#include "ast.h" #include "front_end_params.h" #include "simplifier.h" #include "qe.h" #include "basic_simplifier_plugin.h" #include "arith_simplifier_plugin.h" #include "array_simplifier_plugin.h" #include "bv_simplifier_plugin.h" #include "ast_pp.h" #include "smtlib.h" #include "smtparser.h" #include "lbool.h" #include #include "reg_decl_plugins.h" static void test_qe(ast_manager& m, lbool expected_outcome, expr* fml, char const* option) { // enable_trace("bit2int"); //enable_trace("gomory_cut"); enable_trace("final_check_arith"); enable_trace("arith_final_check"); //enable_trace("arith_branching"); enable_trace("theory_arith_int"); enable_trace("presburger"); enable_trace("quant_elim"); // enable_trace("arith_simplifier_plugin"); // enable_trace("non_linear"); // enable_trace("gomory_cut_detail"); // enable_trace("arith"); // enable_trace("bv"); // enable_trace("after_search"); // enable_trace("bv_bit_prop"); simplifier simp(m); front_end_params params; params.m_quant_elim = true; std::cout << mk_pp(fml, m) << "\n"; qe::expr_quant_elim qe(m, params); expr_ref result(m); qe(m.mk_true(), fml, result); std::cout << " -> " << mk_pp(result, m) << " " << expected_outcome << "\n"; if (expected_outcome == l_true && !m.is_true(result)) { std::cout << "ERROR: expected true, instead got " << ast_pp(result, m).c_str() << "\n"; //exit(-1); } if (expected_outcome == l_false && !m.is_false(result)) { std::cout << "ERROR: expected false, instead got " << ast_pp(result, m).c_str() << "\n"; //exit(-1); } } static void test_formula(lbool expected_outcome, char const* fml) { ast_manager m; reg_decl_plugins(m); scoped_ptr parser = smtlib::parser::create(m); parser->initialize_smtlib(); std::ostringstream buffer; buffer << "(benchmark presburger :status unknown :logic AUFLIA :extrapreds ((p1) (p2) (p3)) " << ":extrafuns ((a Int) (b Int))\n" << ":extrapreds ((p) (q) (r))\n" << ":datatypes ((list (nil) (cons (hd Int) (tl list))))\n" << ":datatypes ((cell (cnil) (ccons (car cell) (cdr cell))))\n" << ":extrasorts (U)\n" << ":extrafuns ((f U U))\n" << ":formula " << fml << ")"; parser->parse_string(buffer.str().c_str()); smtlib::benchmark* b = parser->get_benchmark(); smtlib::theory::expr_iterator it = b->begin_formulas(); smtlib::theory::expr_iterator end = b->end_formulas(); for (; it != end; ++it) { test_qe(m, expected_outcome, *it, 0); } } void tst_quant_elim() { test_formula(l_undef, "(exists ((p1 Bool) (q1 Bool) (r1 Bool))\ (and (or (not p1) (not q1) r1)\ (or (and (not p) (not q) (not p1) q1)\ (and (not p) q p1 (not q1))\ (and p (not q) p1 q1)\ (and p q p1 q1))\ (or (and (not r) (not r1))\ (and (= p p1) (= q q1) r r1)\ (and (not (and (= p p1) (= q q1))) (not (= r r1))))))"); test_formula(l_false,"(forall (x Int) (y Int) (or (= x 0) (< (* 5 y) (* 6 x)) (> (* 5 y) (* 6 x))))"); test_formula(l_false, "(forall (a Int) (b Int) (exists (x Int) (and (< a (* 20 x)) (< (* 20 x) b))))"); test_formula(l_undef, "(exists (u U) (= (f u) u))"); test_formula(l_true, "(exists (l Int) (forall (x Int) (implies (>= x l) " " (exists (u Int) (v Int) (and (>= u 0) (>= v 0) (= x (+ (* 3 u) (* 7 v))))))))"); test_formula(l_true, "(forall (x Int) (y Int) (implies (= (* 6 x) (* 5 y)) (exists (d Int) (= y (* 3 d)))))"); test_formula(l_undef, "(exists (x Int) (= (- a (mod x 4)) 0))"); // return; // test_formula(l_true, "(exists (x Int) (y Int) (= 1 (+ (* 5 x) (* 3 y))))"); test_formula(l_undef, "(exists (a Bool) (b Bool) (or (and p1 a) (and p2 (not b))))"); test_formula(l_false, "(forall (x Int) (q1 Int) (q2 Int) (r1 Int) (r2 Int) " " (implies " " (and (< x 4699) " " (= (* 2622 x) (+ (* 65536 q1) r1)) " " (<= 0 q1) " " (<= 0 r1) " " (< r1 65536) " " (= x (+ (* 100 q2) r2)) " " (<= 0 q2) " " (<= 0 r2) " " (< r2 100)) " " (= q1 q2)))"); test_formula(l_undef, "(forall (l list) (or (= l nil) (exists (x Int) (ll list) (= l (cons x ll)))))"); test_formula(l_false, "(exists (x Real) (forall (y Real) (>= x y)))"); test_formula(l_false, "(exists (x Real) (forall (y Real) (> x y)))"); test_formula(l_false, "(exists (x Real) (forall (y Real) (< x y)))"); test_formula(l_false, "(exists (x Real) (forall (y Real) (<= x y)))"); test_formula(l_true, "(exists (x Real) (exists (y Real) (< x y)))"); test_formula(l_true, "(exists (x Real) (exists (y Real) (<= x y)))"); test_formula(l_true, "(exists (x Real) (exists (y Real) (>= x y)))"); test_formula(l_true, "(exists (x Real) (exists (y Real) (> x y)))"); test_formula(l_true, "(forall (x Real) (exists (y Real) (< x y)))"); test_formula(l_true, "(forall (x Real) (exists (y Real) (<= x y)))"); test_formula(l_true, "(forall (x Real) (exists (y Real) (>= x y)))"); test_formula(l_true, "(forall (x Real) (exists (y Real) (> x y)))"); test_formula(l_false, "(forall (x Real) (forall (y Real) (< x y)))"); test_formula(l_false, "(forall (x Real) (forall (y Real) (<= x y)))"); test_formula(l_false, "(forall (x Real) (forall (y Real) (>= x y)))"); test_formula(l_false, "(forall (x Real) (forall (y Real) (> x y)))"); test_formula(l_true, "(exists (l Int) (forall (x Int) (implies (>= x l) " " (exists (u Int) (v Int) (and (>= u 0) (>= v 0) (= x (+ (* 3 u) (* 5 v))))))))"); test_formula(l_false, "(forall (d Int) (implies (>= d 0) (exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= d (+ (* 3 x) (* 5 y)))))))"); test_formula(l_true, "(forall (y Int) (implies (exists (d Int) (= y (* 6 d))) (exists (d Int) (= y (* 2 d)))))"); test_formula(l_true, "(forall (y Int) (implies (exists (d Int) (= y (* 65 d))) (exists (d Int) (= y (* 5 d)))))"); test_formula(l_true, "(exists (z Int) (forall (w Int) (exists (x Int) (y Int) " " (or (and (< (+ (* 3 x) w) 2) (< 1 (- (+ (* 2 x) z) w))) " " (and (< z (* 2 y)) (> z y))))))"); test_formula(l_true, "(exists (x Int) (y Int) (and (> x 0) (>= y 0) (= 1 (- (* 3 x) (* 5 y)))))"); test_formula(l_true, "(exists (a Int) (b Int) " " (and (not (= a 1)) (= a b) (or (= a (* 2 b)) (= (* 2 b) (+ 1 (* 3 a))))))"); test_formula(l_true, "(forall (x Int) (iff (and (not (= 0 (mod x 2))) (= 0 (mod (- x 1) 3))) " " (or (= 0 (mod (- x 1) 12)) (= 0 (mod (- x 7) 12)))))"); test_formula(l_false, "(exists (x Int) (and (< (* 3 x) 2) (< 1 (* 2 x))))"); test_formula(l_true, "(forall (x Int) (y Int) (or (= 0 (mod x 5)) (not (= (* 6 x) (* 5 y)))))"); test_formula(l_false, "(forall (x Int) (exists (y Int) (= x (* 2 y))))"); test_formula(l_false, "(forall (x Int) " " (implies (not (= 0 (mod x 2))) " " (or (= 0 (mod (- x 1) 4)) " " (= 0 (mod (- x 1) 8)) " " (= 0 (mod (- x 3) 8)) " " (= 0 (mod (- x 1) 6)) " " (= 0 (mod (- x 1) 14)) " " (= 0 (mod (- x 9) 14)) " " (= 0 (mod (- x 11) 14)) " " (= 0 (mod (- x 5) 24)) " " (= 0 (mod (- x 11) 24))))) "); test_formula(l_true, "(forall (x Int) (iff (and (not (= 0 (mod x 2))) (= 0 (mod (- x 1) 3))) " " (or (= 0 (mod (- x 1) 12)) (= 0 (mod (- x 7) 12)))))"); test_formula(l_false, "(forall (d Int) (c Int) (b Int) " " (and (= c 0) (= d (* b c)) (= d 0)))"); //return; test_formula(l_undef, "(exists (k!12 Int) (k!11 Int) (and (= (ite (= k!11 0) 0 k!11) k!11) (not (= (ite (= k!12 (+ 1)) 1 0) 0))))"); //return; test_formula(l_false, "(forall (a Int) (b Int) (x Int) (y Int) (z Int) " " (implies (and (= (+ a 2) b) (= x (+ 1 (- b a))) (= y (- b 2)) (= z 3)) false))"); test_formula(l_false, "(exists (a Int) (b Int) " " (and (> a 1) (> b 1) (= a b) (or (= a (* 2 b)) (= (* 2 b) (+ 1 (* 3 a))))))"); test_formula(l_true, "(forall (d Int) (implies true (exists (x Int) (y Int) (and true true (= d (+ (* 3 x) (* 5 y)))))))"); // This one takes forever without bit-vectors test_formula(l_true, "(forall (d Int) (implies (>= d 8) (exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= d (+ (* 3 x) (* 5 y)))))))"); test_formula(l_true, "(forall (d Int) (implies (>= d 0) (exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= d (- (* 3 x) (* 5 y)))))))"); test_formula(l_false, "(exists (x Int) (y Int) (z Int) (= 1 (- (* 4 x) (* 6 y))))"); //return; test_formula(l_true, "(exists (l Int) (forall (x Int) (implies (>= x l) " " (exists (u Int) (v Int) (and (>= u 0) (>= v 0) (= x (+ (* 3 u) (* 8 v))))))))"); test_formula(l_true, "(exists (l Int) (forall (x Int) (implies (>= x l) " " (exists (u Int) (v Int) (and (>= u 0) (>= v 0) (= x (+ (* 3 u) (* 8 v))))))))"); #if 0 // too slow. test_formula(l_true, "(exists (l Int) (forall (x Int) (implies (>= x l) " " (exists (u Int) (v Int) (and (>= u 0) (>= v 0) (= x (+ (* 7 u) (* 8 v))))))))"); #endif test_formula(l_true, "(forall (x Int) (exists (y Int) (and (<= (* 2 y) x) (< x (* 2 (+ y 1))))))"); test_formula(l_false, "(exists (x Int) (y Int) (and (> y 0) (> y (* 2 x)) (< y (+ x 2)) (= 0 (mod y 2))))"); test_formula(l_false, "(exists (x Int) (and (< (* 3 x) 3) (< 1 (* 2 x))))"); test_formula(l_true, "(exists (x Int) (and (< (* 3 x) 4) (< 1 (* 2 x))))"); test_formula(l_false, "(exists (x Int) (and (< (+ (* 3 x) 1) 10) (> (- (* 7 x) 6) 7) (= 0 (mod x 3))))"); test_formula(l_false, "(exists (x Int) (y Int) (and (< (- 1 (* 5 y)) x) (< (+ 1 y) (* 13 x)) (< (+ x 2) 0) (> y 0)))"); test_formula(l_false, "(exists (x Int) (y Int) (and (< (- 1 (* 5 y)) x) (< (+ 1 y) (* 13 x)) (< x -2)))"); test_formula(l_true, "(exists (w Int) (z Int) (y Int) (x Int) (and (< (- 1 (* 5 y)) (+ x (* 2 z))) (< (+ 1 y w (* -4 z)) (* 13 x)) (< x -2) (> z 0)))"); test_formula(l_true, "(forall (w Int) " " (exists (z Int) (y Int) (x Int) " " (and (< (- 1 (* 5 y)) (+ x (* 2 z))) " " (< (- (+ 1 y) (* 4 z)) (* 13 x)) " " (< x -2) (> z 0) (< x 10)))) "); test_formula(l_false, "(forall (d Int) (c Int) (b Int) " " (and (= c 0) (= d (* b c)) (= d 4)))"); test_formula(l_undef, "(exists (d Int) (c Int) (b Int) " " (and (= c 0) (= d (* b c)) (= d 0)))"); test_formula(l_undef, "(exists (d Int) (c Int) (b Int) " " (and (= c 0) (= d (* b c)) (= d 4)))"); // Tests from Harrison's HOL-light version of Cooper. test_formula(l_true, "(forall (x Int) (y Int) (not (= (+ 1 (* 2 x)) (* 2 y))))"); test_formula(l_false, "(exists (x Int) (y Int) (= 1 (- (* 4 x) (* 6 y))))"); // "(forall (x Int) (implies (< b x) (<= a x)))" // "(forall (x Int) (implies (< b x) (< a x)))" test_formula(l_false, "(forall (d Int) (implies (>= d 0) (exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= d (+ (* 3 x) (* 5 y)))))))"); test_formula(l_true, "(forall (d Int) (implies true (exists (x Int) (y Int) (and true true (= d (+ (* 3 x) (* 5 y)))))))"); // This one takes forever without bit-vectors test_formula(l_true, "(forall (d Int) (implies (>= d 8) (exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= d (+ (* 3 x) (* 5 y)))))))"); test_formula(l_true, "(forall (d Int) (implies (>= d 0) (exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= d (- (* 3 x) (* 5 y)))))))"); test_formula(l_true, "(exists (x Int) (y Int) (and (> x 0) (>= y 0) (= 1 (- (* 3 x) (* 5 y)))))"); test_formula(l_false, "(exists (x Int) (y Int) (z Int) (= 1 (- (* 4 x) (* 6 y))))"); // "(forall (x Int) (implies (< b (* 3 x)) (a < (* 3 x))))" test_formula(l_false, "(forall (x Int) (y Int) (implies (<= x y) (< (+ 1 (* 2 x)) (* 2 y))))"); test_formula(l_true, "(forall (x Int) (y Int) (z Int) (implies (= (+ 1 (* 2 x)) (* 2 y)) (> (+ x y z) 129)))"); // Formula examples from Cooper's paper. test_formula(l_true, "(forall (a Int) (exists (b Int) (or (< a (+ (* 4 b) (* 3 a))) (and (not (< a b)) (> a (+ b 1))))))"); test_formula(l_false, "(exists (y Int) (forall (x Int) (and (> (+ x (* 5 y)) 1) (> (- (* 13 x) y) 1) (< (+ x 2) 0))))"); // Harrison's formulas: test_formula(l_false, "(forall (x Int) (y Int) (implies (and (>= x 0) (>= y 0)) (or (< (- (* 12 x) (* 8 y)) 0) (> (- (* 12 x) (* 8 y)) 2))))"); // test_formula(l_true, "(exists (x Int) (y Int) (= 1 (+ (* 5 x) (* 3 y))))"); test_formula(l_false, "(exists (x Int) (y Int) (= 1 (+ (* 5 x) (* 10 y))))"); test_formula(l_true, "(exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= 1 (- (* 5 x) (* 6 y)))))"); test_formula(l_true, "(exists (x Int) (y Int) (z Int) (w Int) (= 1 (+ (* 2 w) (* 3 x) (* 4 y) (* 5 z))))"); test_formula(l_true, "(exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= 1 (- (* 5 x) (* 3 y)))))"); test_formula(l_true, "(exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= 1 (- (* 3 x) (* 5 y)))))"); test_formula(l_false,"(exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= 1 (- (* 6 x) (* 3 y)))))"); test_formula(l_true, "(forall (x Int) (y Int) (or (= 0 (mod x 5)) (= 0 (mod y 6)) (not (= (* 6 x) (* 5 y)))))"); test_formula(l_false,"(forall (x Int) (y Int) (or (not (= (* 6 x) (* 5 y)))))"); // Positive variant of the Bezout theorem (see the exercise). *) test_formula(l_true, "(forall (z Int) (implies (> z 7) (exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= (+ (* 3 x) (* 5 y)) z)))))"); test_formula(l_false,"(forall (z Int) (implies (> z 2) (exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= (+ (* 3 x) (* 5 y)) z)))))"); test_formula(l_true, "(forall (z Int) (implies (<= z 7) " " (iff (exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= z (+ (* 3 x) (* 5 y))))) " " (not (exists (x Int) (y Int) (and (>= x 0) (>= y 0) (= (- 7 z) (+ (* 3 x) (* 5 y))))))))) "); // Basic result about congruences. test_formula(l_true, "(forall (x Int) " " (iff (and (not (exists (m Int) (= x (* 2 m)))) (exists (m Int) (= x (+ (* 3 m) 1)))) " " (or (exists (m Int) (= x (+ (* 12 m) 1))) (exists (m Int) (= x (+ (* 12 m) 7))))))"); // Inspired by the Collatz conjecture. test_formula(l_false, "(forall (a Int) (b Int) (x Int) (y Int) (z Int) " " (implies (and (= (+ a 2) b) (= x (+ 1 (- b a))) (= y (- b 2)) (= z 3)) false))"); test_formula(l_true, "(exists (a Int) (b Int) " " (and (not (= a 1)) (= a b) (or (= a (* 2 b)) (= (* 2 b) (+ 1 (* 3 a))))))"); test_formula(l_false, "(exists (a Int) (b Int) " " (and (> a 1) (> b 1) (= a b) (or (= a (* 2 b)) (= (* 2 b) (+ 1 (* 3 a))))))"); test_formula(l_false, "(exists (a Int) (b Int) " " (and (> a 1) (> b 1) " " (or (= a (* 2 b)) (= (* 2 b) (+ 1 (* 3 a)))) " " (or (= b (* 2 a)) (= (* 2 a) (+ 1 (* 3 b))))))"); #if 0 // Bob Constable's "stamp problem". test_formula(l_true, "(forall (x Int) (implies (>= x 8) " " (exists (u Int) (v Int) (and (>= u 0) (>= v 0) (= x (+ (* 3 u) (* 5 v)))))))"); test_formula(l_true, "(exists (l Int) (forall (x Int) (implies (>= x l) " " (exists (u Int) (v Int) (and (>= u 0) (>= v 0) (= x (+ (* 3 u) (* 5 v))))))))"); test_formula(l_true, "(exists (l Int) (forall (x Int) (implies (>= x l) " " (exists (u Int) (v Int) (and (>= u 0) (>= v 0) (= x (+ (* 3 u) (* 7 v))))))))"); test_formula(l_true, "(exists (l Int) (forall (x Int) (implies (>= x l) " " (exists (u Int) (v Int) (and (>= u 0) (>= v 0) (= x (+ (* 3 u) (* 8 v))))))))"); test_formula(l_true, "(exists (l Int) (forall (x Int) (implies (>= x l) " " (exists (u Int) (v Int) (and (>= u 0) (>= v 0) (= x (+ (* 7 u) (* 8 v))))))))"); #endif // Example from reciprocal mult: (2622 * x)>>16 = x/100 within a range. test_formula(l_true, "(forall (x Int) (y Int) " " (iff (exists (d Int) (= (+ x y) (* 2 d))) " " (iff (exists (d Int) (= x (* 2 d))) (exists (d Int) (= y (* 2 d))))))"); test_formula(l_true, "(forall (n Int) " " (implies (and (< 0 n) (< n 2400)) " " (or (and (<= n 2) (<= 2 (* 2 n))) " " (and (<= n 3) (<= 3 (* 2 n))) " " (and (<= n 5) (<= 5 (* 2 n))) " " (and (<= n 7) (<= 7 (* 2 n))) " " (and (<= n 13) (<= 13 (* 2 n))) " " (and (<= n 23) (<= 23 (* 2 n))) " " (and (<= n 43) (<= 43 (* 2 n))) " " (and (<= n 83) (<= 83 (* 2 n))) " " (and (<= n 163) (<= 163 (* 2 n))) " " (and (<= n 317) (<= 317 (* 2 n))) " " (and (<= n 631) (<= 631 (* 2 n))) " " (and (<= n 1259) (<= 1259 (* 2 n))) " " (and (<= n 2503) (<= 2503 (* 2 n)))))) "); memory::finalize(); #ifdef _WINDOWS _CrtDumpMemoryLeaks(); #endif exit(0); }