/*++ Copyright (c) 2017 Microsoft Corporation Module Name: Abstract: Author: Nikolaj Bjorner (nbjorner) Lev Nachmanson (levnach) Revision History: --*/ #include "math/lp/nla_tangent_lemmas.h" #include "math/lp/nla_core.h" namespace nla { struct imp { point m_a; point m_b; point m_xy; rational m_correct_v; // "below" means that the incorrect value is less than the correct one, that is m_v < m_correct_v bool m_below; rational m_v; // the monomial value lpvar m_j; // the monic variable const monic& m_m; const factor& m_x; const factor& m_y; lpvar m_jx; lpvar m_jy; tangents& m_tang; imp(point xy, const rational& v, lpvar j, // the monic variable const monic& m, const factor& x, const factor& y, tangents& tang) : m_xy(xy), m_correct_v(xy.x * xy.y), m_below(v < m_correct_v), m_v(v), m_j(tang.var(m)), m_m(m), m_x(x), m_y(y), m_jx(tang.var(x)), m_jy(tang.var(y)), m_tang(tang) {} core & c() { return m_tang.c(); } void generate_explanations_of_tang_lemma(lp::explanation& exp) { // here we repeat the same explanation for each lemma c().explain(m_m, exp); c().explain(m_x, exp); c().explain(m_y, exp); } void generate_simple_tangent_lemma(const monic& m, const factorization&); void tangent_lemma_on_bf() { get_tang_points(); TRACE("nla_solver", tout << "tang domain = "; print_tangent_domain(tout) << std::endl;); generate_two_tang_lines(); generate_tang_plane(m_a); generate_tang_plane(m_b); } void generate_tang_plane(const point & pl) { c().add_empty_lemma(); c().negate_relation(m_jx, pl.x); c().negate_relation(m_jy, pl.y); #if Z3DEBUG int mult_sign = nla::rat_sign(pl.x - c().val(m_jx))*nla::rat_sign(pl.y - c().val(m_jy)); SASSERT((mult_sign == 1) == m_below); // If "mult_sign is 1" then (a - x)(b-y) > 0 and ab - bx - ay + xy > 0 // or -ab + bx + ay < xy or -ay - bx + xy > -ab // val(j) stands for xy. So, finally we have -ay - bx + j > - ab #endif lp::lar_term t; t.add_monomial(- pl.x, m_jy); t.add_monomial(- pl.y, m_jx); t.add_var(m_j); c().mk_ineq(t, m_below? llc::GT : llc::LT, - pl.x*pl.y); } void generate_two_tang_lines() { m_tang.add_empty_lemma(); c().mk_ineq(m_jx, llc::NE, m_xy.x); c().mk_ineq(m_j, - m_xy.x, m_jy, llc::EQ); m_tang.add_empty_lemma(); c().mk_ineq(m_jy, llc::NE, m_xy.y); c().mk_ineq(m_j, - m_xy.y, m_jx, llc::EQ); } // Get two planes tangent to surface z = xy, one at point a, and another at point b, creating a cut void get_initial_tang_points() { const rational& x = m_xy.x; const rational& y = m_xy.y; bool all_ints = m_v.is_int() && x.is_int() && y.is_int(); rational delta = rational(1); if (!all_ints ) delta = std::min(delta, abs(m_correct_v - m_v)); TRACE("nla_solver", tout << "delta = " << delta << "\n";); if (!m_below){ m_a = point(x - delta, y + delta); m_b = point(x + delta, y - delta); } else { // denote x = xy.x and y = xy.y, and vx, vy - the value of x and y. // we have val(xy) < vx*y + vy*x - vx*vy = pl(x, y); // The plane with delta (1, 1) is (vx + 1)y + (vy + 1)x - (vx + 1)(vy + 1) = // vx*y + vy*x - vx*vy + y + x - xv*vy - vx - vy - 1 = pl(x, y) - 1 // For integers the last expression is greater than or equal to val(xy) when x = vx and y = vy. // If x <= vx+1 and y <= vy+1 then (vx+1-x)*(vy+1-y) > 0, that creates a cut // - (vx + 1)y - (vy + 1)x + xy > - (vx+1)*(vx+1). // If all_ints is false then we use the fact that // tang_plane() will not change more than on delta*delta m_a = point(x - delta, y - delta); m_b = point(x + delta, y + delta); } } void push_tang_point(point & a) { SASSERT(plane_is_correct_cut(a)); int steps = 10; point del = a - m_xy; while (steps--) { del *= rational(2); point na = m_xy + del; TRACE("nla_solver_tp", tout << "del = " << del << std::endl;); if (!plane_is_correct_cut(na)) { TRACE("nla_solver_tp", tout << "exit";tout << std::endl;); return; } a = na; } } rational tang_plane(const point& a) const { return a.x * m_xy.y + a.y * m_xy.x - a.x * a.y; } void get_tang_points() { get_initial_tang_points(); TRACE("nla_solver", tout << "xy = " << m_xy << ", correct val = " << m_correct_v; tout << "\ntang points:"; print_tangent_domain(tout);tout << std::endl;); push_tang_point(m_a); TRACE("nla_solver", tout << "pushed a = " << m_a << std::endl;); push_tang_point(m_b); TRACE("nla_solver", tout << "pushed b = " << m_b << std::endl;); TRACE("nla_solver", tout << "tang_plane(a) = " << tang_plane(m_a) << " , val = " << m_v << ", tang_plane(b) = " << tang_plane(m_b) << " , val = " << std::endl;); } std::ostream& print_tangent_domain(std::ostream& out) { out << "(" << m_a << ", " << m_b << ")"; return out; } bool plane_is_correct_cut(const point& plane) const { TRACE("nla_solver", tout << "plane = " << plane << "\n"; tout << "tang_plane() = " << tang_plane(plane) << ", v = " << m_v << ", correct_v = " << m_correct_v << "\n";); SASSERT((m_below && m_v < m_correct_v) || ((!m_below) && m_v > m_correct_v)); rational sign = m_below? rational(1) : rational(-1); rational px = tang_plane(plane); return ((m_correct_v - px)*sign).is_pos() && !((px - m_v)*sign).is_neg(); } }; tangents::tangents(core * c) : common(c, nullptr) {} void tangents::tangent_lemma() { if (!c().m_nla_settings.run_tangents()) { TRACE("nla_solver", tout << "not generating tangent lemmas\n";); return; } factorization bf(nullptr); const monic* m; if (c().find_bfc_to_refine(m, bf)) { unsigned lemmas_size_was = c().m_lemma_vec->size(); unsigned j = m->var(); imp i(point(val(bf[0]), val(bf[1])), c().val(j), j, *m, bf[0], bf[1], *this); i.tangent_lemma_on_bf(); if (!bf.is_mon()) { lp::explanation expl; generate_explanations_of_tang_lemma(*m, bf, expl); for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++) { auto &l = ((*c().m_lemma_vec)[i]); l.expl().add(expl); } } TRACE("nla_solver", for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++) c().print_specific_lemma((*c().m_lemma_vec)[i], tout); ); } } void tangents::generate_explanations_of_tang_lemma(const monic& rm, const factorization& bf, lp::explanation& exp) { // here we repeat the same explanation for each lemma c().explain(rm, exp); c().explain(bf[0], exp); c().explain(bf[1], exp); } }