/*++ Copyright (c) 2015 Microsoft Corporation --*/ #include #include #include #include #include #include #define LOG_Z3_CALLS #ifdef LOG_Z3_CALLS #define LOG_MSG(msg) Z3_append_log(msg) #else #define LOG_MSG(msg) ((void)0) #endif /** \defgroup capi_ex C API examples */ /**@{*/ /** @name Auxiliary Functions */ /**@{*/ /** \brief exit gracefully in case of error. */ void exitf(const char* message) { fprintf(stderr,"BUG: %s.\n", message); exit(1); } /** \brief exit if unreachable code was reached. */ void unreachable() { exitf("unreachable code was reached"); } /** \brief Simpler error handler. */ void error_handler(Z3_context c, Z3_error_code e) { printf("Error code: %d\n", e); exitf("incorrect use of Z3"); } static jmp_buf g_catch_buffer; /** \brief Low tech exceptions. In high-level programming languages, an error handler can throw an exception. */ void throw_z3_error(Z3_context c, Z3_error_code e) { longjmp(g_catch_buffer, e); } /** \brief Error handling that depends on checking an error code on the context. */ void nothrow_z3_error(Z3_context c, Z3_error_code e) { // no-op } /** \brief Create a logical context. Enable model construction. Other configuration parameters can be passed in the cfg variable. Also enable tracing to stderr and register custom error handler. */ Z3_context mk_context_custom(Z3_config cfg, Z3_error_handler err) { Z3_context ctx; Z3_set_param_value(cfg, "model", "true"); ctx = Z3_mk_context(cfg); Z3_set_error_handler(ctx, err); return ctx; } Z3_solver mk_solver(Z3_context ctx) { Z3_solver s = Z3_mk_solver(ctx); Z3_solver_inc_ref(ctx, s); return s; } void del_solver(Z3_context ctx, Z3_solver s) { Z3_solver_dec_ref(ctx, s); } /** \brief Create a logical context. Enable model construction only. Also enable tracing to stderr and register standard error handler. */ Z3_context mk_context() { Z3_config cfg; Z3_context ctx; cfg = Z3_mk_config(); ctx = mk_context_custom(cfg, error_handler); Z3_del_config(cfg); return ctx; } /** \brief Create a logical context. Enable fine-grained proof construction. Enable model construction. Also enable tracing to stderr and register standard error handler. */ Z3_context mk_proof_context() { Z3_config cfg = Z3_mk_config(); Z3_context ctx; Z3_set_param_value(cfg, "proof", "true"); ctx = mk_context_custom(cfg, throw_z3_error); Z3_del_config(cfg); return ctx; } /** \brief Create a variable using the given name and type. */ Z3_ast mk_var(Z3_context ctx, const char * name, Z3_sort ty) { Z3_symbol s = Z3_mk_string_symbol(ctx, name); return Z3_mk_const(ctx, s, ty); } /** \brief Create a boolean variable using the given name. */ Z3_ast mk_bool_var(Z3_context ctx, const char * name) { Z3_sort ty = Z3_mk_bool_sort(ctx); return mk_var(ctx, name, ty); } /** \brief Create an integer variable using the given name. */ Z3_ast mk_int_var(Z3_context ctx, const char * name) { Z3_sort ty = Z3_mk_int_sort(ctx); return mk_var(ctx, name, ty); } /** \brief Create a Z3 integer node using a C int. */ Z3_ast mk_int(Z3_context ctx, int v) { Z3_sort ty = Z3_mk_int_sort(ctx); return Z3_mk_int(ctx, v, ty); } /** \brief Create a real variable using the given name. */ Z3_ast mk_real_var(Z3_context ctx, const char * name) { Z3_sort ty = Z3_mk_real_sort(ctx); return mk_var(ctx, name, ty); } /** \brief Create the unary function application: (f x). */ Z3_ast mk_unary_app(Z3_context ctx, Z3_func_decl f, Z3_ast x) { Z3_ast args[1] = {x}; return Z3_mk_app(ctx, f, 1, args); } /** \brief Create the binary function application: (f x y). */ Z3_ast mk_binary_app(Z3_context ctx, Z3_func_decl f, Z3_ast x, Z3_ast y) { Z3_ast args[2] = {x, y}; return Z3_mk_app(ctx, f, 2, args); } /** \brief Check whether the logical context is satisfiable, and compare the result with the expected result. If the context is satisfiable, then display the model. */ void check(Z3_context ctx, Z3_solver s, Z3_lbool expected_result) { Z3_model m = 0; Z3_lbool result = Z3_solver_check(ctx, s); switch (result) { case Z3_L_FALSE: printf("unsat\n"); break; case Z3_L_UNDEF: printf("unknown\n"); m = Z3_solver_get_model(ctx, s); if (m) Z3_model_inc_ref(ctx, m); printf("potential model:\n%s\n", Z3_model_to_string(ctx, m)); break; case Z3_L_TRUE: m = Z3_solver_get_model(ctx, s); if (m) Z3_model_inc_ref(ctx, m); printf("sat\n%s\n", Z3_model_to_string(ctx, m)); break; } if (result != expected_result) { exitf("unexpected result"); } if (m) Z3_model_dec_ref(ctx, m); } /** \brief Prove that the constraints already asserted into the logical context implies the given formula. The result of the proof is displayed. Z3 is a satisfiability checker. So, one can prove \c f by showing that (not f) is unsatisfiable. The context \c ctx is not modified by this function. */ void prove(Z3_context ctx, Z3_solver s, Z3_ast f, bool is_valid) { Z3_model m = 0; Z3_ast not_f; /* save the current state of the context */ Z3_solver_push(ctx, s); not_f = Z3_mk_not(ctx, f); Z3_solver_assert(ctx, s, not_f); switch (Z3_solver_check(ctx, s)) { case Z3_L_FALSE: /* proved */ printf("valid\n"); if (!is_valid) { exitf("unexpected result"); } break; case Z3_L_UNDEF: /* Z3 failed to prove/disprove f. */ printf("unknown\n"); m = Z3_solver_get_model(ctx, s); if (m != 0) { Z3_model_inc_ref(ctx, m); /* m should be viewed as a potential counterexample. */ printf("potential counterexample:\n%s\n", Z3_model_to_string(ctx, m)); } if (is_valid) { exitf("unexpected result"); } break; case Z3_L_TRUE: /* disproved */ printf("invalid\n"); m = Z3_solver_get_model(ctx, s); if (m) { Z3_model_inc_ref(ctx, m); /* the model returned by Z3 is a counterexample */ printf("counterexample:\n%s\n", Z3_model_to_string(ctx, m)); } if (is_valid) { exitf("unexpected result"); } break; } if (m) Z3_model_dec_ref(ctx, m); /* restore scope */ Z3_solver_pop(ctx, s, 1); } /** \brief Assert the axiom: function f is injective in the i-th argument. The following axiom is asserted into the logical context: \code forall (x_0, ..., x_n) finv(f(x_0, ..., x_i, ..., x_{n-1})) = x_i \endcode Where, \c finv is a fresh function declaration. */ void assert_inj_axiom(Z3_context ctx, Z3_solver s, Z3_func_decl f, unsigned i) { unsigned sz, j; Z3_sort finv_domain, finv_range; Z3_func_decl finv; Z3_sort * types; /* types of the quantified variables */ Z3_symbol * names; /* names of the quantified variables */ Z3_ast * xs; /* arguments for the application f(x_0, ..., x_i, ..., x_{n-1}) */ Z3_ast x_i, fxs, finv_fxs, eq; Z3_pattern p; Z3_ast q; sz = Z3_get_domain_size(ctx, f); if (i >= sz) { exitf("failed to create inj axiom"); } /* declare the i-th inverse of f: finv */ finv_domain = Z3_get_range(ctx, f); finv_range = Z3_get_domain(ctx, f, i); finv = Z3_mk_fresh_func_decl(ctx, "inv", 1, &finv_domain, finv_range); /* allocate temporary arrays */ types = (Z3_sort *) malloc(sizeof(Z3_sort) * sz); names = (Z3_symbol *) malloc(sizeof(Z3_symbol) * sz); xs = (Z3_ast *) malloc(sizeof(Z3_ast) * sz); /* fill types, names and xs */ for (j = 0; j < sz; j++) { types[j] = Z3_get_domain(ctx, f, j); }; for (j = 0; j < sz; j++) { names[j] = Z3_mk_int_symbol(ctx, j); }; for (j = 0; j < sz; j++) { xs[j] = Z3_mk_bound(ctx, j, types[j]); }; x_i = xs[i]; /* create f(x_0, ..., x_i, ..., x_{n-1}) */ fxs = Z3_mk_app(ctx, f, sz, xs); /* create f_inv(f(x_0, ..., x_i, ..., x_{n-1})) */ finv_fxs = mk_unary_app(ctx, finv, fxs); /* create finv(f(x_0, ..., x_i, ..., x_{n-1})) = x_i */ eq = Z3_mk_eq(ctx, finv_fxs, x_i); /* use f(x_0, ..., x_i, ..., x_{n-1}) as the pattern for the quantifier */ p = Z3_mk_pattern(ctx, 1, &fxs); printf("pattern: %s\n", Z3_pattern_to_string(ctx, p)); printf("\n"); /* create & assert quantifier */ q = Z3_mk_forall(ctx, 0, /* using default weight */ 1, /* number of patterns */ &p, /* address of the "array" of patterns */ sz, /* number of quantified variables */ types, names, eq); printf("assert axiom:\n%s\n", Z3_ast_to_string(ctx, q)); Z3_solver_assert(ctx, s, q); /* free temporary arrays */ free(types); free(names); free(xs); } /** \brief Assert the axiom: function f is commutative. This example uses the SMT-LIB parser to simplify the axiom construction. */ void assert_comm_axiom(Z3_context ctx, Z3_solver s, Z3_func_decl f) { Z3_sort t; Z3_symbol f_name, t_name; Z3_ast_vector q; unsigned i; t = Z3_get_range(ctx, f); if (Z3_get_domain_size(ctx, f) != 2 || Z3_get_domain(ctx, f, 0) != t || Z3_get_domain(ctx, f, 1) != t) { exitf("function must be binary, and argument types must be equal to return type"); } /* Inside the parser, function f will be referenced using the symbol 'f'. */ f_name = Z3_mk_string_symbol(ctx, "f"); /* Inside the parser, type t will be referenced using the symbol 'T'. */ t_name = Z3_mk_string_symbol(ctx, "T"); q = Z3_parse_smtlib2_string(ctx, "(assert (forall ((x T) (y T)) (= (f x y) (f y x))))", 1, &t_name, &t, 1, &f_name, &f); printf("assert axiom:\n%s\n", Z3_ast_vector_to_string(ctx, q)); for (i = 0; i < Z3_ast_vector_size(ctx, q); ++i) { Z3_solver_assert(ctx, s, Z3_ast_vector_get(ctx, q, i)); } } /** \brief Z3 does not support explicitly tuple updates. They can be easily implemented as macros. The argument \c t must have tuple type. A tuple update is a new tuple where field \c i has value \c new_val, and all other fields have the value of the respective field of \c t. update(t, i, new_val) is equivalent to mk_tuple(proj_0(t), ..., new_val, ..., proj_n(t)) */ Z3_ast mk_tuple_update(Z3_context c, Z3_ast t, unsigned i, Z3_ast new_val) { Z3_sort ty; Z3_func_decl mk_tuple_decl; unsigned num_fields, j; Z3_ast * new_fields; Z3_ast result; ty = Z3_get_sort(c, t); if (Z3_get_sort_kind(c, ty) != Z3_DATATYPE_SORT) { exitf("argument must be a tuple"); } num_fields = Z3_get_tuple_sort_num_fields(c, ty); if (i >= num_fields) { exitf("invalid tuple update, index is too big"); } new_fields = (Z3_ast*) malloc(sizeof(Z3_ast) * num_fields); for (j = 0; j < num_fields; j++) { if (i == j) { /* use new_val at position i */ new_fields[j] = new_val; } else { /* use field j of t */ Z3_func_decl proj_decl = Z3_get_tuple_sort_field_decl(c, ty, j); new_fields[j] = mk_unary_app(c, proj_decl, t); } } mk_tuple_decl = Z3_get_tuple_sort_mk_decl(c, ty); result = Z3_mk_app(c, mk_tuple_decl, num_fields, new_fields); free(new_fields); return result; } /** \brief Display a symbol in the given output stream. */ void display_symbol(Z3_context c, FILE * out, Z3_symbol s) { switch (Z3_get_symbol_kind(c, s)) { case Z3_INT_SYMBOL: fprintf(out, "#%d", Z3_get_symbol_int(c, s)); break; case Z3_STRING_SYMBOL: fprintf(out, "%s", Z3_get_symbol_string(c, s)); break; default: unreachable(); } } /** \brief Display the given type. */ void display_sort(Z3_context c, FILE * out, Z3_sort ty) { switch (Z3_get_sort_kind(c, ty)) { case Z3_UNINTERPRETED_SORT: display_symbol(c, out, Z3_get_sort_name(c, ty)); break; case Z3_BOOL_SORT: fprintf(out, "bool"); break; case Z3_INT_SORT: fprintf(out, "int"); break; case Z3_REAL_SORT: fprintf(out, "real"); break; case Z3_BV_SORT: fprintf(out, "bv%d", Z3_get_bv_sort_size(c, ty)); break; case Z3_ARRAY_SORT: fprintf(out, "["); display_sort(c, out, Z3_get_array_sort_domain(c, ty)); fprintf(out, "->"); display_sort(c, out, Z3_get_array_sort_range(c, ty)); fprintf(out, "]"); break; case Z3_DATATYPE_SORT: if (Z3_get_datatype_sort_num_constructors(c, ty) != 1) { fprintf(out, "%s", Z3_sort_to_string(c,ty)); break; } { unsigned num_fields = Z3_get_tuple_sort_num_fields(c, ty); unsigned i; fprintf(out, "("); for (i = 0; i < num_fields; i++) { Z3_func_decl field = Z3_get_tuple_sort_field_decl(c, ty, i); if (i > 0) { fprintf(out, ", "); } display_sort(c, out, Z3_get_range(c, field)); } fprintf(out, ")"); break; } default: fprintf(out, "unknown["); display_symbol(c, out, Z3_get_sort_name(c, ty)); fprintf(out, "]"); break; } } /** \brief Custom ast pretty printer. This function demonstrates how to use the API to navigate terms. */ void display_ast(Z3_context c, FILE * out, Z3_ast v) { switch (Z3_get_ast_kind(c, v)) { case Z3_NUMERAL_AST: { Z3_sort t; fprintf(out, "%s", Z3_get_numeral_string(c, v)); t = Z3_get_sort(c, v); fprintf(out, ":"); display_sort(c, out, t); break; } case Z3_APP_AST: { unsigned i; Z3_app app = Z3_to_app(c, v); unsigned num_fields = Z3_get_app_num_args(c, app); Z3_func_decl d = Z3_get_app_decl(c, app); fprintf(out, "%s", Z3_func_decl_to_string(c, d)); if (num_fields > 0) { fprintf(out, "["); for (i = 0; i < num_fields; i++) { if (i > 0) { fprintf(out, ", "); } display_ast(c, out, Z3_get_app_arg(c, app, i)); } fprintf(out, "]"); } break; } case Z3_QUANTIFIER_AST: { fprintf(out, "quantifier"); } default: fprintf(out, "#unknown"); } } /** \brief Custom function interpretations pretty printer. */ void display_function_interpretations(Z3_context c, FILE * out, Z3_model m) { unsigned num_functions, i; fprintf(out, "function interpretations:\n"); num_functions = Z3_model_get_num_funcs(c, m); for (i = 0; i < num_functions; i++) { Z3_func_decl fdecl; Z3_symbol name; Z3_ast func_else; unsigned num_entries = 0, j; Z3_func_interp_opt finterp; fdecl = Z3_model_get_func_decl(c, m, i); finterp = Z3_model_get_func_interp(c, m, fdecl); Z3_func_interp_inc_ref(c, finterp); name = Z3_get_decl_name(c, fdecl); display_symbol(c, out, name); fprintf(out, " = {"); if (finterp) num_entries = Z3_func_interp_get_num_entries(c, finterp); for (j = 0; j < num_entries; j++) { unsigned num_args, k; Z3_func_entry fentry = Z3_func_interp_get_entry(c, finterp, j); Z3_func_entry_inc_ref(c, fentry); if (j > 0) { fprintf(out, ", "); } num_args = Z3_func_entry_get_num_args(c, fentry); fprintf(out, "("); for (k = 0; k < num_args; k++) { if (k > 0) { fprintf(out, ", "); } display_ast(c, out, Z3_func_entry_get_arg(c, fentry, k)); } fprintf(out, "|->"); display_ast(c, out, Z3_func_entry_get_value(c, fentry)); fprintf(out, ")"); Z3_func_entry_dec_ref(c, fentry); } if (num_entries > 0) { fprintf(out, ", "); } fprintf(out, "(else|->"); func_else = Z3_func_interp_get_else(c, finterp); display_ast(c, out, func_else); fprintf(out, ")}\n"); Z3_func_interp_dec_ref(c, finterp); } } /** \brief Custom model pretty printer. */ void display_model(Z3_context c, FILE * out, Z3_model m) { unsigned num_constants; unsigned i; if (!m) return; num_constants = Z3_model_get_num_consts(c, m); for (i = 0; i < num_constants; i++) { Z3_symbol name; Z3_func_decl cnst = Z3_model_get_const_decl(c, m, i); Z3_ast a, v; bool ok; name = Z3_get_decl_name(c, cnst); display_symbol(c, out, name); fprintf(out, " = "); a = Z3_mk_app(c, cnst, 0, 0); v = a; ok = Z3_model_eval(c, m, a, 1, &v); (void)ok; display_ast(c, out, v); fprintf(out, "\n"); } display_function_interpretations(c, out, m); } /** \brief Similar to #check, but uses #display_model instead of #Z3_model_to_string. */ void check2(Z3_context ctx, Z3_solver s, Z3_lbool expected_result) { Z3_model m = 0; Z3_lbool result = Z3_solver_check(ctx, s); switch (result) { case Z3_L_FALSE: printf("unsat\n"); break; case Z3_L_UNDEF: printf("unknown\n"); printf("potential model:\n"); m = Z3_solver_get_model(ctx, s); if (m) Z3_model_inc_ref(ctx, m); display_model(ctx, stdout, m); break; case Z3_L_TRUE: printf("sat\n"); m = Z3_solver_get_model(ctx, s); if (m) Z3_model_inc_ref(ctx, m); display_model(ctx, stdout, m); break; } if (result != expected_result) { exitf("unexpected result"); } if (m) Z3_model_dec_ref(ctx, m); } /** \brief Display Z3 version in the standard output. */ void display_version() { unsigned major, minor, build, revision; Z3_get_version(&major, &minor, &build, &revision); printf("Z3 %d.%d.%d.%d\n", major, minor, build, revision); } /**@}*/ /** @name Examples */ /**@{*/ /** \brief "Hello world" example: create a Z3 logical context, and delete it. */ void simple_example() { Z3_context ctx; LOG_MSG("simple_example"); printf("\nsimple_example\n"); ctx = mk_context(); /* delete logical context */ Z3_del_context(ctx); } /** Demonstration of how Z3 can be used to prove validity of De Morgan's Duality Law: {e not(x and y) <-> (not x) or ( not y) } */ void demorgan() { Z3_config cfg; Z3_context ctx; Z3_solver s; Z3_sort bool_sort; Z3_symbol symbol_x, symbol_y; Z3_ast x, y, not_x, not_y, x_and_y, ls, rs, conjecture, negated_conjecture; Z3_ast args[2]; printf("\nDeMorgan\n"); LOG_MSG("DeMorgan"); cfg = Z3_mk_config(); ctx = Z3_mk_context(cfg); Z3_del_config(cfg); bool_sort = Z3_mk_bool_sort(ctx); symbol_x = Z3_mk_int_symbol(ctx, 0); symbol_y = Z3_mk_int_symbol(ctx, 1); x = Z3_mk_const(ctx, symbol_x, bool_sort); y = Z3_mk_const(ctx, symbol_y, bool_sort); /* De Morgan - with a negation around */ /* !(!(x && y) <-> (!x || !y)) */ not_x = Z3_mk_not(ctx, x); not_y = Z3_mk_not(ctx, y); args[0] = x; args[1] = y; x_and_y = Z3_mk_and(ctx, 2, args); ls = Z3_mk_not(ctx, x_and_y); args[0] = not_x; args[1] = not_y; rs = Z3_mk_or(ctx, 2, args); conjecture = Z3_mk_iff(ctx, ls, rs); negated_conjecture = Z3_mk_not(ctx, conjecture); s = mk_solver(ctx); Z3_solver_assert(ctx, s, negated_conjecture); switch (Z3_solver_check(ctx, s)) { case Z3_L_FALSE: /* The negated conjecture was unsatisfiable, hence the conjecture is valid */ printf("DeMorgan is valid\n"); break; case Z3_L_UNDEF: /* Check returned undef */ printf("Undef\n"); break; case Z3_L_TRUE: /* The negated conjecture was satisfiable, hence the conjecture is not valid */ printf("DeMorgan is not valid\n"); break; } del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Find a model for x xor y. */ void find_model_example1() { Z3_context ctx; Z3_ast x, y, x_xor_y; Z3_solver s; printf("\nfind_model_example1\n"); LOG_MSG("find_model_example1"); ctx = mk_context(); s = mk_solver(ctx); x = mk_bool_var(ctx, "x"); y = mk_bool_var(ctx, "y"); x_xor_y = Z3_mk_xor(ctx, x, y); Z3_solver_assert(ctx, s, x_xor_y); printf("model for: x xor y\n"); check(ctx, s, Z3_L_TRUE); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Find a model for x < y + 1, x > 2. Then, assert not(x = y), and find another model. */ void find_model_example2() { Z3_context ctx; Z3_ast x, y, one, two, y_plus_one; Z3_ast x_eq_y; Z3_ast args[2]; Z3_ast c1, c2, c3; Z3_solver s; printf("\nfind_model_example2\n"); LOG_MSG("find_model_example2"); ctx = mk_context(); s = mk_solver(ctx); x = mk_int_var(ctx, "x"); y = mk_int_var(ctx, "y"); one = mk_int(ctx, 1); two = mk_int(ctx, 2); args[0] = y; args[1] = one; y_plus_one = Z3_mk_add(ctx, 2, args); c1 = Z3_mk_lt(ctx, x, y_plus_one); c2 = Z3_mk_gt(ctx, x, two); Z3_solver_assert(ctx, s, c1); Z3_solver_assert(ctx, s, c2); printf("model for: x < y + 1, x > 2\n"); check(ctx, s, Z3_L_TRUE); /* assert not(x = y) */ x_eq_y = Z3_mk_eq(ctx, x, y); c3 = Z3_mk_not(ctx, x_eq_y); Z3_solver_assert(ctx, s,c3); printf("model for: x < y + 1, x > 2, not(x = y)\n"); check(ctx, s, Z3_L_TRUE); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Prove x = y implies g(x) = g(y), and disprove x = y implies g(g(x)) = g(y). This function demonstrates how to create uninterpreted types and functions. */ void prove_example1() { Z3_context ctx; Z3_solver s; Z3_symbol U_name, g_name, x_name, y_name; Z3_sort U; Z3_sort g_domain[1]; Z3_func_decl g; Z3_ast x, y, gx, ggx, gy; Z3_ast eq, f; printf("\nprove_example1\n"); LOG_MSG("prove_example1"); ctx = mk_context(); s = mk_solver(ctx); /* create uninterpreted type. */ U_name = Z3_mk_string_symbol(ctx, "U"); U = Z3_mk_uninterpreted_sort(ctx, U_name); /* declare function g */ g_name = Z3_mk_string_symbol(ctx, "g"); g_domain[0] = U; g = Z3_mk_func_decl(ctx, g_name, 1, g_domain, U); /* create x and y */ x_name = Z3_mk_string_symbol(ctx, "x"); y_name = Z3_mk_string_symbol(ctx, "y"); x = Z3_mk_const(ctx, x_name, U); y = Z3_mk_const(ctx, y_name, U); /* create g(x), g(y) */ gx = mk_unary_app(ctx, g, x); gy = mk_unary_app(ctx, g, y); /* assert x = y */ eq = Z3_mk_eq(ctx, x, y); Z3_solver_assert(ctx, s, eq); /* prove g(x) = g(y) */ f = Z3_mk_eq(ctx, gx, gy); printf("prove: x = y implies g(x) = g(y)\n"); prove(ctx, s, f, true); /* create g(g(x)) */ ggx = mk_unary_app(ctx, g, gx); /* disprove g(g(x)) = g(y) */ f = Z3_mk_eq(ctx, ggx, gy); printf("disprove: x = y implies g(g(x)) = g(y)\n"); prove(ctx, s, f, false); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Prove not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < 0 . Then, show that z < -1 is not implied. This example demonstrates how to combine uninterpreted functions and arithmetic. */ void prove_example2() { Z3_context ctx; Z3_solver s; Z3_sort int_sort; Z3_symbol g_name; Z3_sort g_domain[1]; Z3_func_decl g; Z3_ast x, y, z, zero, minus_one, x_plus_z, gx, gy, gz, gx_gy, ggx_gy; Z3_ast args[2]; Z3_ast eq, c1, c2, c3, f; printf("\nprove_example2\n"); LOG_MSG("prove_example2"); ctx = mk_context(); s = mk_solver(ctx); /* declare function g */ int_sort = Z3_mk_int_sort(ctx); g_name = Z3_mk_string_symbol(ctx, "g"); g_domain[0] = int_sort; g = Z3_mk_func_decl(ctx, g_name, 1, g_domain, int_sort); /* create x, y, and z */ x = mk_int_var(ctx, "x"); y = mk_int_var(ctx, "y"); z = mk_int_var(ctx, "z"); /* create gx, gy, gz */ gx = mk_unary_app(ctx, g, x); gy = mk_unary_app(ctx, g, y); gz = mk_unary_app(ctx, g, z); /* create zero */ zero = mk_int(ctx, 0); /* assert not(g(g(x) - g(y)) = g(z)) */ args[0] = gx; args[1] = gy; gx_gy = Z3_mk_sub(ctx, 2, args); ggx_gy = mk_unary_app(ctx, g, gx_gy); eq = Z3_mk_eq(ctx, ggx_gy, gz); c1 = Z3_mk_not(ctx, eq); Z3_solver_assert(ctx, s, c1); /* assert x + z <= y */ args[0] = x; args[1] = z; x_plus_z = Z3_mk_add(ctx, 2, args); c2 = Z3_mk_le(ctx, x_plus_z, y); Z3_solver_assert(ctx, s, c2); /* assert y <= x */ c3 = Z3_mk_le(ctx, y, x); Z3_solver_assert(ctx, s, c3); /* prove z < 0 */ f = Z3_mk_lt(ctx, z, zero); printf("prove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < 0\n"); prove(ctx, s, f, true); /* disprove z < -1 */ minus_one = mk_int(ctx, -1); f = Z3_mk_lt(ctx, z, minus_one); printf("disprove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < -1\n"); prove(ctx, s, f, false); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Show how push & pop can be used to create "backtracking" points. This example also demonstrates how big numbers can be created in Z3. */ void push_pop_example1() { Z3_context ctx; Z3_solver s; Z3_sort int_sort; Z3_symbol x_sym, y_sym; Z3_ast x, y, big_number, three; Z3_ast c1, c2, c3; printf("\npush_pop_example1\n"); LOG_MSG("push_pop_example1"); ctx = mk_context(); s = mk_solver(ctx); /* create a big number */ int_sort = Z3_mk_int_sort(ctx); big_number = Z3_mk_numeral(ctx, "1000000000000000000000000000000000000000000000000000000", int_sort); /* create number 3 */ three = Z3_mk_numeral(ctx, "3", int_sort); /* create x */ x_sym = Z3_mk_string_symbol(ctx, "x"); x = Z3_mk_const(ctx, x_sym, int_sort); /* assert x >= "big number" */ c1 = Z3_mk_ge(ctx, x, big_number); printf("assert: x >= 'big number'\n"); Z3_solver_assert(ctx, s, c1); /* create a backtracking point */ printf("push\n"); Z3_solver_push(ctx, s); printf("number of scopes: %d\n", Z3_solver_get_num_scopes(ctx, s)); /* assert x <= 3 */ c2 = Z3_mk_le(ctx, x, three); printf("assert: x <= 3\n"); Z3_solver_assert(ctx, s, c2); /* context is inconsistent at this point */ check2(ctx, s, Z3_L_FALSE); /* backtrack: the constraint x <= 3 will be removed, since it was asserted after the last Z3_solver_push. */ printf("pop\n"); Z3_solver_pop(ctx, s, 1); printf("number of scopes: %d\n", Z3_solver_get_num_scopes(ctx, s)); /* the context is consistent again. */ check2(ctx, s, Z3_L_TRUE); /* new constraints can be asserted... */ /* create y */ y_sym = Z3_mk_string_symbol(ctx, "y"); y = Z3_mk_const(ctx, y_sym, int_sort); /* assert y > x */ c3 = Z3_mk_gt(ctx, y, x); printf("assert: y > x\n"); Z3_solver_assert(ctx, s, c3); /* the context is still consistent. */ check2(ctx, s, Z3_L_TRUE); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Prove that f(x, y) = f(w, v) implies y = v when \c f is injective in the second argument. \sa assert_inj_axiom. */ void quantifier_example1() { Z3_config cfg; Z3_context ctx; Z3_solver s; Z3_sort int_sort; Z3_symbol f_name; Z3_sort f_domain[2]; Z3_func_decl f; Z3_ast x, y, w, v, fxy, fwv; Z3_ast p1, p2, p3, not_p3; printf("\nquantifier_example1\n"); LOG_MSG("quantifier_example1"); cfg = Z3_mk_config(); /* If quantified formulas are asserted in a logical context, then Z3 may return L_UNDEF. In this case, the model produced by Z3 should be viewed as a potential/candidate model. */ /* The current model finder for quantified formulas cannot handle injectivity. So, we are limiting the number of iterations to avoid a long "wait". */ Z3_global_param_set("smt.mbqi.max_iterations", "10"); ctx = mk_context_custom(cfg, error_handler); Z3_del_config(cfg); s = mk_solver(ctx); /* declare function f */ int_sort = Z3_mk_int_sort(ctx); f_name = Z3_mk_string_symbol(ctx, "f"); f_domain[0] = int_sort; f_domain[1] = int_sort; f = Z3_mk_func_decl(ctx, f_name, 2, f_domain, int_sort); /* assert that f is injective in the second argument. */ assert_inj_axiom(ctx, s, f, 1); /* create x, y, v, w, fxy, fwv */ x = mk_int_var(ctx, "x"); y = mk_int_var(ctx, "y"); v = mk_int_var(ctx, "v"); w = mk_int_var(ctx, "w"); fxy = mk_binary_app(ctx, f, x, y); fwv = mk_binary_app(ctx, f, w, v); /* assert f(x, y) = f(w, v) */ p1 = Z3_mk_eq(ctx, fxy, fwv); Z3_solver_assert(ctx, s, p1); /* prove f(x, y) = f(w, v) implies y = v */ p2 = Z3_mk_eq(ctx, y, v); printf("prove: f(x, y) = f(w, v) implies y = v\n"); prove(ctx, s, p2, true); /* disprove f(x, y) = f(w, v) implies x = w */ /* using check2 instead of prove */ p3 = Z3_mk_eq(ctx, x, w); not_p3 = Z3_mk_not(ctx, p3); Z3_solver_assert(ctx, s, not_p3); printf("disprove: f(x, y) = f(w, v) implies x = w\n"); printf("that is: not(f(x, y) = f(w, v) implies x = w) is satisfiable\n"); check2(ctx, s, Z3_L_UNDEF); printf("reason for last failure: %s\n", Z3_solver_get_reason_unknown(ctx, s)); del_solver(ctx, s); Z3_del_context(ctx); /* reset global parameters set by this function */ Z3_global_param_reset_all(); } /** \brief Prove store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3)). This example demonstrates how to use the array theory. */ void array_example1() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); Z3_sort int_sort, array_sort; Z3_ast a1, a2, i1, v1, i2, v2, i3; Z3_ast st1, st2, sel1, sel2; Z3_ast antecedent, consequent; Z3_ast ds[3]; Z3_ast thm; printf("\narray_example1\n"); LOG_MSG("array_example1"); int_sort = Z3_mk_int_sort(ctx); array_sort = Z3_mk_array_sort(ctx, int_sort, int_sort); a1 = mk_var(ctx, "a1", array_sort); a2 = mk_var(ctx, "a2", array_sort); i1 = mk_var(ctx, "i1", int_sort); i2 = mk_var(ctx, "i2", int_sort); i3 = mk_var(ctx, "i3", int_sort); v1 = mk_var(ctx, "v1", int_sort); v2 = mk_var(ctx, "v2", int_sort); st1 = Z3_mk_store(ctx, a1, i1, v1); st2 = Z3_mk_store(ctx, a2, i2, v2); sel1 = Z3_mk_select(ctx, a1, i3); sel2 = Z3_mk_select(ctx, a2, i3); /* create antecedent */ antecedent = Z3_mk_eq(ctx, st1, st2); /* create consequent: i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3) */ ds[0] = Z3_mk_eq(ctx, i1, i3); ds[1] = Z3_mk_eq(ctx, i2, i3); ds[2] = Z3_mk_eq(ctx, sel1, sel2); consequent = Z3_mk_or(ctx, 3, ds); /* prove store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3)) */ thm = Z3_mk_implies(ctx, antecedent, consequent); printf("prove: store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3))\n"); printf("%s\n", Z3_ast_to_string(ctx, thm)); prove(ctx, s, thm, true); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Show that distinct(a_0, ... , a_n) is unsatisfiable when \c a_i's are arrays from boolean to boolean and n > 4. This example also shows how to use the \c distinct construct. */ void array_example2() { Z3_context ctx; Z3_solver s; Z3_sort bool_sort, array_sort; Z3_ast a[5]; Z3_ast d; unsigned i, n; printf("\narray_example2\n"); LOG_MSG("array_example2"); for (n = 2; n <= 5; n++) { printf("n = %d\n", n); ctx = mk_context(); s = mk_solver(ctx); bool_sort = Z3_mk_bool_sort(ctx); array_sort = Z3_mk_array_sort(ctx, bool_sort, bool_sort); /* create arrays */ for (i = 0; i < n; i++) { Z3_symbol s = Z3_mk_int_symbol(ctx, i); a[i] = Z3_mk_const(ctx, s, array_sort); } /* assert distinct(a[0], ..., a[n]) */ d = Z3_mk_distinct(ctx, n, a); printf("%s\n", Z3_ast_to_string(ctx, d)); Z3_solver_assert(ctx, s, d); /* context is satisfiable if n < 5 */ check2(ctx, s, n < 5 ? Z3_L_TRUE : Z3_L_FALSE); del_solver(ctx, s); Z3_del_context(ctx); } } /** \brief Simple array type construction/deconstruction example. */ void array_example3() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); Z3_sort bool_sort, int_sort, array_sort; Z3_sort domain, range; printf("\narray_example3\n"); LOG_MSG("array_example3"); bool_sort = Z3_mk_bool_sort(ctx); int_sort = Z3_mk_int_sort(ctx); array_sort = Z3_mk_array_sort(ctx, int_sort, bool_sort); if (Z3_get_sort_kind(ctx, array_sort) != Z3_ARRAY_SORT) { exitf("type must be an array type"); } domain = Z3_get_array_sort_domain(ctx, array_sort); range = Z3_get_array_sort_range(ctx, array_sort); printf("domain: "); display_sort(ctx, stdout, domain); printf("\n"); printf("range: "); display_sort(ctx, stdout, range); printf("\n"); if (int_sort != domain || bool_sort != range) { exitf("invalid array type"); } del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Simple tuple type example. It creates a tuple that is a pair of real numbers. */ void tuple_example1() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); Z3_sort real_sort, pair_sort; Z3_symbol mk_tuple_name; Z3_func_decl mk_tuple_decl; Z3_symbol proj_names[2]; Z3_sort proj_sorts[2]; Z3_func_decl proj_decls[2]; Z3_func_decl get_x_decl, get_y_decl; printf("\ntuple_example1\n"); LOG_MSG("tuple_example1"); real_sort = Z3_mk_real_sort(ctx); /* Create pair (tuple) type */ mk_tuple_name = Z3_mk_string_symbol(ctx, "mk_pair"); proj_names[0] = Z3_mk_string_symbol(ctx, "get_x"); proj_names[1] = Z3_mk_string_symbol(ctx, "get_y"); proj_sorts[0] = real_sort; proj_sorts[1] = real_sort; /* Z3_mk_tuple_sort will set mk_tuple_decl and proj_decls */ pair_sort = Z3_mk_tuple_sort(ctx, mk_tuple_name, 2, proj_names, proj_sorts, &mk_tuple_decl, proj_decls); get_x_decl = proj_decls[0]; /* function that extracts the first element of a tuple. */ get_y_decl = proj_decls[1]; /* function that extracts the second element of a tuple. */ printf("tuple_sort: "); display_sort(ctx, stdout, pair_sort); printf("\n"); { /* prove that get_x(mk_pair(x,y)) == 1 implies x = 1*/ Z3_ast app1, app2, x, y, one; Z3_ast eq1, eq2, eq3, thm; x = mk_real_var(ctx, "x"); y = mk_real_var(ctx, "y"); app1 = mk_binary_app(ctx, mk_tuple_decl, x, y); app2 = mk_unary_app(ctx, get_x_decl, app1); one = Z3_mk_numeral(ctx, "1", real_sort); eq1 = Z3_mk_eq(ctx, app2, one); eq2 = Z3_mk_eq(ctx, x, one); thm = Z3_mk_implies(ctx, eq1, eq2); printf("prove: get_x(mk_pair(x, y)) = 1 implies x = 1\n"); prove(ctx, s, thm, true); /* disprove that get_x(mk_pair(x,y)) == 1 implies y = 1*/ eq3 = Z3_mk_eq(ctx, y, one); thm = Z3_mk_implies(ctx, eq1, eq3); printf("disprove: get_x(mk_pair(x, y)) = 1 implies y = 1\n"); prove(ctx, s, thm, false); } { /* prove that get_x(p1) = get_x(p2) and get_y(p1) = get_y(p2) implies p1 = p2 */ Z3_ast p1, p2, x1, x2, y1, y2; Z3_ast antecedents[2]; Z3_ast antecedent, consequent, thm; p1 = mk_var(ctx, "p1", pair_sort); p2 = mk_var(ctx, "p2", pair_sort); x1 = mk_unary_app(ctx, get_x_decl, p1); y1 = mk_unary_app(ctx, get_y_decl, p1); x2 = mk_unary_app(ctx, get_x_decl, p2); y2 = mk_unary_app(ctx, get_y_decl, p2); antecedents[0] = Z3_mk_eq(ctx, x1, x2); antecedents[1] = Z3_mk_eq(ctx, y1, y2); antecedent = Z3_mk_and(ctx, 2, antecedents); consequent = Z3_mk_eq(ctx, p1, p2); thm = Z3_mk_implies(ctx, antecedent, consequent); printf("prove: get_x(p1) = get_x(p2) and get_y(p1) = get_y(p2) implies p1 = p2\n"); prove(ctx, s, thm, true); /* disprove that get_x(p1) = get_x(p2) implies p1 = p2 */ thm = Z3_mk_implies(ctx, antecedents[0], consequent); printf("disprove: get_x(p1) = get_x(p2) implies p1 = p2\n"); prove(ctx, s, thm, false); } { /* demonstrate how to use the mk_tuple_update function */ /* prove that p2 = update(p1, 0, 10) implies get_x(p2) = 10 */ Z3_ast p1, p2, ten, updt, x, y; Z3_ast antecedent, consequent, thm; p1 = mk_var(ctx, "p1", pair_sort); p2 = mk_var(ctx, "p2", pair_sort); ten = Z3_mk_numeral(ctx, "10", real_sort); updt = mk_tuple_update(ctx, p1, 0, ten); antecedent = Z3_mk_eq(ctx, p2, updt); x = mk_unary_app(ctx, get_x_decl, p2); consequent = Z3_mk_eq(ctx, x, ten); thm = Z3_mk_implies(ctx, antecedent, consequent); printf("prove: p2 = update(p1, 0, 10) implies get_x(p2) = 10\n"); prove(ctx, s, thm, true); /* disprove that p2 = update(p1, 0, 10) implies get_y(p2) = 10 */ y = mk_unary_app(ctx, get_y_decl, p2); consequent = Z3_mk_eq(ctx, y, ten); thm = Z3_mk_implies(ctx, antecedent, consequent); printf("disprove: p2 = update(p1, 0, 10) implies get_y(p2) = 10\n"); prove(ctx, s, thm, false); } del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Simple bit-vector example. This example disproves that x - 10 <= 0 IFF x <= 10 for (32-bit) machine integers */ void bitvector_example1() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); Z3_sort bv_sort; Z3_ast x, zero, ten, x_minus_ten, c1, c2, thm; printf("\nbitvector_example1\n"); LOG_MSG("bitvector_example1"); bv_sort = Z3_mk_bv_sort(ctx, 32); x = mk_var(ctx, "x", bv_sort); zero = Z3_mk_numeral(ctx, "0", bv_sort); ten = Z3_mk_numeral(ctx, "10", bv_sort); x_minus_ten = Z3_mk_bvsub(ctx, x, ten); /* bvsle is signed less than or equal to */ c1 = Z3_mk_bvsle(ctx, x, ten); c2 = Z3_mk_bvsle(ctx, x_minus_ten, zero); thm = Z3_mk_iff(ctx, c1, c2); printf("disprove: x - 10 <= 0 IFF x <= 10 for (32-bit) machine integers\n"); prove(ctx, s, thm, false); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Find x and y such that: x ^ y - 103 == x * y */ void bitvector_example2() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); /* construct x ^ y - 103 == x * y */ Z3_sort bv_sort = Z3_mk_bv_sort(ctx, 32); Z3_ast x = mk_var(ctx, "x", bv_sort); Z3_ast y = mk_var(ctx, "y", bv_sort); Z3_ast x_xor_y = Z3_mk_bvxor(ctx, x, y); Z3_ast c103 = Z3_mk_numeral(ctx, "103", bv_sort); Z3_ast lhs = Z3_mk_bvsub(ctx, x_xor_y, c103); Z3_ast rhs = Z3_mk_bvmul(ctx, x, y); Z3_ast ctr = Z3_mk_eq(ctx, lhs, rhs); printf("\nbitvector_example2\n"); LOG_MSG("bitvector_example2"); printf("find values of x and y, such that x ^ y - 103 == x * y\n"); /* add the constraint x ^ y - 103 == x * y<\tt> to the logical context */ Z3_solver_assert(ctx, s, ctr); /* find a model (i.e., values for x an y that satisfy the constraint */ check(ctx, s, Z3_L_TRUE); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Demonstrate how to use #Z3_eval. */ void eval_example1() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); Z3_ast x, y, two; Z3_ast c1, c2; Z3_model m = 0; printf("\neval_example1\n"); LOG_MSG("eval_example1"); x = mk_int_var(ctx, "x"); y = mk_int_var(ctx, "y"); two = mk_int(ctx, 2); /* assert x < y */ c1 = Z3_mk_lt(ctx, x, y); Z3_solver_assert(ctx, s, c1); /* assert x > 2 */ c2 = Z3_mk_gt(ctx, x, two); Z3_solver_assert(ctx, s, c2); /* find model for the constraints above */ if (Z3_solver_check(ctx, s) == Z3_L_TRUE) { Z3_ast x_plus_y; Z3_ast args[2] = {x, y}; Z3_ast v; m = Z3_solver_get_model(ctx, s); if (m) Z3_model_inc_ref(ctx, m); printf("MODEL:\n%s", Z3_model_to_string(ctx, m)); x_plus_y = Z3_mk_add(ctx, 2, args); printf("\nevaluating x+y\n"); if (Z3_model_eval(ctx, m, x_plus_y, 1, &v)) { printf("result = "); display_ast(ctx, stdout, v); printf("\n"); } else { exitf("failed to evaluate: x+y"); } } else { exitf("the constraints are satisfiable"); } if (m) Z3_model_dec_ref(ctx, m); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Several logical context can be used simultaneously. */ void two_contexts_example1() { Z3_context ctx1, ctx2; Z3_ast x1, x2; printf("\ntwo_contexts_example1\n"); LOG_MSG("two_contexts_example1"); /* using the same (default) configuration to initialized both logical contexts. */ ctx1 = mk_context(); ctx2 = mk_context(); x1 = Z3_mk_const(ctx1, Z3_mk_int_symbol(ctx1,0), Z3_mk_bool_sort(ctx1)); x2 = Z3_mk_const(ctx2, Z3_mk_int_symbol(ctx2,0), Z3_mk_bool_sort(ctx2)); (void)x1; Z3_del_context(ctx1); /* ctx2 can still be used. */ printf("%s\n", Z3_ast_to_string(ctx2, x2)); Z3_del_context(ctx2); } /** \brief Demonstrates how error codes can be read instead of registering an error handler. */ void error_code_example1() { Z3_config cfg; Z3_context ctx; Z3_solver s; Z3_ast x; Z3_model m; Z3_ast v; const char * str; printf("\nerror_code_example1\n"); LOG_MSG("error_code_example11"); /* Do not register an error handler, as we want to use Z3_get_error_code manually */ cfg = Z3_mk_config(); ctx = mk_context_custom(cfg, NULL); Z3_del_config(cfg); s = mk_solver(ctx); x = mk_bool_var(ctx, "x"); Z3_solver_assert(ctx, s, x); if (Z3_solver_check(ctx, s) != Z3_L_TRUE) { exitf("unexpected result"); } m = Z3_solver_get_model(ctx, s); if (m) Z3_model_inc_ref(ctx, m); if (!Z3_model_eval(ctx, m, x, 1, &v)) { exitf("did not obtain value for declaration.\n"); } if (Z3_get_error_code(ctx) == Z3_OK) { printf("last call succeeded.\n"); } /* The following call will fail since the value of x is a boolean */ str = Z3_get_numeral_string(ctx, v); (void)str; if (Z3_get_error_code(ctx) != Z3_OK) { printf("last call failed.\n"); } if (m) Z3_model_dec_ref(ctx, m); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Demonstrates how error handlers can be used. */ void error_code_example2() { Z3_config cfg; Z3_context ctx = NULL; Z3_error_code e; printf("\nerror_code_example2\n"); LOG_MSG("error_code_example2"); if (1) { Z3_ast x, y, app; cfg = Z3_mk_config(); ctx = mk_context_custom(cfg, nothrow_z3_error); Z3_del_config(cfg); x = mk_int_var(ctx, "x"); y = mk_bool_var(ctx, "y"); printf("before Z3_mk_iff\n"); /* the next call will produce an error */ app = Z3_mk_iff(ctx, x, y); (void)app; e = Z3_get_error_code(ctx); if (e != Z3_OK) goto err; unreachable(); Z3_del_context(ctx); } else { err: printf("Z3 error: %s.\n", Z3_get_error_msg(ctx, e)); if (ctx != NULL) { Z3_del_context(ctx); } } } /** \brief Demonstrates how to initialize the parser symbol table. */ void parser_example2() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); Z3_ast x, y; Z3_symbol names[2]; Z3_func_decl decls[2]; Z3_ast_vector f; unsigned i; printf("\nparser_example2\n"); LOG_MSG("parser_example2"); /* Z3_enable_arithmetic doesn't need to be invoked in this example because it will be implicitly invoked by mk_int_var. */ x = mk_int_var(ctx, "x"); decls[0] = Z3_get_app_decl(ctx, Z3_to_app(ctx, x)); y = mk_int_var(ctx, "y"); decls[1] = Z3_get_app_decl(ctx, Z3_to_app(ctx, y)); names[0] = Z3_mk_string_symbol(ctx, "a"); names[1] = Z3_mk_string_symbol(ctx, "b"); f = Z3_parse_smtlib2_string(ctx, "(assert (> a b))", 0, 0, 0, /* 'x' and 'y' declarations are inserted as 'a' and 'b' into the parser symbol table. */ 2, names, decls); printf("formula: %s\n", Z3_ast_vector_to_string(ctx, f)); printf("assert axiom:\n%s\n", Z3_ast_vector_to_string(ctx, f)); for (i = 0; i < Z3_ast_vector_size(ctx, f); ++i) { Z3_solver_assert(ctx, s, Z3_ast_vector_get(ctx, f, i)); } check(ctx, s, Z3_L_TRUE); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Demonstrates how to initialize the parser symbol table. */ void parser_example3() { Z3_config cfg; Z3_context ctx; Z3_solver s; Z3_sort int_sort; Z3_symbol g_name; Z3_sort g_domain[2]; Z3_func_decl g; Z3_ast_vector thm; printf("\nparser_example3\n"); LOG_MSG("parser_example3"); cfg = Z3_mk_config(); /* See quantifier_example1 */ Z3_set_param_value(cfg, "model", "true"); ctx = mk_context_custom(cfg, error_handler); Z3_del_config(cfg); s = mk_solver(ctx); /* declare function g */ int_sort = Z3_mk_int_sort(ctx); g_name = Z3_mk_string_symbol(ctx, "g"); g_domain[0] = int_sort; g_domain[1] = int_sort; g = Z3_mk_func_decl(ctx, g_name, 2, g_domain, int_sort); assert_comm_axiom(ctx, s, g); thm = Z3_parse_smtlib2_string(ctx, "(assert (forall ((x Int) (y Int)) (=> (= x y) (= (g x 0) (g 0 y)))))", 0, 0, 0, 1, &g_name, &g); printf("formula: %s\n", Z3_ast_vector_to_string(ctx, thm)); prove(ctx, s, Z3_ast_vector_get(ctx, thm, 0), true); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Demonstrates how to handle parser errors using Z3 error handling support. */ void parser_example5() { Z3_config cfg; Z3_context ctx = NULL; Z3_solver s = NULL; Z3_error_code e; printf("\nparser_example5\n"); LOG_MSG("parser_example5"); if (1) { cfg = Z3_mk_config(); ctx = mk_context_custom(cfg, nothrow_z3_error); s = mk_solver(ctx); Z3_del_config(cfg); Z3_parse_smtlib2_string(ctx, /* the following string has a parsing error: missing parenthesis */ "(declare-const x Int) declare-const y Int) (assert (and (> x y) (> x 0)))", 0, 0, 0, 0, 0, 0); e = Z3_get_error_code(ctx); if (e != Z3_OK) goto err; unreachable(); del_solver(ctx, s); Z3_del_context(ctx); } else { err: printf("Z3 error: %s.\n", Z3_get_error_msg(ctx, e)); if (ctx != NULL) { del_solver(ctx, s); Z3_del_context(ctx); } } } /** \brief Demonstrate different ways of creating rational numbers: decimal and fractional representations. */ void numeral_example() { Z3_context ctx; Z3_solver s; Z3_ast n1, n2; Z3_sort real_ty; printf("\nnumeral_example\n"); LOG_MSG("numeral_example"); ctx = mk_context(); s = mk_solver(ctx); real_ty = Z3_mk_real_sort(ctx); n1 = Z3_mk_numeral(ctx, "1/2", real_ty); n2 = Z3_mk_numeral(ctx, "0.5", real_ty); printf("Numerals n1:%s", Z3_ast_to_string(ctx, n1)); printf(" n2:%s\n", Z3_ast_to_string(ctx, n2)); prove(ctx, s, Z3_mk_eq(ctx, n1, n2), true); n1 = Z3_mk_numeral(ctx, "-1/3", real_ty); n2 = Z3_mk_numeral(ctx, "-0.33333333333333333333333333333333333333333333333333", real_ty); printf("Numerals n1:%s", Z3_ast_to_string(ctx, n1)); printf(" n2:%s\n", Z3_ast_to_string(ctx, n2)); prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, n1, n2)), true); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Test ite-term (if-then-else terms). */ void ite_example() { Z3_context ctx; Z3_ast f, one, zero, ite; printf("\nite_example\n"); LOG_MSG("ite_example"); ctx = mk_context(); f = Z3_mk_false(ctx); one = mk_int(ctx, 1); zero = mk_int(ctx, 0); ite = Z3_mk_ite(ctx, f, one, zero); printf("term: %s\n", Z3_ast_to_string(ctx, ite)); /* delete logical context */ Z3_del_context(ctx); } /** \brief Create an enumeration data type. */ void enum_example() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); Z3_sort fruit; Z3_symbol name = Z3_mk_string_symbol(ctx, "fruit"); Z3_symbol enum_names[3]; Z3_func_decl enum_consts[3]; Z3_func_decl enum_testers[3]; Z3_ast apple, orange, banana, fruity; Z3_ast ors[3]; printf("\nenum_example\n"); LOG_MSG("enum_example"); enum_names[0] = Z3_mk_string_symbol(ctx,"apple"); enum_names[1] = Z3_mk_string_symbol(ctx,"banana"); enum_names[2] = Z3_mk_string_symbol(ctx,"orange"); fruit = Z3_mk_enumeration_sort(ctx, name, 3, enum_names, enum_consts, enum_testers); printf("%s\n", Z3_func_decl_to_string(ctx, enum_consts[0])); printf("%s\n", Z3_func_decl_to_string(ctx, enum_consts[1])); printf("%s\n", Z3_func_decl_to_string(ctx, enum_consts[2])); printf("%s\n", Z3_func_decl_to_string(ctx, enum_testers[0])); printf("%s\n", Z3_func_decl_to_string(ctx, enum_testers[1])); printf("%s\n", Z3_func_decl_to_string(ctx, enum_testers[2])); apple = Z3_mk_app(ctx, enum_consts[0], 0, 0); banana = Z3_mk_app(ctx, enum_consts[1], 0, 0); orange = Z3_mk_app(ctx, enum_consts[2], 0, 0); /* Apples are different from oranges */ prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, apple, orange)), true); /* Apples pass the apple test */ prove(ctx, s, Z3_mk_app(ctx, enum_testers[0], 1, &apple), true); /* Oranges fail the apple test */ prove(ctx, s, Z3_mk_app(ctx, enum_testers[0], 1, &orange), false); prove(ctx, s, Z3_mk_not(ctx, Z3_mk_app(ctx, enum_testers[0], 1, &orange)), true); fruity = mk_var(ctx, "fruity", fruit); /* If something is fruity, then it is an apple, banana, or orange */ ors[0] = Z3_mk_eq(ctx, fruity, apple); ors[1] = Z3_mk_eq(ctx, fruity, banana); ors[2] = Z3_mk_eq(ctx, fruity, orange); prove(ctx, s, Z3_mk_or(ctx, 3, ors), true); /* delete logical context */ del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Create a list datatype. */ void list_example() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); Z3_sort int_ty, int_list; Z3_func_decl nil_decl, is_nil_decl, cons_decl, is_cons_decl, head_decl, tail_decl; Z3_ast nil, l1, l2, x, y, u, v, fml, fml1; Z3_ast ors[2]; printf("\nlist_example\n"); LOG_MSG("list_example"); int_ty = Z3_mk_int_sort(ctx); int_list = Z3_mk_list_sort(ctx, Z3_mk_string_symbol(ctx, "int_list"), int_ty, &nil_decl, &is_nil_decl, &cons_decl, &is_cons_decl, &head_decl, &tail_decl); nil = Z3_mk_app(ctx, nil_decl, 0, 0); l1 = mk_binary_app(ctx, cons_decl, mk_int(ctx, 1), nil); l2 = mk_binary_app(ctx, cons_decl, mk_int(ctx, 2), nil); /* nil != cons(1, nil) */ prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, nil, l1)), true); /* cons(2,nil) != cons(1, nil) */ prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, l1, l2)), true); /* cons(x,nil) = cons(y, nil) => x = y */ x = mk_var(ctx, "x", int_ty); y = mk_var(ctx, "y", int_ty); l1 = mk_binary_app(ctx, cons_decl, x, nil); l2 = mk_binary_app(ctx, cons_decl, y, nil); prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, x, y)), true); /* cons(x,u) = cons(x, v) => u = v */ u = mk_var(ctx, "u", int_list); v = mk_var(ctx, "v", int_list); l1 = mk_binary_app(ctx, cons_decl, x, u); l2 = mk_binary_app(ctx, cons_decl, y, v); prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, u, v)), true); prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, x, y)), true); /* is_nil(u) or is_cons(u) */ ors[0] = Z3_mk_app(ctx, is_nil_decl, 1, &u); ors[1] = Z3_mk_app(ctx, is_cons_decl, 1, &u); prove(ctx, s, Z3_mk_or(ctx, 2, ors), true); /* occurs check u != cons(x,u) */ prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, u, l1)), true); /* destructors: is_cons(u) => u = cons(head(u),tail(u)) */ fml1 = Z3_mk_eq(ctx, u, mk_binary_app(ctx, cons_decl, mk_unary_app(ctx, head_decl, u), mk_unary_app(ctx, tail_decl, u))); fml = Z3_mk_implies(ctx, Z3_mk_app(ctx, is_cons_decl, 1, &u), fml1); printf("Formula %s\n", Z3_ast_to_string(ctx, fml)); prove(ctx, s, fml, true); prove(ctx, s, fml1, false); /* delete logical context */ del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Create a binary tree datatype. */ void tree_example() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); Z3_sort cell; Z3_func_decl nil_decl, is_nil_decl, cons_decl, is_cons_decl, car_decl, cdr_decl; Z3_ast nil, l1, l2, x, y, u, v, fml, fml1; Z3_symbol head_tail[2] = { Z3_mk_string_symbol(ctx, "car"), Z3_mk_string_symbol(ctx, "cdr") }; Z3_sort sorts[2] = { 0, 0 }; unsigned sort_refs[2] = { 0, 0 }; Z3_constructor nil_con, cons_con; Z3_constructor constructors[2]; Z3_func_decl cons_accessors[2]; Z3_ast ors[2]; printf("\ntree_example\n"); LOG_MSG("tree_example"); nil_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "nil"), Z3_mk_string_symbol(ctx, "is_nil"), 0, 0, 0, 0); cons_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "cons"), Z3_mk_string_symbol(ctx, "is_cons"), 2, head_tail, sorts, sort_refs); constructors[0] = nil_con; constructors[1] = cons_con; cell = Z3_mk_datatype(ctx, Z3_mk_string_symbol(ctx, "cell"), 2, constructors); Z3_query_constructor(ctx, nil_con, 0, &nil_decl, &is_nil_decl, 0); Z3_query_constructor(ctx, cons_con, 2, &cons_decl, &is_cons_decl, cons_accessors); car_decl = cons_accessors[0]; cdr_decl = cons_accessors[1]; Z3_del_constructor(ctx,nil_con); Z3_del_constructor(ctx,cons_con); nil = Z3_mk_app(ctx, nil_decl, 0, 0); l1 = mk_binary_app(ctx, cons_decl, nil, nil); l2 = mk_binary_app(ctx, cons_decl, l1, nil); /* nil != cons(nil, nil) */ prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, nil, l1)), true); /* cons(x,u) = cons(x, v) => u = v */ u = mk_var(ctx, "u", cell); v = mk_var(ctx, "v", cell); x = mk_var(ctx, "x", cell); y = mk_var(ctx, "y", cell); l1 = mk_binary_app(ctx, cons_decl, x, u); l2 = mk_binary_app(ctx, cons_decl, y, v); prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, u, v)), true); prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, x, y)), true); /* is_nil(u) or is_cons(u) */ ors[0] = Z3_mk_app(ctx, is_nil_decl, 1, &u); ors[1] = Z3_mk_app(ctx, is_cons_decl, 1, &u); prove(ctx, s, Z3_mk_or(ctx, 2, ors), true); /* occurs check u != cons(x,u) */ prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, u, l1)), true); /* destructors: is_cons(u) => u = cons(car(u),cdr(u)) */ fml1 = Z3_mk_eq(ctx, u, mk_binary_app(ctx, cons_decl, mk_unary_app(ctx, car_decl, u), mk_unary_app(ctx, cdr_decl, u))); fml = Z3_mk_implies(ctx, Z3_mk_app(ctx, is_cons_decl, 1, &u), fml1); printf("Formula %s\n", Z3_ast_to_string(ctx, fml)); prove(ctx, s, fml, true); prove(ctx, s, fml1, false); /* delete logical context */ del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Create a forest of trees. forest ::= nil | cons(tree, forest) tree ::= nil | cons(forest, forest) */ void forest_example() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); Z3_sort tree, forest; Z3_func_decl nil1_decl, is_nil1_decl, cons1_decl, is_cons1_decl, car1_decl, cdr1_decl; Z3_func_decl nil2_decl, is_nil2_decl, cons2_decl, is_cons2_decl, car2_decl, cdr2_decl; Z3_ast nil1, nil2, t1, t2, t3, t4, f1, f2, f3, l1, l2, x, y, u, v; Z3_symbol head_tail[2] = { Z3_mk_string_symbol(ctx, "car"), Z3_mk_string_symbol(ctx, "cdr") }; Z3_sort sorts[2] = { 0, 0 }; unsigned sort_refs[2] = { 0, 0 }; Z3_constructor nil1_con, cons1_con, nil2_con, cons2_con; Z3_constructor constructors1[2], constructors2[2]; Z3_func_decl cons_accessors[2]; Z3_ast ors[2]; Z3_constructor_list clist1, clist2; Z3_constructor_list clists[2]; Z3_symbol sort_names[2] = { Z3_mk_string_symbol(ctx, "forest"), Z3_mk_string_symbol(ctx, "tree") }; printf("\nforest_example\n"); LOG_MSG("forest_example"); /* build a forest */ nil1_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "nil1"), Z3_mk_string_symbol(ctx, "is_nil1"), 0, 0, 0, 0); sort_refs[0] = 1; /* the car of a forest is a tree */ sort_refs[1] = 0; cons1_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "cons1"), Z3_mk_string_symbol(ctx, "is_cons1"), 2, head_tail, sorts, sort_refs); constructors1[0] = nil1_con; constructors1[1] = cons1_con; /* build a tree */ nil2_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "nil2"), Z3_mk_string_symbol(ctx, "is_nil2"),0, 0, 0, 0); sort_refs[0] = 0; /* both branches of a tree are forests */ sort_refs[1] = 0; cons2_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "cons2"), Z3_mk_string_symbol(ctx, "is_cons2"),2, head_tail, sorts, sort_refs); constructors2[0] = nil2_con; constructors2[1] = cons2_con; clist1 = Z3_mk_constructor_list(ctx, 2, constructors1); clist2 = Z3_mk_constructor_list(ctx, 2, constructors2); clists[0] = clist1; clists[1] = clist2; Z3_mk_datatypes(ctx, 2, sort_names, sorts, clists); forest = sorts[0]; tree = sorts[1]; Z3_query_constructor(ctx, nil1_con, 0, &nil1_decl, &is_nil1_decl, 0); Z3_query_constructor(ctx, cons1_con, 2, &cons1_decl, &is_cons1_decl, cons_accessors); car1_decl = cons_accessors[0]; cdr1_decl = cons_accessors[1]; Z3_query_constructor(ctx, nil2_con, 0, &nil2_decl, &is_nil2_decl, 0); Z3_query_constructor(ctx, cons2_con, 2, &cons2_decl, &is_cons2_decl, cons_accessors); car2_decl = cons_accessors[0]; cdr2_decl = cons_accessors[1]; (void)cdr2_decl; (void)car2_decl; (void)car1_decl; (void)cdr1_decl; Z3_del_constructor_list(ctx, clist1); Z3_del_constructor_list(ctx, clist2); Z3_del_constructor(ctx,nil1_con); Z3_del_constructor(ctx,cons1_con); Z3_del_constructor(ctx,nil2_con); Z3_del_constructor(ctx,cons2_con); nil1 = Z3_mk_app(ctx, nil1_decl, 0, 0); nil2 = Z3_mk_app(ctx, nil2_decl, 0, 0); f1 = mk_binary_app(ctx, cons1_decl, nil2, nil1); t1 = mk_binary_app(ctx, cons2_decl, nil1, nil1); t2 = mk_binary_app(ctx, cons2_decl, f1, nil1); t3 = mk_binary_app(ctx, cons2_decl, f1, f1); t4 = mk_binary_app(ctx, cons2_decl, nil1, f1); f2 = mk_binary_app(ctx, cons1_decl, t1, nil1); f3 = mk_binary_app(ctx, cons1_decl, t1, f1); (void)f3; (void)f2; (void)t4; (void)t3; (void)t2; /* nil != cons(nil,nil) */ prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, nil1, f1)), true); prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, nil2, t1)), true); /* cons(x,u) = cons(x, v) => u = v */ u = mk_var(ctx, "u", forest); v = mk_var(ctx, "v", forest); x = mk_var(ctx, "x", tree); y = mk_var(ctx, "y", tree); l1 = mk_binary_app(ctx, cons1_decl, x, u); l2 = mk_binary_app(ctx, cons1_decl, y, v); prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, u, v)), true); prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, x, y)), true); /* is_nil(u) or is_cons(u) */ ors[0] = Z3_mk_app(ctx, is_nil1_decl, 1, &u); ors[1] = Z3_mk_app(ctx, is_cons1_decl, 1, &u); prove(ctx, s, Z3_mk_or(ctx, 2, ors), true); /* occurs check u != cons(x,u) */ prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, u, l1)), true); /* delete logical context */ del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Create a binary tree datatype of the form BinTree ::= nil | node(value : Int, left : BinTree, right : BinTree) */ void binary_tree_example() { Z3_context ctx = mk_context(); Z3_solver s = mk_solver(ctx); Z3_sort cell; Z3_func_decl nil_decl, /* nil : BinTree (constructor) */ is_nil_decl, /* is_nil : BinTree -> Bool (tester, return true if the given BinTree is a nil) */ node_decl, /* node : Int, BinTree, BinTree -> BinTree (constructor) */ is_node_decl, /* is_node : BinTree -> Bool (tester, return true if the given BinTree is a node) */ value_decl, /* value : BinTree -> Int (accessor for nodes) */ left_decl, /* left : BinTree -> BinTree (accessor for nodes, retrieves the left child of a node) */ right_decl; /* right : BinTree -> BinTree (accessor for nodes, retrieves the right child of a node) */ Z3_symbol node_accessor_names[3] = { Z3_mk_string_symbol(ctx, "value"), Z3_mk_string_symbol(ctx, "left"), Z3_mk_string_symbol(ctx, "right") }; Z3_sort node_accessor_sorts[3] = { Z3_mk_int_sort(ctx), 0, 0 }; unsigned node_accessor_sort_refs[3] = { 0, 0, 0 }; Z3_constructor nil_con, node_con; Z3_constructor constructors[2]; Z3_func_decl node_accessors[3]; printf("\nbinary_tree_example\n"); LOG_MSG("binary_tree_example"); /* nil_con and node_con are auxiliary datastructures used to create the new recursive datatype BinTree */ nil_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "nil"), Z3_mk_string_symbol(ctx, "is-nil"), 0, 0, 0, 0); node_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "node"), Z3_mk_string_symbol(ctx, "is-cons"), 3, node_accessor_names, node_accessor_sorts, node_accessor_sort_refs); constructors[0] = nil_con; constructors[1] = node_con; /* create the new recursive datatype */ cell = Z3_mk_datatype(ctx, Z3_mk_string_symbol(ctx, "BinTree"), 2, constructors); (void)cell; /* retrieve the new declarations: constructors (nil_decl, node_decl), testers (is_nil_decl, is_cons_del), and accessors (value_decl, left_decl, right_decl */ Z3_query_constructor(ctx, nil_con, 0, &nil_decl, &is_nil_decl, 0); Z3_query_constructor(ctx, node_con, 3, &node_decl, &is_node_decl, node_accessors); value_decl = node_accessors[0]; left_decl = node_accessors[1]; right_decl = node_accessors[2]; /* delete auxiliary/helper structures */ Z3_del_constructor(ctx, nil_con); Z3_del_constructor(ctx, node_con); /* small example using the recursive datatype BinTree */ { /* create nil */ Z3_ast nil = Z3_mk_app(ctx, nil_decl, 0, 0); /* create node1 ::= node(10, nil, nil) */ Z3_ast args1[3] = { mk_int(ctx, 10), nil, nil }; Z3_ast node1 = Z3_mk_app(ctx, node_decl, 3, args1); /* create node2 ::= node(30, node1, nil) */ Z3_ast args2[3] = { mk_int(ctx, 30), node1, nil }; Z3_ast node2 = Z3_mk_app(ctx, node_decl, 3, args2); /* create node3 ::= node(20, node2, node1); */ Z3_ast args3[3] = { mk_int(ctx, 20), node2, node1 }; Z3_ast node3 = Z3_mk_app(ctx, node_decl, 3, args3); /* prove that nil != node1 */ prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, nil, node1)), true); /* prove that nil = left(node1) */ prove(ctx, s, Z3_mk_eq(ctx, nil, mk_unary_app(ctx, left_decl, node1)), true); /* prove that node1 = right(node3) */ prove(ctx, s, Z3_mk_eq(ctx, node1, mk_unary_app(ctx, right_decl, node3)), true); /* prove that !is-nil(node2) */ prove(ctx, s, Z3_mk_not(ctx, mk_unary_app(ctx, is_nil_decl, node2)), true); /* prove that value(node2) >= 0 */ prove(ctx, s, Z3_mk_ge(ctx, mk_unary_app(ctx, value_decl, node2), mk_int(ctx, 0)), true); } /* delete logical context */ del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Prove a theorem and extract, and print the proof. This example illustrates the use of #Z3_check_assumptions. */ void unsat_core_and_proof_example() { Z3_context ctx = mk_proof_context(); Z3_solver s = mk_solver(ctx); Z3_ast pa = mk_bool_var(ctx, "PredA"); Z3_ast pb = mk_bool_var(ctx, "PredB"); Z3_ast pc = mk_bool_var(ctx, "PredC"); Z3_ast pd = mk_bool_var(ctx, "PredD"); Z3_ast p1 = mk_bool_var(ctx, "P1"); Z3_ast p2 = mk_bool_var(ctx, "P2"); Z3_ast p3 = mk_bool_var(ctx, "P3"); Z3_ast p4 = mk_bool_var(ctx, "P4"); Z3_ast assumptions[4] = { Z3_mk_not(ctx, p1), Z3_mk_not(ctx, p2), Z3_mk_not(ctx, p3), Z3_mk_not(ctx, p4) }; Z3_ast args1[3] = { pa, pb, pc }; Z3_ast f1 = Z3_mk_and(ctx, 3, args1); Z3_ast args2[3] = { pa, Z3_mk_not(ctx, pb), pc }; Z3_ast f2 = Z3_mk_and(ctx, 3, args2); Z3_ast args3[2] = { Z3_mk_not(ctx, pa), Z3_mk_not(ctx, pc) }; Z3_ast f3 = Z3_mk_or(ctx, 2, args3); Z3_ast f4 = pd; Z3_ast g1[2] = { f1, p1 }; Z3_ast g2[2] = { f2, p2 }; Z3_ast g3[2] = { f3, p3 }; Z3_ast g4[2] = { f4, p4 }; Z3_lbool result; Z3_ast proof; Z3_model m = 0; unsigned i; Z3_ast_vector core; printf("\nunsat_core_and_proof_example\n"); LOG_MSG("unsat_core_and_proof_example"); Z3_solver_assert(ctx, s, Z3_mk_or(ctx, 2, g1)); Z3_solver_assert(ctx, s, Z3_mk_or(ctx, 2, g2)); Z3_solver_assert(ctx, s, Z3_mk_or(ctx, 2, g3)); Z3_solver_assert(ctx, s, Z3_mk_or(ctx, 2, g4)); result = Z3_solver_check_assumptions(ctx, s, 4, assumptions); switch (result) { case Z3_L_FALSE: core = Z3_solver_get_unsat_core(ctx, s); proof = Z3_solver_get_proof(ctx, s); printf("unsat\n"); printf("proof: %s\n", Z3_ast_to_string(ctx, proof)); printf("\ncore:\n"); for (i = 0; i < Z3_ast_vector_size(ctx, core); ++i) { printf("%s\n", Z3_ast_to_string(ctx, Z3_ast_vector_get(ctx, core, i))); } printf("\n"); break; case Z3_L_UNDEF: printf("unknown\n"); printf("potential model:\n"); m = Z3_solver_get_model(ctx, s); if (m) Z3_model_inc_ref(ctx, m); display_model(ctx, stdout, m); break; case Z3_L_TRUE: printf("sat\n"); m = Z3_solver_get_model(ctx, s); if (m) Z3_model_inc_ref(ctx, m); display_model(ctx, stdout, m); break; } /* delete logical context */ if (m) Z3_model_dec_ref(ctx, m); del_solver(ctx, s); Z3_del_context(ctx); } #define MAX_RETRACTABLE_ASSERTIONS 1024 /** \brief Very simple logical context wrapper with support for retractable constraints. A retractable constraint can be "removed" without using push/pop. */ typedef struct { Z3_context m_context; Z3_solver m_solver; // IMPORTANT: the fields m_answer_literals, m_retracted and m_num_answer_literals must be saved/restored // if push/pop operations are performed on m_context. Z3_ast m_answer_literals[MAX_RETRACTABLE_ASSERTIONS]; bool m_retracted[MAX_RETRACTABLE_ASSERTIONS]; // true if the assertion was retracted. unsigned m_num_answer_literals; } Z3_ext_context_struct; typedef Z3_ext_context_struct * Z3_ext_context; /** \brief Create a logical context wrapper with support for retractable constraints. */ Z3_ext_context mk_ext_context() { Z3_ext_context ctx = (Z3_ext_context) malloc(sizeof(Z3_ext_context_struct)); ctx->m_context = mk_context(); ctx->m_solver = mk_solver(ctx->m_context); ctx->m_num_answer_literals = 0; return ctx; } /** \brief Delete the given logical context wrapper. */ void del_ext_context(Z3_ext_context ctx) { del_solver(ctx->m_context, ctx->m_solver); Z3_del_context(ctx->m_context); free(ctx); } /** \brief Create a retractable constraint. \return An id that can be used to retract/reassert the constraint. */ unsigned assert_retractable_cnstr(Z3_ext_context ctx, Z3_ast c) { unsigned result; Z3_sort ty; Z3_ast ans_lit; Z3_ast args[2]; if (ctx->m_num_answer_literals == MAX_RETRACTABLE_ASSERTIONS) { exitf("maximum number of retractable constraints was exceeded."); } ty = Z3_mk_bool_sort(ctx->m_context); ans_lit = Z3_mk_fresh_const(ctx->m_context, "k", ty); result = ctx->m_num_answer_literals; ctx->m_answer_literals[result] = ans_lit; ctx->m_retracted[result] = false; ctx->m_num_answer_literals++; // assert: c OR (not ans_lit) args[0] = c; args[1] = Z3_mk_not(ctx->m_context, ans_lit); Z3_solver_assert(ctx->m_context, ctx->m_solver, Z3_mk_or(ctx->m_context, 2, args)); return result; } /** \brief Retract an constraint asserted using #assert_retractable_cnstr. */ void retract_cnstr(Z3_ext_context ctx, unsigned id) { if (id >= ctx->m_num_answer_literals) { exitf("invalid constraint id."); } ctx->m_retracted[id] = true; } /** \brief Reassert a constraint retracted using #retract_cnstr. */ void reassert_cnstr(Z3_ext_context ctx, unsigned id) { if (id >= ctx->m_num_answer_literals) { exitf("invalid constraint id."); } ctx->m_retracted[id] = false; } /** \brief Check whether the logical context wrapper with support for retractable assertions is feasible or not. */ Z3_lbool ext_check(Z3_ext_context ctx) { Z3_lbool result; unsigned num_assumptions = 0; Z3_ast assumptions[MAX_RETRACTABLE_ASSERTIONS]; Z3_ast_vector core; unsigned core_size; unsigned i; for (i = 0; i < ctx->m_num_answer_literals; i++) { if (ctx->m_retracted[i] == false) { // Since the answer literal was not retracted, we added it as an assumption. // Recall that we assert (C \/ (not ans_lit)). Therefore, adding ans_lit as an assumption has the effect of "asserting" C. // If the constraint was "retracted" (ctx->m_retracted[i] == Z3_true), then we don't really need to add (not ans_lit) as an assumption. assumptions[num_assumptions] = ctx->m_answer_literals[i]; num_assumptions ++; } } result = Z3_solver_check_assumptions(ctx->m_context, ctx->m_solver, num_assumptions, assumptions); if (result == Z3_L_FALSE) { // Display the UNSAT core printf("unsat core: "); core = Z3_solver_get_unsat_core(ctx->m_context, ctx->m_solver); core_size = Z3_ast_vector_size(ctx->m_context, core); for (i = 0; i < core_size; i++) { // In this example, we display the core based on the assertion ids. unsigned j; for (j = 0; j < ctx->m_num_answer_literals; j++) { if (Z3_ast_vector_get(ctx->m_context, core, i) == ctx->m_answer_literals[j]) { printf("%d ", j); break; } } if (j == ctx->m_num_answer_literals) { exitf("bug in Z3, the core contains something that is not an assumption."); } } printf("\n"); } return result; } /** \brief Simple example using the functions: #mk_ext_context, #assert_retractable_cnstr, #retract_cnstr, #reassert_cnstr and #del_ext_context. */ void incremental_example1() { Z3_ext_context ext_ctx = mk_ext_context(); Z3_context ctx = ext_ctx->m_context; Z3_ast x, y, z, two, one; unsigned c1, c2, c3, c4; Z3_lbool result; printf("\nincremental_example1\n"); LOG_MSG("incremental_example1"); x = mk_int_var(ctx, "x"); y = mk_int_var(ctx, "y"); z = mk_int_var(ctx, "z"); two = mk_int(ctx, 2); one = mk_int(ctx, 1); /* assert x < y */ c1 = assert_retractable_cnstr(ext_ctx, Z3_mk_lt(ctx, x, y)); /* assert x = z */ c2 = assert_retractable_cnstr(ext_ctx, Z3_mk_eq(ctx, x, z)); /* assert x > 2 */ c3 = assert_retractable_cnstr(ext_ctx, Z3_mk_gt(ctx, x, two)); /* assert y < 1 */ c4 = assert_retractable_cnstr(ext_ctx, Z3_mk_lt(ctx, y, one)); (void)c1; result = ext_check(ext_ctx); if (result != Z3_L_FALSE) exitf("bug in Z3"); printf("unsat\n"); retract_cnstr(ext_ctx, c4); result = ext_check(ext_ctx); if (result != Z3_L_TRUE) exitf("bug in Z3"); printf("sat\n"); reassert_cnstr(ext_ctx, c4); result = ext_check(ext_ctx); if (result != Z3_L_FALSE) exitf("bug in Z3"); printf("unsat\n"); retract_cnstr(ext_ctx, c2); result = ext_check(ext_ctx); if (result != Z3_L_FALSE) exitf("bug in Z3"); printf("unsat\n"); retract_cnstr(ext_ctx, c3); result = ext_check(ext_ctx); if (result != Z3_L_TRUE) exitf("bug in Z3"); printf("sat\n"); del_ext_context(ext_ctx); } /** \brief Simple example showing how to use reference counters in Z3 to manage memory efficiently. */ void reference_counter_example() { Z3_config cfg; Z3_context ctx; Z3_solver s; Z3_sort ty; Z3_ast x, y, x_xor_y; Z3_symbol sx, sy; printf("\nreference_counter_example\n"); LOG_MSG("reference_counter_example"); cfg = Z3_mk_config(); Z3_set_param_value(cfg, "model", "true"); // Create a Z3 context where the user is responsible for managing // Z3_ast reference counters. ctx = Z3_mk_context_rc(cfg); Z3_del_config(cfg); s = mk_solver(ctx); Z3_solver_inc_ref(ctx, s); ty = Z3_mk_bool_sort(ctx); Z3_inc_ref(ctx, Z3_sort_to_ast(ctx, ty)); // Z3_sort_to_ast(ty) is just syntax sugar for ((Z3_ast) ty) sx = Z3_mk_string_symbol(ctx, "x"); // Z3_symbol is not a Z3_ast. No reference counting is needed. x = Z3_mk_const(ctx, sx, ty); Z3_inc_ref(ctx, x); sy = Z3_mk_string_symbol(ctx, "y"); y = Z3_mk_const(ctx, sy, ty); Z3_inc_ref(ctx, y); // ty is not needed anymore. Z3_dec_ref(ctx, Z3_sort_to_ast(ctx, ty)); x_xor_y = Z3_mk_xor(ctx, x, y); Z3_inc_ref(ctx, x_xor_y); // x and y are not needed anymore. Z3_dec_ref(ctx, x); Z3_dec_ref(ctx, y); Z3_solver_assert(ctx, s, x_xor_y); // x_or_y is not needed anymore. Z3_dec_ref(ctx, x_xor_y); printf("model for: x xor y\n"); check(ctx, s, Z3_L_TRUE); // Test push & pop Z3_solver_push(ctx, s); Z3_solver_pop(ctx, s, 1); Z3_solver_dec_ref(ctx, s); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Demonstrates how to use SMT2 parser. */ void smt2parser_example() { Z3_context ctx; Z3_ast_vector fs; printf("\nsmt2parser_example\n"); LOG_MSG("smt2parser_example"); ctx = mk_context(); fs = Z3_parse_smtlib2_string(ctx, "(declare-fun a () (_ BitVec 8)) (assert (bvuge a #x10)) (assert (bvule a #xf0))", 0, 0, 0, 0, 0, 0); Z3_ast_vector_inc_ref(ctx, fs); printf("formulas: %s\n", Z3_ast_vector_to_string(ctx, fs)); Z3_ast_vector_dec_ref(ctx, fs); Z3_del_context(ctx); } /** \brief Demonstrates how to use the function \c Z3_substitute to replace subexpressions in a Z3 AST. */ void substitute_example() { Z3_context ctx; Z3_sort int_ty; Z3_ast a, b; Z3_func_decl f; Z3_func_decl g; Z3_ast fab, ga, ffabga, r; printf("\nsubstitute_example\n"); LOG_MSG("substitute_example"); ctx = mk_context(); int_ty = Z3_mk_int_sort(ctx); a = mk_int_var(ctx,"a"); b = mk_int_var(ctx,"b"); { Z3_sort f_domain[2] = { int_ty, int_ty }; f = Z3_mk_func_decl(ctx, Z3_mk_string_symbol(ctx, "f"), 2, f_domain, int_ty); } g = Z3_mk_func_decl(ctx, Z3_mk_string_symbol(ctx, "g"), 1, &int_ty, int_ty); { Z3_ast args[2] = { a, b }; fab = Z3_mk_app(ctx, f, 2, args); } ga = Z3_mk_app(ctx, g, 1, &a); { Z3_ast args[2] = { fab, ga }; ffabga = Z3_mk_app(ctx, f, 2, args); } // Replace b -> 0, g(a) -> 1 in f(f(a, b), g(a)) { Z3_ast zero = Z3_mk_numeral(ctx, "0", int_ty); Z3_ast one = Z3_mk_numeral(ctx, "1", int_ty); Z3_ast from[2] = { b, ga }; Z3_ast to[2] = { zero, one }; r = Z3_substitute(ctx, ffabga, 2, from, to); } // Display r printf("substitution result: %s\n", Z3_ast_to_string(ctx, r)); Z3_del_context(ctx); } /** \brief Demonstrates how to use the function \c Z3_substitute_vars to replace (free) variables with expressions in a Z3 AST. */ void substitute_vars_example() { Z3_context ctx; Z3_sort int_ty; Z3_ast x0, x1; Z3_ast a, b, gb; Z3_func_decl f; Z3_func_decl g; Z3_ast f01, ff010, r; printf("\nsubstitute_vars_example\n"); LOG_MSG("substitute_vars_example"); ctx = mk_context(); int_ty = Z3_mk_int_sort(ctx); x0 = Z3_mk_bound(ctx, 0, int_ty); x1 = Z3_mk_bound(ctx, 1, int_ty); { Z3_sort f_domain[2] = { int_ty, int_ty }; f = Z3_mk_func_decl(ctx, Z3_mk_string_symbol(ctx, "f"), 2, f_domain, int_ty); } g = Z3_mk_func_decl(ctx, Z3_mk_string_symbol(ctx, "g"), 1, &int_ty, int_ty); { Z3_ast args[2] = { x0, x1 }; f01 = Z3_mk_app(ctx, f, 2, args); } { Z3_ast args[2] = { f01, x0 }; ff010 = Z3_mk_app(ctx, f, 2, args); } a = mk_int_var(ctx, "a"); b = mk_int_var(ctx, "b"); gb = Z3_mk_app(ctx, g, 1, &b); // Replace x0 -> a, x1 -> g(b) in f(f(x0,x1),x0) { Z3_ast to[2] = { a, gb }; r = Z3_substitute_vars(ctx, ff010, 2, to); } // Display r printf("substitution result: %s\n", Z3_ast_to_string(ctx, r)); Z3_del_context(ctx); } /** \brief Demonstrates some basic features of the FloatingPoint theory. */ void fpa_example() { Z3_config cfg; Z3_context ctx; Z3_solver s; Z3_sort double_sort, rm_sort; Z3_symbol s_rm, s_x, s_y, s_x_plus_y; Z3_ast rm, x, y, n, x_plus_y, c1, c2, c3, c4, c5; Z3_ast args[2], args2[2], and_args[3], args3[3]; printf("\nFPA-example\n"); LOG_MSG("FPA-example"); cfg = Z3_mk_config(); ctx = Z3_mk_context(cfg); s = mk_solver(ctx); Z3_del_config(cfg); double_sort = Z3_mk_fpa_sort(ctx, 11, 53); rm_sort = Z3_mk_fpa_rounding_mode_sort(ctx); // Show that there are x, y s.t. (x + y) = 42.0 (with rounding mode). s_rm = Z3_mk_string_symbol(ctx, "rm"); rm = Z3_mk_const(ctx, s_rm, rm_sort); s_x = Z3_mk_string_symbol(ctx, "x"); s_y = Z3_mk_string_symbol(ctx, "y"); x = Z3_mk_const(ctx, s_x, double_sort); y = Z3_mk_const(ctx, s_y, double_sort); n = Z3_mk_fpa_numeral_double(ctx, 42.0, double_sort); s_x_plus_y = Z3_mk_string_symbol(ctx, "x_plus_y"); x_plus_y = Z3_mk_const(ctx, s_x_plus_y, double_sort); c1 = Z3_mk_eq(ctx, x_plus_y, Z3_mk_fpa_add(ctx, rm, x, y)); args[0] = c1; args[1] = Z3_mk_eq(ctx, x_plus_y, n); c2 = Z3_mk_and(ctx, 2, (Z3_ast*)&args); args2[0] = c2; args2[1] = Z3_mk_not(ctx, Z3_mk_eq(ctx, rm, Z3_mk_fpa_rtz(ctx))); c3 = Z3_mk_and(ctx, 2, (Z3_ast*)&args2); and_args[0] = Z3_mk_not(ctx, Z3_mk_fpa_is_zero(ctx, y)); and_args[1] = Z3_mk_not(ctx, Z3_mk_fpa_is_nan(ctx, y)); and_args[2] = Z3_mk_not(ctx, Z3_mk_fpa_is_infinite(ctx, y)); args3[0] = c3; args3[1] = Z3_mk_and(ctx, 3, and_args); c4 = Z3_mk_and(ctx, 2, (Z3_ast*)&args3); printf("c4: %s\n", Z3_ast_to_string(ctx, c4)); Z3_solver_push(ctx, s); Z3_solver_assert(ctx, s, c4); check(ctx, s, Z3_L_TRUE); Z3_solver_pop(ctx, s, 1); // Show that the following are equal: // (fp #b0 #b10000000001 #xc000000000000) // ((_ to_fp 11 53) #x401c000000000000)) // ((_ to_fp 11 53) RTZ 1.75 2))) // ((_ to_fp 11 53) RTZ 7.0))) Z3_solver_push(ctx, s); c1 = Z3_mk_fpa_fp(ctx, Z3_mk_numeral(ctx, "0", Z3_mk_bv_sort(ctx, 1)), Z3_mk_numeral(ctx, "1025", Z3_mk_bv_sort(ctx, 11)), Z3_mk_numeral(ctx, "3377699720527872", Z3_mk_bv_sort(ctx, 52))); c2 = Z3_mk_fpa_to_fp_bv(ctx, Z3_mk_numeral(ctx, "4619567317775286272", Z3_mk_bv_sort(ctx, 64)), Z3_mk_fpa_sort(ctx, 11, 53)); c3 = Z3_mk_fpa_to_fp_int_real(ctx, Z3_mk_fpa_rtz(ctx), Z3_mk_numeral(ctx, "2", Z3_mk_int_sort(ctx)), /* exponent */ Z3_mk_numeral(ctx, "1.75", Z3_mk_real_sort(ctx)), /* significand */ Z3_mk_fpa_sort(ctx, 11, 53)); c4 = Z3_mk_fpa_to_fp_real(ctx, Z3_mk_fpa_rtz(ctx), Z3_mk_numeral(ctx, "7.0", Z3_mk_real_sort(ctx)), Z3_mk_fpa_sort(ctx, 11, 53)); args3[0] = Z3_mk_eq(ctx, c1, c2); args3[1] = Z3_mk_eq(ctx, c1, c3); args3[2] = Z3_mk_eq(ctx, c1, c4); c5 = Z3_mk_and(ctx, 3, args3); printf("c5: %s\n", Z3_ast_to_string(ctx, c5)); Z3_solver_assert(ctx, s, c5); check(ctx, s, Z3_L_TRUE); Z3_solver_pop(ctx, s, 1); del_solver(ctx, s); Z3_del_context(ctx); } /** \brief Demonstrates some basic features of model construction */ void mk_model_example() { Z3_context ctx; Z3_model m; Z3_sort intSort; Z3_symbol aSymbol, bSymbol, cSymbol; Z3_func_decl aFuncDecl, bFuncDecl, cFuncDecl; Z3_ast aApp, bApp, cApp; Z3_sort int2intArraySort; Z3_ast zeroNumeral, oneNumeral, twoNumeral, threeNumeral, fourNumeral; Z3_sort arrayDomain[1]; Z3_func_decl cAsFuncDecl; Z3_func_interp cAsFuncInterp; Z3_ast_vector zeroArgs; Z3_ast_vector oneArgs; Z3_ast cFuncDeclAsArray; Z3_string modelAsString; printf("\nmk_model_example\n"); ctx = mk_context(); // Construct empty model m = Z3_mk_model(ctx); Z3_model_inc_ref(ctx, m); // Create constants "a" and "b" intSort = Z3_mk_int_sort(ctx); aSymbol = Z3_mk_string_symbol(ctx, "a"); aFuncDecl = Z3_mk_func_decl(ctx, aSymbol, /*domain_size=*/0, /*domain=*/NULL, /*range=*/intSort); aApp = Z3_mk_app(ctx, aFuncDecl, /*num_args=*/0, /*args=*/NULL); bSymbol = Z3_mk_string_symbol(ctx, "b"); bFuncDecl = Z3_mk_func_decl(ctx, bSymbol, /*domain_size=*/0, /*domain=*/NULL, /*range=*/intSort); bApp = Z3_mk_app(ctx, bFuncDecl, /*num_args=*/0, /*args=*/NULL); // Create array "c" that maps int to int. cSymbol = Z3_mk_string_symbol(ctx, "c"); int2intArraySort = Z3_mk_array_sort(ctx, /*domain=*/intSort, /*range=*/intSort); cFuncDecl = Z3_mk_func_decl(ctx, cSymbol, /*domain_size=*/0, /*domain=*/NULL, /*range=*/int2intArraySort); cApp = Z3_mk_app(ctx, cFuncDecl, /*num_args=*/0, /*args=*/NULL); // Create numerals to be used in model zeroNumeral = Z3_mk_int(ctx, 0, intSort); oneNumeral = Z3_mk_int(ctx, 1, intSort); twoNumeral = Z3_mk_int(ctx, 2, intSort); threeNumeral = Z3_mk_int(ctx, 3, intSort); fourNumeral = Z3_mk_int(ctx, 4, intSort); // Add assignments to model // a == 1 Z3_add_const_interp(ctx, m, aFuncDecl, oneNumeral); // b == 2 Z3_add_const_interp(ctx, m, bFuncDecl, twoNumeral); // Create a fresh function that represents // reading from array. arrayDomain[0] = intSort; cAsFuncDecl = Z3_mk_fresh_func_decl(ctx, /*prefix=*/"", /*domain_size*/ 1, /*domain=*/arrayDomain, /*sort=*/intSort); // Create function interpretation with default // value of "0". cAsFuncInterp = Z3_add_func_interp(ctx, m, cAsFuncDecl, /*default_value=*/zeroNumeral); Z3_func_interp_inc_ref(ctx, cAsFuncInterp); // Add [0] = 3 zeroArgs = Z3_mk_ast_vector(ctx); Z3_ast_vector_inc_ref(ctx, zeroArgs); Z3_ast_vector_push(ctx, zeroArgs, zeroNumeral); Z3_func_interp_add_entry(ctx, cAsFuncInterp, zeroArgs, threeNumeral); // Add [1] = 4 oneArgs = Z3_mk_ast_vector(ctx); Z3_ast_vector_inc_ref(ctx, oneArgs); Z3_ast_vector_push(ctx, oneArgs, oneNumeral); Z3_func_interp_add_entry(ctx, cAsFuncInterp, oneArgs, fourNumeral); // Now use the `(_ as_array)` to associate // the `cAsFuncInterp` with the `cFuncDecl` // in the model cFuncDeclAsArray = Z3_mk_as_array(ctx, cAsFuncDecl); Z3_add_const_interp(ctx, m, cFuncDecl, cFuncDeclAsArray); // Print the model modelAsString = Z3_model_to_string(ctx, m); printf("Model:\n%s\n", modelAsString); // Check the interpretations we expect to be present // are. { Z3_func_decl expectedInterpretations[3] = {aFuncDecl, bFuncDecl, cFuncDecl}; int index; for (index = 0; index < sizeof(expectedInterpretations) / sizeof(Z3_func_decl); ++index) { Z3_func_decl d = expectedInterpretations[index]; if (Z3_model_has_interp(ctx, m, d)) { printf("Found interpretation for \"%s\"\n", Z3_ast_to_string(ctx, Z3_func_decl_to_ast(ctx, d))); } else { printf("Missing interpretation"); exit(1); } } } { // Evaluate a + b under model Z3_ast addArgs[] = {aApp, bApp}; Z3_ast aPlusB = Z3_mk_add(ctx, /*num_args=*/2, /*args=*/addArgs); Z3_ast aPlusBEval = NULL; bool aPlusBEvalSuccess = Z3_model_eval(ctx, m, aPlusB, /*model_completion=*/false, &aPlusBEval); if (aPlusBEvalSuccess != true) { printf("Failed to evaluate model\n"); exit(1); } { int aPlusBValue = 0; bool getAPlusBValueSuccess = Z3_get_numeral_int(ctx, aPlusBEval, &aPlusBValue); if (getAPlusBValueSuccess != true) { printf("Failed to get integer value for a+b\n"); exit(1); } printf("Evaluated a + b = %d\n", aPlusBValue); if (aPlusBValue != 3) { printf("a+b did not evaluate to expected value\n"); exit(1); } } } { // Evaluate c[0] + c[1] + c[2] under model Z3_ast c0 = Z3_mk_select(ctx, cApp, zeroNumeral); Z3_ast c1 = Z3_mk_select(ctx, cApp, oneNumeral); Z3_ast c2 = Z3_mk_select(ctx, cApp, twoNumeral); Z3_ast arrayAddArgs[] = {c0, c1, c2}; Z3_ast arrayAdd = Z3_mk_add(ctx, /*num_args=*/3, /*args=*/arrayAddArgs); Z3_ast arrayAddEval = NULL; bool arrayAddEvalSuccess = Z3_model_eval(ctx, m, arrayAdd, /*model_completion=*/false, &arrayAddEval); if (arrayAddEvalSuccess != true) { printf("Failed to evaluate model\n"); exit(1); } { int arrayAddValue = 0; bool getArrayAddValueSuccess = Z3_get_numeral_int(ctx, arrayAddEval, &arrayAddValue); if (getArrayAddValueSuccess != true) { printf("Failed to get integer value for c[0] + c[1] + c[2]\n"); exit(1); } printf("Evaluated c[0] + c[1] + c[2] = %d\n", arrayAddValue); if (arrayAddValue != 7) { printf("c[0] + c[1] + c[2] did not evaluate to expected value\n"); exit(1); } } } Z3_ast_vector_dec_ref(ctx, oneArgs); Z3_ast_vector_dec_ref(ctx, zeroArgs); Z3_func_interp_dec_ref(ctx, cAsFuncInterp); Z3_model_dec_ref(ctx, m); Z3_del_context(ctx); } /**@}*/ /**@}*/ int main() { #ifdef LOG_Z3_CALLS Z3_open_log("z3.log"); #endif display_version(); simple_example(); demorgan(); find_model_example1(); find_model_example2(); prove_example1(); prove_example2(); push_pop_example1(); quantifier_example1(); array_example1(); array_example2(); array_example3(); tuple_example1(); bitvector_example1(); bitvector_example2(); eval_example1(); two_contexts_example1(); error_code_example1(); error_code_example2(); parser_example2(); parser_example3(); parser_example5(); numeral_example(); ite_example(); list_example(); tree_example(); forest_example(); binary_tree_example(); enum_example(); unsat_core_and_proof_example(); incremental_example1(); reference_counter_example(); smt2parser_example(); substitute_example(); substitute_vars_example(); fpa_example(); mk_model_example(); return 0; }