/*++ Copyright (c) 2011 Microsoft Corporation Module Name: theory_dl.h Abstract: Theory for DL constants. DL constants are discrete and ordered by the linear order LT. Constants have a parameter which indicates the numeric value that ranges from 0 up to the size of the domain. The procedure works by a simple reduction to bit-vectors. We enforce an injection into bit-vectors. Author: Nikolaj Bjorner (nbjorner) 2011-1-10 Revision History: --*/ #include "smt_theory.h" #include "dl_decl_plugin.h" #include "value_factory.h" #include "smt_model_generator.h" #include "bv_decl_plugin.h" #include "theory_bv.h" #include "smt_context.h" #include "ast_pp.h" // Basic approach: reduce theory to bit-vectors: // // rep(c(n)) = n // LT(x,y) <=> rep(x) < rep(y) // val(rep(x)) = x // 0 <= rep(x) <= max_value // namespace smt { class dl_factory : public simple_factory { datalog::dl_decl_util& m_util; public: dl_factory(datalog::dl_decl_util& u, proto_model& m): simple_factory(u.get_manager(), u.get_family_id()), m_util(u) {} virtual app * mk_value_core(unsigned const & val, sort * s) { return m_util.mk_numeral(val, s); } }; class theory_dl : public theory { datalog::dl_decl_util m_util; bv_util m_bv; ast_ref_vector m_trail; obj_map m_reps; obj_map m_vals; ast_manager& m() { return get_manager(); } datalog::dl_decl_util& u() { return m_util; } bv_util& b() { return m_bv; } class dl_value_proc : public smt::model_value_proc { smt::model_generator & m_mg; theory_dl& m_th; smt::enode* m_node; public: dl_value_proc(smt::model_generator & m, theory_dl& th, smt::enode* n): m_mg(m), m_th(th), m_node(n) { } virtual void get_dependencies(buffer & result) {} virtual app * mk_value(smt::model_generator & mg, ptr_vector & ) { smt::context& ctx = m_th.get_context(); app* result = 0; expr* n = m_node->get_owner(); sort* s = m_th.m().get_sort(n); func_decl* r, *v; m_th.get_rep(s, r, v); app_ref rep_of(m_th.m()); rep_of = m_th.m().mk_app(r, m_node->get_owner()); theory_id bv_id = m_th.m().get_family_id("bv"); theory_bv* th_bv = dynamic_cast(ctx.get_theory(bv_id)); SASSERT(th_bv); rational val; if (ctx.e_internalized(rep_of) && th_bv && th_bv->get_fixed_value(rep_of.get(), val)) { result = m_th.u().mk_numeral(val.get_int64(), s); } else { result = m_th.u().mk_numeral(0, s); } TRACE("theory_dl", tout << mk_pp(result, m_th.m()) << "\n";); return result; } }; public: theory_dl(ast_manager& m): theory(m.get_family_id("datalog_relation")), m_util(m), m_bv(m), m_trail(m) { } virtual char const * get_name() const { return "datalog"; } virtual bool internalize_atom(app * atom, bool gate_ctx) { TRACE("theory_dl", tout << mk_pp(atom, m()) << "\n";); context& ctx = get_context(); if (ctx.b_internalized(atom)) { return true; } switch(atom->get_decl_kind()) { case datalog::OP_DL_LT: { app* a = to_app(atom->get_arg(0)); app* b = to_app(atom->get_arg(1)); ctx.internalize(a, false); ctx.internalize(b, false); literal l(ctx.mk_bool_var(atom)); ctx.set_var_theory(l.var(), get_id()); mk_lt(a,b); return true; } default: break; } return false; } virtual bool internalize_term(app * term) { TRACE("theory_dl", tout << mk_pp(term, m()) << "\n";); if (u().is_finite_sort(term)) { return mk_rep(term); } else { return false; } } virtual void new_eq_eh(theory_var v1, theory_var v2) { } virtual void new_diseq_eh(theory_var v1, theory_var v2) { } virtual theory * mk_fresh(context * new_ctx) { return alloc(theory_dl, get_manager()); } virtual void init_model(smt::model_generator & m) { m.register_factory(alloc(dl_factory, m_util, m.get_model())); } virtual smt::model_value_proc * mk_value(smt::enode * n, smt::model_generator & m) { return alloc(dl_value_proc, m, *this, n); } virtual void apply_sort_cnstr(enode * n, sort * s) { app* term = n->get_owner(); if (u().is_finite_sort(term)) { mk_rep(term); } } virtual void relevant_eh(app * n) { if (u().is_finite_sort(n)) { sort* s = m().get_sort(n); func_decl* r, *v; get_rep(s, r, v); if (n->get_decl() != v) { expr* rep = m().mk_app(r, n); uint64 vl; if (u().is_numeral_ext(n, vl)) { assert_cnstr(m().mk_eq(rep, mk_bv_constant(vl, s))); } else { assert_cnstr(m().mk_eq(m().mk_app(v,rep), n)); assert_cnstr(b().mk_ule(rep, max_value(s))); } } } } private: void get_rep(sort* s, func_decl*& r, func_decl*& v) { if(!m_reps.find(s, r) || !m_vals.find(s,v)) { SASSERT(!m_reps.contains(s)); sort* bv = b().mk_sort(64); // TBD: filter these from model. r = m().mk_fresh_func_decl("rep",1, &s,bv); v = m().mk_fresh_func_decl("val",1, &bv,s); m_reps.insert(s, r); m_vals.insert(s, v); add_trail(r); add_trail(v); get_context().push_trail(insert_obj_map(m_reps, s)); get_context().push_trail(insert_obj_map(m_vals, s)); } } bool mk_rep(app* n) { context & ctx = get_context(); unsigned num_args = n->get_num_args(); enode * e = 0; for (unsigned i = 0; i < num_args; i++) { ctx.internalize(n->get_arg(i), false); } if (ctx.e_internalized(n)) { e = ctx.get_enode(n); } else { e = ctx.mk_enode(n, false, false, true); } if (is_attached_to_var(e)) { return false; } TRACE("theory_dl", tout << mk_pp(n, m()) << "\n";); theory_var var = mk_var(e); ctx.attach_th_var(e, this, var); return true; } app* mk_bv_constant(uint64 val, sort* s) { return b().mk_numeral(rational(val,rational::ui64()),64); } app* max_value(sort* s) { uint64 sz; VERIFY(u().try_get_size(s, sz)); return mk_bv_constant(sz, s); } void mk_lt(app* x, app* y) { sort* s = m().get_sort(x); func_decl* r, *v; get_rep(s, r, v); app* lt1 = u().mk_lt(x,y); app* lt2 = m().mk_not(b().mk_ule(m().mk_app(r,y),m().mk_app(r,x))); assert_cnstr(m().mk_iff(lt1, lt2)); } void assert_cnstr(expr* e) { TRACE("theory_dl", tout << mk_pp(e, m()) << "\n";); context& ctx = get_context(); ctx.internalize(e, false); literal lit(ctx.get_literal(e)); ctx.mark_as_relevant(lit); ctx.mk_th_axiom(get_id(), 1, &lit); } void add_trail(ast* a) { m_trail.push_back(a); get_context().push_trail(push_back_vector(m_trail)); } }; theory* mk_theory_dl(ast_manager& m) { return alloc(theory_dl, m); } };