upm, f_u, f_factors); upolynomial::numeral_vector mult; f_factors.multiply(mult); cout << "Multiplied: "; upm.display(cout, mult); cout << endl; SASSERT(upm.eq(mult, f_u)); // remove the temps upm.reset(f_u); upm.reset(mult); } } static void tst_factor_finite_1() { polynomial::numeral_manager nm; polynomial::manager pm(nm); // example from Knuth, p. 442 polynomial_ref x(pm); x = pm.mk_polynomial(pm.mk_var()); polynomial_ref K(pm); K = (x^8) + (x^6) + 10*(x^4) + 10*(x^3) + 8*(x^2) + 2*x + 8; // factor them for all the prime numbers for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i) { // make the Z_p unsigned prime = primes[prime_i]; upolynomial::zp_manager upm(nm); upm.set_zp(prime); // make the polynomial in Z_p upolynomial::numeral_vector K_u; upm.to_numeral_vector(K, K_u); cout << "Factoring " << K << "("; upm.display(cout, K_u); cout << ") in Z_" << prime << endl; cout << "Expecting " << knuth_factors[0][prime_i] << " distinct factors, " << knuth_factors[1][prime_i] << " total" << endl; // factor it upolynomial::zp_factors factors(upm); bool factorized = upolynomial::zp_factor(upm, K_u, factors); // check the result unsigned distinct = factors.distinct_factors(); unsigned total = factors.total_factors(); cout << "Got " << factors << endl; cout << "Thats " << distinct << " distinct factors, " << total << " total" << endl; SASSERT(knuth_factors[0][prime_i] == distinct); SASSERT(knuth_factors[1][prime_i] == total); upolynomial::numeral_vector multiplied; factors.multiply(multiplied); SASSERT(upm.eq(K_u, multiplied)); upm.reset(multiplied); // remove the temp upm.reset(K_u); } } static void tst_factor_finite_2() { polynomial::numeral_manager nm; polynomial::manager pm(nm); polynomial_ref x(pm); x = pm.mk_polynomial(pm.mk_var()); // Swinnerton-Dyer polynomials (irreducible, modular factors of degree at most 2) polynomial_ref S1 = (x^2) - 2; polynomial_ref S2 = (x^4) - 10*(x^2) + 1; polynomial_ref S3 = (x^8) - 40*(x^6) + 352*(x^4) - 960*(x^2) + 576; polynomial_ref S4 = (x^16) - 136*(x^14) + 6476*(x^12) - 141912*(x^10) + 1513334*(x^8) - 7453176*(x^6) + 13950764*(x^4) - 5596840*(x^2) + 46225; vector S; S.push_back(S1); S.push_back(S2); S.push_back(S3); S.push_back(S4); S.push_back(S1*S2*S3*S4); // factor all the S_i them for all the prime numbers for (unsigned S_i = 0; S_i < S.size(); ++ S_i) { for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i) { unsigned prime = primes[prime_i]; upolynomial::zp_manager upm(nm); upm.set_zp(prime); upolynomial::numeral_vector S_i_u; upm.to_numeral_vector(S[S_i], S_i_u); cout << "Factoring "; upm.display(cout, S_i_u); cout << " over Z_" << prime << endl; cout << "Expecting " << swinnerton_dyer_factors[S_i][0][prime_i] << " distinct factors, " << swinnerton_dyer_factors[S_i][1][prime_i] << " total" << endl; upolynomial::zp_factors factors(upm); upolynomial::zp_factor(upm, S_i_u, factors); // check the result unsigned distinct = factors.distinct_factors(); unsigned total = factors.total_factors(); cout << "Got " << factors << endl; cout << "Thats " << distinct << " distinct factors, " << total << " total" << endl; SASSERT(swinnerton_dyer_factors[S_i][0][prime_i] == distinct); SASSERT(swinnerton_dyer_factors[S_i][1][prime_i] == total); upolynomial::numeral_vector multiplied; factors.multiply(multiplied); SASSERT(upm.eq(S_i_u, multiplied)); upm.reset(multiplied); // remove the temp upm.reset(S_i_u); } } } static void tst_factor_finite_3() { polynomial::numeral_manager nm; polynomial::manager pm(nm); polynomial_ref x(pm); x = pm.mk_polynomial(pm.mk_var()); // random polynomials vector random_p; random_p.push_back( 3*(x^10) + 2*(x^9) + 4*(x^8) + 4*(x^7) + 4*(x^6) + 1*(x^5) + 3*(x^2) + 3*x + 0 ); random_p.push_back( 4*(x^9) + 4*(x^8) + 1*(x^7) + 1*(x^6) + 2*(x^5) + 3*(x^4) + 4*(x^2) + 4*x + 0 ); random_p.push_back( 3*(x^10) + 4*(x^9) + 3*(x^8) + 1*(x^6) + 4*(x^5) + 4*(x^4) + 1*(x^2) + 0 ); random_p.push_back( 1*(x^10) + 4*(x^9) + 1*(x^8) + 3*(x^7) + 3*(x^4) + 3*(x^3) + 1*(x^2) + 4*x + 0 ); random_p.push_back( 1*(x^9) + 2*(x^8) + 3*(x^7) + 1*(x^6) + 2*(x^5) + 4*(x^4) + 3*(x^2) + 0 ); random_p.push_back( 1*(x^10) + 1*(x^9) + 4*(x^7) + 1*(x^6) + 3*(x^5) + 1*(x^4) + 1*(x^3) + 1*x + 0 ); random_p.push_back( 4*(x^10) + 4*(x^9) + 1*(x^8) + 2*(x^7) + 3*(x^6) + 4*(x^5) + 3*(x^4) + 1*(x^3) + 2*(x^2) + 4*x + 0 ); random_p.push_back( 3*(x^10) + 4*(x^9) + 3*(x^8) + 1*(x^7) + 1*(x^6) + 2*(x^5) + 1*(x^4) + 2*(x^3) + 2*(x^2) + 1*x + 0 ); random_p.push_back( 4*(x^10) + 1*(x^9) + 1*(x^7) + 2*(x^5) + 3*(x^3) + 1*(x^2) + 4*x + 0 ); random_p.push_back( 1*(x^10) + 3*(x^9) + 3*(x^8) + 1*(x^7) + 3*(x^6) + 3*(x^5) + 3*(x^4) + 1*(x^2) + 3*x + 0 ); random_p.push_back( 1*(x^10) + 1*(x^9) + 2*(x^8) + 1*(x^7) + 4*(x^6) + 2*(x^5) + 3*(x^4) + 4*(x^3) + 1*(x^2) + 2*x + 0 ); random_p.push_back( 3*(x^9) + 1*(x^8) + 3*(x^7) + 3*(x^6) + 1*(x^5) + 2*(x^4) + 4*(x^3) + 4*(x^2) + 3*x + 0 ); random_p.push_back( 2*(x^10) + 3*(x^9) + 2*(x^8) + 4*(x^7) + 1*(x^6) + 3*(x^5) + 2*(x^3) + 3*(x^2) + 2*x + 2 ); random_p.push_back( 3*(x^10) + 1*(x^9) + 4*(x^8) + 2*(x^7) + 1*(x^6) + 4*(x^5) + 1*(x^4) + 3*(x^3) + 1*x + 2 ); random_p.push_back( 4*(x^10) + 2*(x^9) + 1*(x^8) + 1*(x^6) + 1*(x^5) + 3*(x^4) + 4*(x^3) + 1*(x^2) + 1*x + 0 ); random_p.push_back( 4*(x^10) + 2*(x^7) + 4*(x^6) + 2*(x^3) + 1*x + 0 ); random_p.push_back( 4*(x^10) + 1*(x^9) + 1*(x^8) + 4*(x^7) + 4*(x^4) + 2*(x^2) + 1*x + 4 ); random_p.push_back( 3*(x^10) + 2*(x^8) + 1*(x^7) + 1*(x^6) + 3*(x^4) + 3*(x^3) + 4*(x^2) + 3*x + 0 ); random_p.push_back( 1*(x^10) + 2*(x^9) + 2*(x^6) + 4*(x^3) + 4*(x^2) + 0 ); random_p.push_back( 1*(x^10) + 2*(x^9) + 2*(x^8) + 4*(x^7) + 4*(x^6) + 1*(x^5) + 1*(x^3) + 1*(x^2) + 3*x + 0 ); // factor all the randoms them for all the prime numbers for (unsigned random_i = 0; random_i < random_p.size(); ++ random_i) { for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i) { unsigned prime = primes[prime_i]; upolynomial::zp_manager upm(nm); upm.set_zp(prime); upolynomial::numeral_vector poly; upm.to_numeral_vector(random_p[random_i], poly); cout << "Factoring "; upm.display(cout, poly); cout << " over Z_" << prime << endl; cout << "Expecting " << swinnerton_dyer_factors[random_i][0][prime_i] << " distinct factors, " << random_polynomial[random_i][1][prime_i] << " total" << endl; upolynomial::zp_factors factors(upm); upolynomial::zp_factor(upm, poly, factors); // check the result unsigned distinct = factors.distinct_factors(); unsigned total = factors.total_factors(); cout << "Got " << factors << endl; cout << "Thats " << distinct << " distinct factors, " << total << " total" << endl; SASSERT(random_polynomial[random_i][0][prime_i] == distinct); SASSERT(random_polynomial[random_i][1][prime_i] == total); upolynomial::numeral_vector multiplied; factors.multiply(multiplied); bool equal = upm.eq(poly, multiplied); cout << (equal ? "equal" : "not equal") << endl; SASSERT(equal); upm.reset(multiplied); // remove the temp upm.reset(poly); } } } static void tst_factor_enumeration() { polynomial::numeral_manager nm; polynomial::manager pm(nm); polynomial_ref x(pm); x = pm.mk_polynomial(pm.mk_var()); vector factors; for (int i = 0; i < 5; ++ i) { polynomial_ref factor(pm); factor = x + i; factors.push_back(factor); } upolynomial::manager upm(nm); upolynomial::zp_manager upm_13(nm); upm_13.set_zp(13); upolynomial::zp_factors factors_13(upm_13); upolynomial::numeral constant; nm.set(constant, 10); factors_13.set_constant(constant); for (unsigned i = 0; i < 5; ++ i) { upolynomial::numeral_vector ufactor; upm_13.to_numeral_vector(factors[i], ufactor); factors_13.push_back(ufactor, 1); upm.reset(ufactor); } cout << "All: " << factors_13 << endl; upolynomial::factorization_degree_set degrees(factors_13); degrees.display(cout); cout << endl; scoped_mpz_vector left(nm), right(nm); upolynomial::ufactorization_combination_iterator it(factors_13, degrees); unsigned i = 0; it.display(cout); bool remove = false; while (it.next(remove)) { it.left(left); it.right(right); cout << "Left " << i << ": "; upm.display(cout, left); cout << endl; cout << "Right " << i << ": "; upm.display(cout, right); cout << endl; i ++; if (i % 3 == 0) { remove = true; } else { remove = false; } it.display(cout); } // SASSERT(i == 15); return; for (unsigned i = 0; i < 5; ++ i) { factors_13.set_degree(i, factors_13.get_degree(i) + i); } cout << "Different: " << factors_13 << " of degree " << factors_13.get_degree() << endl; upolynomial::factorization_degree_set degrees1(factors_13); degrees1.display(cout); cout << endl; // [0, ..., 15] polynomial_ref tmp1 = (x^3) + 1; polynomial_ref tmp2 = (x^5) + 2; polynomial_ref tmp3 = (x^7) + 3; upolynomial::numeral_vector up1, up2, up3; upm_13.to_numeral_vector(tmp1, up1); upm_13.to_numeral_vector(tmp2, up2); upm_13.to_numeral_vector(tmp3, up3); upolynomial::zp_factors tmp(upm_13); tmp.push_back(up1, 1); tmp.push_back(up2, 1); tmp.push_back(up3, 1); upm_13.reset(up1); upm_13.reset(up2); upm_13.reset(up3); cout << "Different: " << tmp << " of degree " << tmp.get_degree() << endl; upolynomial::factorization_degree_set degrees2(tmp); degrees2.display(cout); cout << endl; tmp1 = (x^2) + 1; tmp2 = (x^10) + 2; tmp3 = x + 3; upm_13.to_numeral_vector(tmp1, up1); upm_13.to_numeral_vector(tmp2, up2); upm_13.to_numeral_vector(tmp3, up3); tmp.clear(); tmp.push_back(up1, 2); tmp.push_back(up2, 1); tmp.push_back(up3, 1); cout << "Different: " << tmp << " of degree " << tmp.get_degree() << endl; upm_13.reset(up1); upm_13.reset(up2); upm_13.reset(up3); upolynomial::factorization_degree_set degrees3(tmp); degrees3.display(cout); cout << endl; degrees1.intersect(degrees3); degrees1.display(cout); cout << endl; } static void tst_factor_square_free_univariate_1(unsigned max_length) { polynomial::numeral_manager nm; upolynomial::numeral test; upolynomial::numeral p; nm.set(test, -9); nm.set(p, 5); nm.mod(test, p, test); polynomial::manager pm(nm); polynomial_ref x(pm); x = pm.mk_polynomial(pm.mk_var()); cout << "R. = QQ['x']" << endl; // let's start with \prod (p_i x^{p_{i+1} - p_{i+1}) unsigned n_primes = sizeof(primes)/sizeof(unsigned); max_length = std::min(max_length, n_primes); for(unsigned length = 1; length < max_length; ++ length) { // starting from prime_i going for length for(unsigned start_i = 0; start_i < n_primes; ++ start_i) { polynomial_ref f(pm); bool first = true; for (unsigned prime_i = 0; prime_i < length; ++ prime_i) { int p1 = primes[(start_i + prime_i) % n_primes]; int p2 = primes[(start_i + prime_i + 1) % n_primes]; if (first) { f = (p1*(x^p2) - p2); first = false; } else { f = f*(p1*(x^p2) - p2); } } upolynomial::manager upm(nm); scoped_mpz_vector f_u(nm); upm.to_numeral_vector(f, f_u); cout << "factoring "; upm.display(cout, f_u); cout << endl; cout << "expecting " << length << " factors "; upolynomial::factors factors(upm); bool ok = upolynomial::factor_square_free(upm, f_u, factors); cout << "got " << factors << endl; SASSERT(factors.distinct_factors() == length); } } } static void tst_factor_square_free_univariate_2() { polynomial::numeral_manager nm; polynomial::manager pm(nm); polynomial_ref x(pm); x = pm.mk_polynomial(pm.mk_var()); // Swinnerton-Dyer polynomials (irreducible, modular factors of degree at most 2) polynomial_ref S1 = (x^2) - 2; polynomial_ref S2 = (x^4) - 10*(x^2) + 1; polynomial_ref S3 = (x^8) - 40*(x^6) + 352*(x^4) - 960*(x^2) + 576; polynomial_ref S4 = (x^16) - 136*(x^14) + 6476*(x^12) - 141912*(x^10) + 1513334*(x^8) - 7453176*(x^6) + 13950764*(x^4) - 5596840*(x^2) + 46225; vector S; S.push_back(S1); S.push_back(S2); S.push_back(S3); S.push_back(S4); upolynomial::manager upm(nm); // factor all the S_i them for all the prime numbers for (unsigned S_i = 0; S_i < S.size(); ++ S_i) { upolynomial::numeral_vector S_i_u; upm.to_numeral_vector(S[S_i], S_i_u); cout << "Factoring "; upm.display(cout, S_i_u); cout << " over Z " << endl; upolynomial::factors factors(upm); upolynomial::factor_square_free(upm, S_i_u, factors); // check the result cout << "Got " << factors << endl; // remove the temp upm.reset(S_i_u); } } static void tst_factor_square_free_univariate_3() { polynomial::numeral_manager nm; polynomial::manager pm(nm); polynomial_ref x(pm); x = pm.mk_polynomial(pm.mk_var()); polynomial_ref deg70 = (x^70) - 6*(x^65) - (x^60) + 60*(x^55) - 54*(x^50) - 230*(x^45) + 274*(x^40) + 542*(x^35) - 615*(x^30) - 1120*(x^25) + 1500*(x^20) - 160*(x^15) - 395*(x^10) + 76*(x^5) + 34; upolynomial::manager upm(nm); upolynomial::numeral_vector deg70_u; upm.to_numeral_vector(deg70, deg70_u); cout << "Factoring "; upm.display(cout, deg70_u); cout << " over Z " << endl; upolynomial::factors factors(upm); upolynomial::factor_square_free(upm, deg70_u, factors); cout << "Got " << factors << endl; upm.reset(deg70_u); } void tst_factor_swinnerton_dyer_big(unsigned max) { polynomial::numeral_manager nm; polynomial::manager pm(nm); polynomial_ref x(pm); x = pm.mk_polynomial(pm.mk_var()); vector roots; vector vars; unsigned n = std::min(max, static_cast(sizeof(primes)/sizeof(unsigned))); for(unsigned prime_i = 0; prime_i < n; ++ prime_i) { int prime = primes[prime_i]; cout << "Computing Swinnerton-Dyer[" << prime_i + 1 << "]" << endl; polynomial_ref y(pm); vars.push_back(pm.mk_var()); y = pm.mk_polynomial(vars.back()); polynomial_ref p(pm); p = (y^2) - prime; roots.push_back(p); polynomial_ref computation = x; for (unsigned i = 0; i < roots.size(); ++ i) { polynomial_ref var(pm); var = pm.mk_polynomial(vars[i]); computation = computation - var; } { timeit timer(true, "computing swinnerton-dyer"); for (unsigned i = 0; i < roots.size(); ++ i) { polynomial_ref tmp(pm); pm.resultant(computation, roots[i], vars[i], tmp); computation = tmp; } } cout << "Computed Swinnerton-Dyer[" << prime_i + 1 << "], degree = " << pm.total_degree(computation) << ", size = " << pm.size(computation) << endl; cout << "Starting factoring " << endl; { timeit timer(true, "factoring swinnerton-dyer"); upolynomial::manager upm(nm); scoped_mpz_vector sd_u(nm); upm.to_numeral_vector(computation, sd_u); upolynomial::factors factors(upm); upolynomial::factor_square_free(upm, sd_u, factors); cout << "Got " << factors.distinct_factors() << " factors" << endl; } } } static void tst_factor_square_free_multivariate_1(unsigned max_n) { #if 0 polynomial::numeral_manager nm; upolynomial::numeral test; upolynomial::numeral p; nm.set(test, -9); nm.set(p, 5); nm.mod(test, p, test); polynomial::manager pm(nm); polynomial_ref x(pm); x = pm.mk_polynomial(pm.mk_var()); polynomial_ref y(pm); y = pm.mk_polynomial(pm.mk_var()); // lets start simple x^n - y^n for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i) { unsigned prime = primes[prime_i]; if (prime > max_n) { break; } polynomial_ref f = (x^prime) - (y^prime); cout << "factoring: " << f << endl; // factor polynomial::factors factors(pm); polynomial::factor_square_free_primitive(f, factors); cout << "got: " << factors << endl; } #endif } void tst_polynomial_factorization() { enable_trace("polynomial::factorization"); // enable_trace("polynomial::factorization::bughunt"); enable_trace("polynomial::factorization::multivariate"); // enable_trace("upolynomial"); // Z_p square-free factorization tests // tst_square_free_finite_1(); // Z_p factorization tests // tst_factor_finite_1(); // tst_factor_finite_2(); // tst_factor_finite_3(); // Z factorization // tst_factor_enumeration(); // tst_factor_square_free_univariate_1(3); // tst_factor_square_free_univariate_2(); // tst_factor_square_free_univariate_3(); // tst_factor_swinnerton_dyer_big(3); // Multivariate factorization tst_factor_square_free_multivariate_1(3); }