/*++ Copyright (c) 2009 Microsoft Corporation Module Name: bit2cpp.cpp Abstract: Routines for simplifying bit2int expressions. This propagates bv2int over arithmetical symbols as much as possible, converting arithmetic operations into bit-vector operations. Author: Nikolaj Bjorner (nbjorner) 2009-08-28 Revision History: --*/ #include "ast/ast_pp.h" #include "ast/ast_ll_pp.h" #include "ast/for_each_ast.h" #include "ast/rewriter/bit2int.h" bit2int::bit2int(ast_manager & m) : m(m), m_bv_util(m), m_rewriter(m), m_arith_util(m), m_cache(m, false), m_bit0(m) { m_bit0 = m_bv_util.mk_numeral(0,1); } void bit2int::operator()(expr * n, expr_ref & result, proof_ref& p) { flush_cache(); expr_reduce emap(*this); for_each_ast(emap, n); result = get_cached(n); if (m.proofs_enabled() && n != result.get()) { // TBD: rough p = m.mk_rewrite(n, result); } TRACE("bit2int", tout << mk_pp(n, m) << "======>\n" << result << "\n";); } unsigned bit2int::get_b2i_size(expr* n) { expr* arg = nullptr; VERIFY(m_bv_util.is_bv2int(n, arg)); return m_bv_util.get_bv_size(arg); } unsigned bit2int::get_numeral_bits(numeral const& k) { numeral two(2); numeral n(abs(k)); unsigned num_bits = 1; n = div(n, two); while (n.is_pos()) { ++num_bits; n = div(n, two); } return num_bits; } void bit2int::align_size(expr* e, unsigned sz, expr_ref& result) { unsigned sz1 = m_bv_util.get_bv_size(e); SASSERT(sz1 <= sz); result = m_rewriter.mk_zero_extend(sz - sz1, e); } void bit2int::align_sizes(expr_ref& a, expr_ref& b) { unsigned sz1 = m_bv_util.get_bv_size(a); unsigned sz2 = m_bv_util.get_bv_size(b); if (sz1 > sz2) { b = m_rewriter.mk_zero_extend(sz1 - sz2, b); } else if (sz2 > sz1) { a = m_rewriter.mk_zero_extend(sz2-sz1, a); } } bool bit2int::extract_bv(expr* n, unsigned& sz, bool& sign, expr_ref& bv) { numeral k; bool is_int; expr* r = nullptr; if (m_bv_util.is_bv2int(n, r)) { bv = r; sz = m_bv_util.get_bv_size(bv); sign = false; return true; } else if (m_arith_util.is_numeral(n, k, is_int) && is_int) { sz = get_numeral_bits(k); bv = m_bv_util.mk_numeral(k, m_bv_util.mk_sort(sz)); sign = k.is_neg(); return true; } else { return false; } } bool bit2int::mk_add(expr* e1, expr* e2, expr_ref& result) { unsigned sz1, sz2; bool sign1, sign2; expr_ref tmp1(m), tmp2(m), tmp3(m); if (extract_bv(e1, sz1, sign1, tmp1) && !sign1 && extract_bv(e2, sz2, sign2, tmp2) && !sign2) { unsigned sz; numeral k; if (m_bv_util.is_numeral(tmp1, k, sz) && k.is_zero()) { result = e2; return true; } if (m_bv_util.is_numeral(tmp2, k, sz) && k.is_zero()) { result = e1; return true; } align_sizes(tmp1, tmp2); tmp1 = m_rewriter.mk_zero_extend(1, tmp1); tmp2 = m_rewriter.mk_zero_extend(1, tmp2); SASSERT(m_bv_util.get_bv_size(tmp1) == m_bv_util.get_bv_size(tmp2)); tmp3 = m_rewriter.mk_bv_add(tmp1, tmp2); result = m_rewriter.mk_bv2int(tmp3); return true; } return false; } bool bit2int::mk_comp(eq_type ty, expr* e1, expr* e2, expr_ref& result) { unsigned sz1, sz2; bool sign1, sign2; expr_ref tmp1(m), tmp2(m), tmp3(m); if (extract_bv(e1, sz1, sign1, tmp1) && !sign1 && extract_bv(e2, sz2, sign2, tmp2) && !sign2) { align_sizes(tmp1, tmp2); SASSERT(m_bv_util.get_bv_size(tmp1) == m_bv_util.get_bv_size(tmp2)); switch(ty) { case lt: tmp3 = m_rewriter.mk_ule(tmp2, tmp1); result = m.mk_not(tmp3); break; case le: result = m_rewriter.mk_ule(tmp1, tmp2); break; case eq: result = m.mk_eq(tmp1, tmp2); break; } return true; } return false; } bool bit2int::mk_mul(expr* e1, expr* e2, expr_ref& result) { unsigned sz1, sz2; bool sign1, sign2; expr_ref tmp1(m), tmp2(m); expr_ref tmp3(m); if (extract_bv(e1, sz1, sign1, tmp1) && extract_bv(e2, sz2, sign2, tmp2)) { align_sizes(tmp1, tmp2); tmp1 = m_rewriter.mk_zero_extend(m_bv_util.get_bv_size(tmp1), tmp1); tmp2 = m_rewriter.mk_zero_extend(m_bv_util.get_bv_size(tmp2), tmp2); SASSERT(m_bv_util.get_bv_size(tmp1) == m_bv_util.get_bv_size(tmp2)); tmp3 = m_rewriter.mk_bv_mul(tmp1, tmp2); result = m_rewriter.mk_bv2int(tmp3); if (sign1 != sign2) { result = m_arith_util.mk_uminus(result); } return true; } return false; } bool bit2int::is_bv_poly(expr* n, expr_ref& pos, expr_ref& neg) { ptr_vector todo; expr_ref tmp(m); numeral k; bool is_int; todo.push_back(n); neg = pos = m_rewriter.mk_bv2int(m_bit0); while (!todo.empty()) { n = todo.back(); todo.pop_back(); expr* arg1 = nullptr, *arg2 = nullptr; if (m_bv_util.is_bv2int(n)) { VERIFY(mk_add(n, pos, pos)); } else if (m_arith_util.is_numeral(n, k, is_int) && is_int) { if (k.is_nonneg()) { VERIFY(mk_add(n, pos, pos)); } else { tmp = m_arith_util.mk_numeral(-k, true); VERIFY(mk_add(tmp, neg, neg)); } } else if (m_arith_util.is_add(n)) { for (expr* arg : *to_app(n)) { todo.push_back(arg); } } else if (m_arith_util.is_mul(n, arg1, arg2) && m_arith_util.is_numeral(arg1, k, is_int) && is_int && k.is_minus_one() && m_bv_util.is_bv2int(arg2)) { VERIFY(mk_add(arg2, neg, neg)); } else if (m_arith_util.is_mul(n, arg1, arg2) && m_arith_util.is_numeral(arg2, k, is_int) && is_int && k.is_minus_one() && m_bv_util.is_bv2int(arg1)) { VERIFY(mk_add(arg1, neg, neg)); } else if (m_arith_util.is_uminus(n, arg1) && m_bv_util.is_bv2int(arg1)) { VERIFY(mk_add(arg1, neg, neg)); } else { TRACE("bit2int", tout << "Not a poly: " << mk_pp(n, m) << "\n";); return false; } } return true; } void bit2int::visit(quantifier* q) { expr_ref result(m); result = get_cached(q->get_expr()); result = m.update_quantifier(q, result); cache_result(q, result); } void bit2int::visit(app* n) { func_decl* f = n->get_decl(); unsigned num_args = n->get_num_args(); m_args.reset(); for (expr* arg : *n) { m_args.push_back(get_cached(arg)); } expr* const* args = m_args.data(); bool has_b2i = m_arith_util.is_le(n) || m_arith_util.is_ge(n) || m_arith_util.is_gt(n) || m_arith_util.is_lt(n) || m.is_eq(n); expr_ref result(m); for (unsigned i = 0; !has_b2i && i < num_args; ++i) { has_b2i = m_bv_util.is_bv2int(args[i]); } if (!has_b2i) { result = m.mk_app(f, num_args, args); cache_result(n, result); return; } // // bv2int(x) + bv2int(y) -> bv2int(pad(x) + pad(y)) // bv2int(x) + k -> bv2int(pad(x) + pad(k)) // bv2int(x) * bv2int(y) -> bv2int(pad(x) * pad(y)) // bv2int(x) * k -> sign(k)*bv2int(pad(x) * pad(k)) // bv2int(x) - bv2int(y) <= z -> bv2int(x) <= bv2int(y) + z // bv2int(x) <= z - bv2int(y) -> bv2int(x) + bv2int(y) <= z // expr* e1 = nullptr, *e2 = nullptr; expr_ref tmp1(m), tmp2(m); expr_ref tmp3(m); expr_ref pos1(m), neg1(m); expr_ref pos2(m), neg2(m); expr_ref e2bv(m); bool sign2; numeral k; unsigned sz2; if (num_args >= 2) { e1 = args[0]; e2 = args[1]; } if (m_arith_util.is_add(n) && num_args >= 1) { result = e1; for (unsigned i = 1; i < num_args; ++i) { e1 = result; e2 = args[i]; if (!mk_add(e1, e2, result)) { result = m.mk_app(f, num_args, args); cache_result(n, result); return; } } cache_result(n, result); } else if (m_arith_util.is_mul(n) && num_args >= 1) { result = e1; for (unsigned i = 1; i < num_args; ++i) { e1 = result; e2 = args[i]; if (!mk_mul(e1, e2, result)) { result = m.mk_app(f, num_args, args); cache_result(n, result); return; } } cache_result(n, result); } else if (m.is_eq(n) && is_bv_poly(e1, pos1, neg1) && is_bv_poly(e2, pos2, neg2) && mk_add(pos1, neg2, tmp1) && mk_add(neg1, pos2, tmp2) && mk_comp(eq, tmp1, tmp2, result)) { cache_result(n, result); } else if (m_arith_util.is_le(n) && is_bv_poly(e1, pos1, neg1) && is_bv_poly(e2, pos2, neg2) && mk_add(pos1, neg2, tmp1) && mk_add(neg1, pos2, tmp2) && mk_comp(le, tmp1, tmp2, result)) { cache_result(n, result); } else if (m_arith_util.is_lt(n) && is_bv_poly(e1, pos1, neg1) && is_bv_poly(e2, pos2, neg2) && mk_add(pos1, neg2, tmp1) && mk_add(neg1, pos2, tmp2) && mk_comp(lt, tmp1, tmp2, result)) { cache_result(n, result); } else if (m_arith_util.is_ge(n) && is_bv_poly(e1, pos1, neg1) && is_bv_poly(e2, pos2, neg2) && mk_add(pos1, neg2, tmp1) && mk_add(neg1, pos2, tmp2) && mk_comp(le, tmp2, tmp1, result)) { cache_result(n, result); } else if (m_arith_util.is_gt(n) && is_bv_poly(e1, pos1, neg1) && is_bv_poly(e2, pos2, neg2) && mk_add(pos1, neg2, tmp1) && mk_add(neg1, pos2, tmp2) && mk_comp(lt, tmp2, tmp1, result)) { cache_result(n, result); } else if (m_arith_util.is_mod(n) && is_bv_poly(e1, pos1, neg1) && extract_bv(e2, sz2, sign2, e2bv) && !sign2) { // // (pos1 - neg1) mod e2 = (pos1 + (e2 - (neg1 mod e2))) mod e2 // unsigned sz_p, sz_n, sz; bool sign_p, sign_n; expr_ref tmp_p(m), tmp_n(m); VERIFY(extract_bv(pos1, sz_p, sign_p, tmp_p)); VERIFY(extract_bv(neg1, sz_n, sign_n, tmp_n)); SASSERT(!sign_p && !sign_n); // pos1 mod e2 if (m_bv_util.is_numeral(tmp_n, k, sz) && k.is_zero()) { tmp1 = tmp_p; tmp2 = e2bv; align_sizes(tmp1, tmp2); tmp3 = m_rewriter.mk_bv_urem(tmp1, tmp2); result = m_rewriter.mk_bv2int(tmp3); cache_result(n, result); return; } // neg1 mod e2; tmp1 = tmp_n; tmp2 = e2bv; align_sizes(tmp1, tmp2); tmp3 = m_rewriter.mk_bv_urem(tmp1, tmp2); // e2 - (neg1 mod e2) tmp1 = e2bv; tmp2 = tmp3; align_sizes(tmp1, tmp2); tmp3 = m_rewriter.mk_bv_sub(tmp1, tmp2); // pos1 + (e2 - (neg1 mod e2)) tmp1 = tmp_p; tmp2 = tmp3; align_sizes(tmp1, tmp2); tmp_p = m_rewriter.mk_zero_extend(1, tmp1); tmp_n = m_rewriter.mk_zero_extend(1, tmp2); tmp1 = m_rewriter.mk_bv_add(tmp_p, tmp_n); // (pos1 + (e2 - (neg1 mod e2))) mod e2 tmp2 = e2bv; align_sizes(tmp1, tmp2); tmp3 = m_rewriter.mk_bv_urem(tmp1, tmp2); result = m_rewriter.mk_bv2int(tmp3); cache_result(n, result); } else { result = m.mk_app(f, num_args, args); cache_result(n, result); } } expr * bit2int::get_cached(expr * n) const { expr* r = nullptr; proof* p = nullptr; const_cast(this)->m_cache.get(n, r, p); CTRACE("bit2int", !r, tout << mk_pp(n, m) << "\n";); return r; } void bit2int::cache_result(expr * n, expr * r) { TRACE("bit2int_verbose", tout << "caching:\n" << mk_pp(n, m) << "======>\n" << mk_ll_pp(r, m) << "\n";); m_cache.insert(n, r, nullptr); }