/*++ Copyright (c) 2012 Microsoft Corporation Module Name: qfbv_tactic.cpp Abstract: Tactic for QF_BV based on bit-blasting Author: Leonardo (leonardo) 2012-02-22 Notes: --*/ #include "tactic/tactical.h" #include "tactic/core/simplify_tactic.h" #include "tactic/core/propagate_values_tactic.h" #include "tactic/core/solve_eqs_tactic.h" #include "tactic/core/elim_uncnstr_tactic.h" #include "tactic/bv/bit_blaster_tactic.h" #include "tactic/bv/bv1_blaster_tactic.h" #include "tactic/bv/max_bv_sharing_tactic.h" #include "tactic/bv/bv_size_reduction_tactic.h" #include "tactic/aig/aig_tactic.h" #include "sat/tactic/sat_tactic.h" #include "sat/sat_solver/inc_sat_solver.h" #include "ackermannization/ackermannize_bv_tactic.h" #include "tactic/smtlogics/smt_tactic.h" #define MEMLIMIT 300 static tactic * mk_qfbv_preamble(ast_manager& m, params_ref const& p) { params_ref solve_eq_p; // conservative gaussian elimination. solve_eq_p.set_uint("solve_eqs_max_occs", 2); params_ref flat_and_or_p = p; flat_and_or_p.set_bool("flat_and_or", false); params_ref simp2_p = p; simp2_p.set_bool("som", true); simp2_p.set_bool("pull_cheap_ite", true); simp2_p.set_bool("push_ite_bv", false); simp2_p.set_bool("local_ctx", true); simp2_p.set_uint("local_ctx_limit", 10000000); simp2_p.set_bool("flat", true); // required by som simp2_p.set_bool("hoist_mul", false); // required by som simp2_p.set_bool("flat_and_or", false); params_ref hoist_p; hoist_p.set_bool("hoist_mul", true); hoist_p.set_bool("som", false); hoist_p.set_bool("flat_and_or", false); return and_then( using_params(mk_simplify_tactic(m), flat_and_or_p), using_params(mk_propagate_values_tactic(m), flat_and_or_p), using_params(mk_solve_eqs_tactic(m), solve_eq_p), mk_elim_uncnstr_tactic(m), if_no_proofs(if_no_unsat_cores(mk_bv_size_reduction_tactic(m))), using_params(mk_simplify_tactic(m), simp2_p), // // Z3 can solve a couple of extra benchmarks by using hoist_mul // but the timeout in SMT-COMP is too small. // Moreover, it impacted negatively some easy benchmarks. // We should decide later, if we keep it or not. // using_params(mk_simplify_tactic(m), hoist_p), mk_max_bv_sharing_tactic(m), if_no_proofs(if_no_unsat_cores(mk_ackermannize_bv_tactic(m,p))) ); } static tactic * main_p(tactic* t) { params_ref p; p.set_bool("elim_and", true); p.set_bool("push_ite_bv", true); p.set_bool("blast_distinct", true); return using_params(t, p); } static tactic * mk_qfbv_tactic(ast_manager& m, params_ref const & p, tactic* sat, tactic* smt) { params_ref local_ctx_p = p; local_ctx_p.set_bool("local_ctx", true); local_ctx_p.set_bool("flat", false); local_ctx_p.set_bool("flat_and_or", false); params_ref solver_p; solver_p.set_bool("preprocess", false); // preprocessor of smt::context is not needed. tactic* preamble_st = mk_qfbv_preamble(m, p); tactic * st = main_p(and_then(preamble_st, // If the user sets HI_DIV0=false, then the formula may contain uninterpreted function // symbols. In this case, we should not use the `sat', but instead `smt'. Alternatively, // the UFs can be eliminated by eager ackermannization in the preamble. cond(mk_is_qfbv_eq_probe(), and_then(mk_bv1_blaster_tactic(m), using_params(smt, solver_p)), cond(mk_is_qfbv_probe(), and_then(mk_bit_blaster_tactic(m), when(mk_lt(mk_memory_probe(), mk_const_probe(MEMLIMIT)), and_then(using_params(and_then(mk_simplify_tactic(m), mk_solve_eqs_tactic(m)), local_ctx_p), if_no_proofs(mk_aig_tactic()))), sat), smt)))); st->updt_params(p); return st; } tactic * mk_qfbv_tactic(ast_manager & m, params_ref const & p) { tactic * new_sat = cond(mk_produce_proofs_probe(), and_then(mk_simplify_tactic(m), mk_smt_tactic(m, p)), mk_psat_tactic(m, p)); return mk_qfbv_tactic(m, p, new_sat, mk_smt_tactic(m, p)); }