/*++ Copyright (c) 2017 Microsoft Corporation Module Name: Abstract: Author: Nikolaj Bjorner (nbjorner) Lev Nachmanson (levnach) Revision History: --*/ #pragma once #include "math/lp/factorization.h" #include "math/lp/lp_types.h" #include "math/lp/var_eqs.h" #include "math/lp/nla_tangent_lemmas.h" #include "math/lp/nla_basics_lemmas.h" #include "math/lp/nla_order_lemmas.h" #include "math/lp/nla_monotone_lemmas.h" #include "math/lp/emonomials.h" #include "math/lp/nla_settings.h" namespace nla { template bool try_insert(const A& elem, B& collection) { auto it = collection.find(elem); if (it != collection.end()) return false; collection.insert(elem); return true; } typedef lp::constraint_index lpci; typedef lp::lconstraint_kind llc; typedef lp::constraint_index lpci; typedef lp::explanation expl_set; typedef lp::var_index lpvar; inline int rat_sign(const rational& r) { return r.is_pos()? 1 : ( r.is_neg()? -1 : 0); } inline rational rrat_sign(const rational& r) { return rational(rat_sign(r)); } inline bool is_set(unsigned j) { return static_cast(j) != -1; } inline bool is_even(unsigned k) { return (k >> 1) << 1 == k; } struct ineq { lp::lconstraint_kind m_cmp; lp::lar_term m_term; rational m_rs; ineq(lp::lconstraint_kind cmp, const lp::lar_term& term, const rational& rs) : m_cmp(cmp), m_term(term), m_rs(rs) {} bool operator==(const ineq& a) const { return m_cmp == a.m_cmp && m_term == a.m_term && m_rs == a.m_rs; } const lp::lar_term& term() const { return m_term; }; lp::lconstraint_kind cmp() const { return m_cmp; }; const rational& rs() const { return m_rs; }; }; class lemma { vector m_ineqs; lp::explanation m_expl; public: void push_back(const ineq& i) { m_ineqs.push_back(i);} size_t size() const { return m_ineqs.size() + m_expl.size(); } const vector& ineqs() const { return m_ineqs; } vector& ineqs() { return m_ineqs; } lp::explanation& expl() { return m_expl; } const lp::explanation& expl() const { return m_expl; } bool is_conflict() const { return m_ineqs.empty() && !m_expl.empty(); } }; class core { public: var_eqs m_evars; lp::lar_solver& m_lar_solver; vector * m_lemma_vec; svector m_to_refine; tangents m_tangents; basics m_basics; order m_order; monotone m_monotone; emonomials m_emons; core(lp::lar_solver& s); bool compare_holds(const rational& ls, llc cmp, const rational& rs) const; rational value(const lp::lar_term& r) const; lp::lar_term subs_terms_to_columns(const lp::lar_term& t) const; bool ineq_holds(const ineq& n) const; bool lemma_holds(const lemma& l) const; bool is_monomial_var(lpvar j) const { return m_emons.is_monomial_var(j); } rational val(lpvar j) const { return m_lar_solver.get_column_value_rational(j); } rational val(const monomial& m) const { return m_lar_solver.get_column_value_rational(m.var()); } bool canonize_sign_is_correct(const monomial& m) const; lpvar var(monomial const& sv) const { return sv.var(); } rational val_rooted(const monomial& m) const { return m.rsign()*val(m.var()); } rational val(const factor& f) const { return f.rat_sign() * (f.is_var()? val(f.var()) : val(m_emons[f.var()])); } rational val(const factorization&) const; lpvar var(const factor& f) const { return f.var(); } svector sorted_rvars(const factor& f) const; bool done() const; void add_empty_lemma(); // the value of the factor is equal to the value of the variable multiplied // by the canonize_sign bool canonize_sign(const factor& f) const; bool canonize_sign(const factorization& f) const; bool canonize_sign(lpvar j) const; // the value of the rooted monomias is equal to the value of the m.var() variable multiplied // by the canonize_sign bool canonize_sign(const monomial& m) const; void deregister_monomial_from_monomialomials (const monomial & m, unsigned i); void deregister_monomial_from_tables(const monomial & m, unsigned i); // returns the monomial index void add(lpvar v, unsigned sz, lpvar const* vs); void push(); void pop(unsigned n); rational mon_value_by_vars(unsigned i) const; rational product_value(const unsigned_vector & m) const; // return true iff the monomial value is equal to the product of the values of the factors bool check_monomial(const monomial& m) const; void explain(const monomial& m, lp::explanation& exp) const; void explain(const factor& f, lp::explanation& exp) const; void explain(lpvar j, lp::explanation& exp) const; void explain_existing_lower_bound(lpvar j); void explain_existing_upper_bound(lpvar j); void explain_separation_from_zero(lpvar j); void explain_var_separated_from_zero(lpvar j); void explain_fixed_var(lpvar j); std::ostream & print_ineq(const ineq & in, std::ostream & out) const; std::ostream & print_var(lpvar j, std::ostream & out) const; std::ostream & print_monomials(std::ostream & out) const; std::ostream & print_ineqs(const lemma& l, std::ostream & out) const; std::ostream & print_factorization(const factorization& f, std::ostream& out) const; template std::ostream& print_product(const T & m, std::ostream& out) const; std::ostream & print_factor(const factor& f, std::ostream& out) const; std::ostream & print_factor_with_vars(const factor& f, std::ostream& out) const; std::ostream& print_monomial(const monomial& m, std::ostream& out) const; std::ostream& print_bfc(const factorization& m, std::ostream& out) const; std::ostream& print_monomial_with_vars(unsigned i, std::ostream& out) const; template std::ostream& print_product_with_vars(const T& m, std::ostream& out) const; std::ostream& print_monomial_with_vars(const monomial& m, std::ostream& out) const; std::ostream& print_explanation(const lp::explanation& exp, std::ostream& out) const; template void trace_print_rms(const T& p, std::ostream& out); void trace_print_monomial_and_factorization(const monomial& rm, const factorization& f, std::ostream& out) const; void print_monomial_stats(const monomial& m, std::ostream& out); void print_stats(std::ostream& out); std::ostream& print_lemma(std::ostream& out) const; void print_specific_lemma(const lemma& l, std::ostream& out) const; void trace_print_ol(const monomial& ac, const factor& a, const factor& c, const monomial& bc, const factor& b, std::ostream& out); void mk_ineq(lp::lar_term& t, llc cmp, const rational& rs); void mk_ineq(const rational& a, lpvar j, const rational& b, lpvar k, llc cmp, const rational& rs); void mk_ineq(bool a, lpvar j, bool b, lpvar k, llc cmp, const rational& rs); void mk_ineq(bool a, lpvar j, bool b, lpvar k, llc cmp); void mk_ineq(lpvar j, const rational& b, lpvar k, llc cmp, const rational& rs); void mk_ineq(lpvar j, const rational& b, lpvar k, llc cmp); void mk_ineq(const rational& a, lpvar j, const rational& b, lpvar k, llc cmp); void mk_ineq(const rational& a ,lpvar j, lpvar k, llc cmp, const rational& rs); void mk_ineq(lpvar j, lpvar k, llc cmp, const rational& rs); void mk_ineq(lpvar j, llc cmp, const rational& rs); void mk_ineq(const rational& a, lpvar j, llc cmp, const rational& rs); void mk_ineq(const rational& a, lpvar j, llc cmp); void mk_ineq(lpvar j, lpvar k, llc cmp, lemma& l); void mk_ineq(lpvar j, llc cmp); void maybe_add_a_factor(lpvar i, const factor& c, std::unordered_set& found_vars, std::unordered_set& found_rm, vector & r) const; llc apply_minus(llc cmp); void fill_explanation_and_lemma_sign(const monomial& a, const monomial & b, rational const& sign); svector reduce_monomial_to_rooted(const svector & vars, rational & sign) const; monomial_coeff canonize_monomial(monomial const& m) const; lemma& current_lemma(); const lemma& current_lemma() const; vector& current_ineqs(); lp::explanation& current_expl(); const lp::explanation& current_expl() const; int vars_sign(const svector& v); bool has_upper_bound(lpvar j) const; bool has_lower_bound(lpvar j) const; const rational& get_upper_bound(unsigned j) const; const rational& get_lower_bound(unsigned j) const; bool zero_is_an_inner_point_of_bounds(lpvar j) const; int rat_sign(const monomial& m) const; inline int rat_sign(lpvar j) const { return nla::rat_sign(val(j)); } bool sign_contradiction(const monomial& m) const; bool var_is_fixed_to_zero(lpvar j) const; bool var_is_fixed_to_val(lpvar j, const rational& v) const; bool var_is_fixed(lpvar j) const; bool find_canonical_monomial_of_vars(const svector& vars, lpvar & i) const; bool is_canonical_monomial(lpvar) const; bool elists_are_consistent(bool check_in_model) const; bool elist_is_consistent(const std::unordered_set&) const; bool var_has_positive_lower_bound(lpvar j) const; bool var_has_negative_upper_bound(lpvar j) const; bool var_is_separated_from_zero(lpvar j) const; bool vars_are_equiv(lpvar a, lpvar b) const; void explain_equiv_vars(lpvar a, lpvar b); void explain(const factorization& f, lp::explanation& exp); bool explain_upper_bound(const lp::lar_term& t, const rational& rs, lp::explanation& e) const; bool explain_lower_bound(const lp::lar_term& t, const rational& rs, lp::explanation& e) const; bool explain_coeff_lower_bound(const lp::lar_term::ival& p, rational& bound, lp::explanation& e) const; bool explain_coeff_upper_bound(const lp::lar_term::ival& p, rational& bound, lp::explanation& e) const; bool explain_ineq(const lp::lar_term& t, llc cmp, const rational& rs); bool explain_by_equiv(const lp::lar_term& t, lp::explanation& e); bool has_zero_factor(const factorization& factorization) const; template bool mon_has_zero(const T& product) const; lp::lp_settings& settings(); const lp::lp_settings& settings() const; unsigned random(); void map_monomial_vars_to_monomial_indices(unsigned i); void map_vars_to_monomials(); // we look for octagon constraints here, with a left part +-x +- y void collect_equivs(); void collect_equivs_of_fixed_vars(); bool is_octagon_term(const lp::lar_term& t, bool & sign, lpvar& i, lpvar &j) const; void add_equivalence_maybe(const lp::lar_term *t, lpci c0, lpci c1); void init_vars_equivalence(); bool vars_table_is_ok() const; bool rm_table_is_ok() const; bool tables_are_ok() const; bool var_is_a_root(lpvar j) const; template bool vars_are_roots(const T& v) const; void register_monomial_in_tables(unsigned i_mon); void register_monomials_in_tables(); void clear(); void init_search(); void init_to_refine(); bool divide(const monomial& bc, const factor& c, factor & b) const; void negate_factor_equality(const factor& c, const factor& d); void negate_factor_relation(const rational& a_sign, const factor& a, const rational& b_sign, const factor& b); std::unordered_set collect_vars(const lemma& l) const; bool rm_check(const monomial&) const; std::unordered_map get_rm_by_arity(); void add_abs_bound(lpvar v, llc cmp); void add_abs_bound(lpvar v, llc cmp, rational const& bound); bool find_bfc_to_refine_on_monomial(const monomial&, factorization & bf); bool find_bfc_to_refine(const monomial* & m, factorization& bf); void negate_relation(unsigned j, const rational& a); bool conflict_found() const; lbool inner_check(bool derived); lbool check(vector& l_vec); bool no_lemmas_hold() const; lbool test_check(vector& l); lpvar map_to_root(lpvar) const; }; // end of core struct pp_mon { core const& c; monomial const& m; pp_mon(core const& c, monomial const& m): c(c), m(m) {} pp_mon(core const& c, lpvar v): c(c), m(c.m_emons[v]) {} }; struct pp_rmon { core const& c; monomial const& m; pp_rmon(core const& c, monomial const& m): c(c), m(m) {} pp_rmon(core const& c, lpvar v): c(c), m(c.m_emons[v]) {} }; inline std::ostream& operator<<(std::ostream& out, pp_mon const& p) { return p.c.print_monomial(p.m, out); } inline std::ostream& operator<<(std::ostream& out, pp_rmon const& p) { return p.c.print_monomial_with_vars(p.m, out); } struct pp_fac { core const& c; factor const& f; pp_fac(core const& c, factor const& f): c(c), f(f) {} }; inline std::ostream& operator<<(std::ostream& out, pp_fac const& f) { return f.c.print_factor(f.f, out); } struct pp_var { core const& c; lpvar v; pp_var(core const& c, lpvar v): c(c), v(v) {} }; inline std::ostream& operator<<(std::ostream& out, pp_var const& v) { return v.c.print_var(v.v, out); } } // end of namespace nla