/*++ Copyright (c) 2017 Microsoft Corporation Module Name: nla_grobner.cpp Author: Lev Nachmanson (levnach) Nikolaj Bjorner (nbjorner) --*/ #include "util/uint_set.h" #include "math/lp/nla_core.h" #include "math/lp/factorization_factory_imp.h" #include "math/lp/nex.h" #include "math/grobner/pdd_solver.h" #include "math/dd/pdd_interval.h" #include "math/dd/pdd_eval.h" namespace nla { grobner::grobner(core* c): common(c), m_pdd_manager(m_core.m_lar_solver.number_of_vars()), m_solver(m_core.m_reslim, m_pdd_manager), m_lar_solver(m_core.m_lar_solver) {} lp::lp_settings& grobner::lp_settings() { return c().lp_settings(); } void grobner::operator()() { unsigned& quota = c().m_nla_settings.grobner_quota; if (quota == 1) return; lp_settings().stats().m_grobner_calls++; find_nl_cluster(); configure(); m_solver.saturate(); if (is_conflicting()) return; try { if (propagate_bounds()) return; if (propagate_eqs()) return; if (propagate_factorization()) return; } catch (...) { } if (quota > 1) quota--; IF_VERBOSE(2, verbose_stream() << "grobner miss, quota " << quota << "\n"); IF_VERBOSE(4, diagnose_pdd_miss(verbose_stream())); #if 0 // diagnostics: did we miss something vector eqs; for (auto eq : m_solver.equations()) eqs.push_back(eq->poly()); c().m_nra.check(eqs); #endif } bool grobner::is_conflicting() { unsigned conflicts = 0; for (auto eq : m_solver.equations()) if (is_conflicting(*eq) && ++conflicts >= m_solver.number_of_conflicts_to_report()) break; if (conflicts > 0) lp_settings().stats().m_grobner_conflicts++; TRACE("grobner", m_solver.display(tout)); IF_VERBOSE(2, if (conflicts > 0) verbose_stream() << "grobner conflict\n"); return conflicts > 0; } bool grobner::propagate_bounds() { unsigned changed = 0; for (auto eq : m_solver.equations()) if (propagate_bounds(*eq) && ++changed >= m_solver.number_of_conflicts_to_report()) return true; return changed > 0; } bool grobner::propagate_eqs() { unsigned changed = 0; for (auto eq : m_solver.equations()) if (propagate_fixed(*eq) && ++changed >= m_solver.number_of_conflicts_to_report()) return true; return changed > 0; } bool grobner::propagate_factorization() { unsigned changed = 0; for (auto eq : m_solver.equations()) if (propagate_factorization(*eq) && ++changed >= m_solver.number_of_conflicts_to_report()) return true; return changed > 0; } /** \brief detect equalities - k*x = 0, that is x = 0 - ax + b = 0 */ typedef lp::lar_term term; bool grobner::propagate_fixed(const dd::solver::equation& eq) { dd::pdd const& p = eq.poly(); //IF_VERBOSE(0, verbose_stream() << p << "\n"); if (p.is_unary()) { unsigned v = p.var(); if (c().var_is_fixed(v)) return false; ineq new_eq(v, llc::EQ, rational::zero()); if (c().ineq_holds(new_eq)) return false; new_lemma lemma(c(), "pdd-eq"); add_dependencies(lemma, eq); lemma |= new_eq; return true; } if (p.is_offset()) { unsigned v = p.var(); if (c().var_is_fixed(v)) return false; rational a = p.hi().val(); rational b = -p.lo().val(); rational d = lcm(denominator(a), denominator(b)); a *= d; b *= d; ineq new_eq(term(a, v), llc::EQ, b); if (c().ineq_holds(new_eq)) return false; new_lemma lemma(c(), "pdd-eq"); add_dependencies(lemma, eq); lemma |= new_eq; return true; } return false; } /** \brief detect simple factors x*q = 0 => x = 0 or q = 0 */ bool grobner::propagate_factorization(const dd::solver::equation& eq) { dd::pdd const& p = eq.poly(); auto [vars, q] = p.var_factors(); if (vars.empty() || !q.is_linear()) return false; // IF_VERBOSE(0, verbose_stream() << "factored " << q << " : " << vars << "\n"); term t; while (!q.is_val()) { t.add_monomial(q.hi().val(), q.var()); q = q.lo(); } vector ineqs; for (auto v : vars) ineqs.push_back(ineq(v, llc::EQ, rational::zero())); ineqs.push_back(ineq(t, llc::EQ, -q.val())); for (auto const& i : ineqs) if (c().ineq_holds(i)) return false; new_lemma lemma(c(), "pdd-factored"); add_dependencies(lemma, eq); for (auto const& i : ineqs) lemma |= i; //lemma.display(verbose_stream()); return true; } void grobner::add_dependencies(new_lemma& lemma, const dd::solver::equation& eq) { lp::explanation ex; u_dependency_manager dm; vector lv; dm.linearize(eq.dep(), lv); for (unsigned ci : lv) ex.push_back(ci); lemma &= ex; } void grobner::configure() { m_solver.reset(); try { set_level2var(); TRACE("grobner", tout << "base vars: "; for (lpvar j : c().active_var_set()) if (m_lar_solver.is_base(j)) tout << "j" << j << " "; tout << "\n"); for (lpvar j : c().active_var_set()) { if (m_lar_solver.is_base(j)) add_row(m_lar_solver.basic2row(j)); if (c().is_monic_var(j) && c().var_is_fixed(j)) add_fixed_monic(j); } } catch (...) { IF_VERBOSE(2, verbose_stream() << "pdd throw\n"); return; } TRACE("grobner", m_solver.display(tout)); #if 0 IF_VERBOSE(2, m_pdd_grobner.display(verbose_stream())); dd::pdd_eval eval(m_pdd_manager); eval.var2val() = [&](unsigned j){ return val(j); }; for (auto* e : m_pdd_grobner.equations()) { dd::pdd p = e->poly(); rational v = eval(p); if (p.is_linear() && !eval(p).is_zero()) { IF_VERBOSE(0, verbose_stream() << "violated linear constraint " << p << "\n"); } } #endif struct dd::solver::config cfg; cfg.m_max_steps = m_solver.equations().size(); cfg.m_max_simplified = c().m_nla_settings.grobner_max_simplified; cfg.m_eqs_growth = c().m_nla_settings.grobner_eqs_growth; cfg.m_expr_size_growth = c().m_nla_settings.grobner_expr_size_growth; cfg.m_expr_degree_growth = c().m_nla_settings.grobner_expr_degree_growth; cfg.m_number_of_conflicts_to_report = c().m_nla_settings.grobner_number_of_conflicts_to_report; m_solver.set(cfg); m_solver.adjust_cfg(); m_pdd_manager.set_max_num_nodes(10000); // or something proportional to the number of initial nodes. } std::ostream& grobner::diagnose_pdd_miss(std::ostream& out) { // m_pdd_grobner.display(out); dd::pdd_eval eval; eval.var2val() = [&](unsigned j){ return val(j); }; for (auto* e : m_solver.equations()) { dd::pdd p = e->poly(); rational v = eval(p); if (!v.is_zero()) { out << p << " := " << v << "\n"; } } for (unsigned j = 0; j < m_lar_solver.number_of_vars(); ++j) { if (m_lar_solver.column_has_lower_bound(j) || m_lar_solver.column_has_upper_bound(j)) { out << j << ": ["; if (m_lar_solver.column_has_lower_bound(j)) out << m_lar_solver.get_lower_bound(j); out << ".."; if (m_lar_solver.column_has_upper_bound(j)) out << m_lar_solver.get_upper_bound(j); out << "]\n"; } } return out; } bool grobner::is_conflicting(const dd::solver::equation& e) { auto& di = c().m_intervals.get_dep_intervals(); dd::pdd_interval eval(di); eval.var2interval() = [this](lpvar j, bool deps, scoped_dep_interval& a) { if (deps) c().m_intervals.set_var_interval(j, a); else c().m_intervals.set_var_interval(j, a); }; scoped_dep_interval i(di), i_wd(di); eval.get_interval(e.poly(), i); if (!di.separated_from_zero(i)) { TRACE("grobner", m_solver.display(tout << "not separated from 0 ", e) << "\n"; eval.get_interval_distributed(e.poly(), i); tout << "separated from 0: " << di.separated_from_zero(i) << "\n"; for (auto j : e.poly().free_vars()) { scoped_dep_interval a(di); c().m_intervals.set_var_interval(j, a); c().m_intervals.display(tout << "j" << j << " ", a); tout << " "; } tout << "\n"); return false; } eval.get_interval(e.poly(), i_wd); std::function f = [this](const lp::explanation& e) { new_lemma lemma(m_core, "pdd"); lemma &= e; }; if (di.check_interval_for_conflict_on_zero(i_wd, e.dep(), f)) { TRACE("grobner", m_solver.display(tout << "conflict ", e) << "\n"); return true; } else { TRACE("grobner", m_solver.display(tout << "no conflict ", e) << "\n"); return false; } } bool grobner::propagate_bounds(const dd::solver::equation& e) { return false; // TODO auto& di = c().m_intervals.get_dep_intervals(); dd::pdd_interval eval(di); eval.var2interval() = [this](lpvar j, bool deps, scoped_dep_interval& a) { if (deps) c().m_intervals.set_var_interval(j, a); else c().m_intervals.set_var_interval(j, a); }; scoped_dep_interval i(di), i_wd(di); eval.get_interval(e.poly(), i); return false; } void grobner::add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, svector & q) { if (c().active_var_set_contains(j)) return; c().insert_to_active_var_set(j); if (c().is_monic_var(j)) { const monic& m = c().emons()[j]; for (auto fcn : factorization_factory_imp(m, m_core)) for (const factor& fc: fcn) q.push_back(var(fc)); } if (c().var_is_fixed(j)) return; const auto& matrix = m_lar_solver.A_r(); for (auto & s : matrix.m_columns[j]) { unsigned row = s.var(); if (m_rows.contains(row)) continue; m_rows.insert(row); unsigned k = m_lar_solver.get_base_column_in_row(row); if (m_lar_solver.column_is_free(k) && k != j) continue; CTRACE("grobner", matrix.m_rows[row].size() > c().m_nla_settings.grobner_row_length_limit, tout << "ignore the row " << row << " with the size " << matrix.m_rows[row].size() << "\n";); if (matrix.m_rows[row].size() > c().m_nla_settings.grobner_row_length_limit) continue; for (auto& rc : matrix.m_rows[row]) add_var_and_its_factors_to_q_and_collect_new_rows(rc.var(), q); } } const rational& grobner::val_of_fixed_var_with_deps(lpvar j, u_dependency*& dep) { unsigned lc, uc; m_lar_solver.get_bound_constraint_witnesses_for_column(j, lc, uc); dep = c().m_intervals.mk_join(dep, c().m_intervals.mk_leaf(lc)); dep = c().m_intervals.mk_join(dep, c().m_intervals.mk_leaf(uc)); return m_lar_solver.column_lower_bound(j).x; } dd::pdd grobner::pdd_expr(const rational& coeff, lpvar j, u_dependency*& dep) { dd::pdd r = m_pdd_manager.mk_val(coeff); sbuffer vars; vars.push_back(j); u_dependency* zero_dep = dep; while (!vars.empty()) { j = vars.back(); vars.pop_back(); if (c().m_nla_settings.grobner_subs_fixed > 0 && c().var_is_fixed_to_zero(j)) { r = m_pdd_manager.mk_val(val_of_fixed_var_with_deps(j, zero_dep)); dep = zero_dep; return r; } if (c().m_nla_settings.grobner_subs_fixed == 1 && c().var_is_fixed(j)) r *= val_of_fixed_var_with_deps(j, dep); else if (!c().is_monic_var(j)) r *= m_pdd_manager.mk_var(j); else for (lpvar k : c().emons()[j].vars()) vars.push_back(k); } return r; } /** \brief convert p == 0 into a solved form v == r, such that v has bounds [lo, oo) iff r has bounds [lo', oo) v has bounds (oo,hi] iff r has bounds (oo,hi'] The solved form allows the Grobner solver identify more bounds conflicts. A bad leading term can miss bounds conflicts. For example for x + y + z == 0 where x, y : [0, oo) and z : (oo,0] we prefer to solve z == -x - y instead of x == -z - y because the solution -z - y has neither an upper, nor a lower bound. */ bool grobner::is_solved(dd::pdd const& p, unsigned& v, dd::pdd& r) { if (!p.is_linear()) return false; r = p; unsigned num_lo = 0, num_hi = 0; unsigned lo = 0, hi = 0; rational lc, hc, c; while (!r.is_val()) { SASSERT(r.hi().is_val()); v = r.var(); rational val = r.hi().val(); switch (m_lar_solver.get_column_type(v)) { case lp::column_type::lower_bound: if (val > 0) num_lo++, lo = v, lc = val; else num_hi++, hi = v, hc = val; break; case lp::column_type::upper_bound: if (val < 0) num_lo++, lo = v, lc = val; else num_hi++, hi = v, hc = val; break; case lp::column_type::fixed: case lp::column_type::boxed: break; default: return false; } if (num_lo > 1 && num_hi > 1) return false; r = r.lo(); } if (num_lo == 1 && num_hi > 1) { v = lo; c = lc; } else if (num_hi == 1 && num_lo > 1) { v = hi; c = hc; } else return false; r = c*m_pdd_manager.mk_var(v) - p; if (c != 1) r = r * (1/c); return true; } /** \brief add an equality to grobner solver, convert it to solved form if available. */ void grobner::add_eq(dd::pdd& p, u_dependency* dep) { unsigned v; dd::pdd q(m_pdd_manager); m_solver.simplify(p, dep); if (is_solved(p, v, q)) m_solver.add_subst(v, q, dep); else m_solver.add(p, dep); } void grobner::add_fixed_monic(unsigned j) { u_dependency* dep = nullptr; dd::pdd r = m_pdd_manager.mk_val(rational(1)); for (lpvar k : c().emons()[j].vars()) r *= pdd_expr(rational::one(), k, dep); r -= val_of_fixed_var_with_deps(j, dep); add_eq(r, dep); } void grobner::add_row(const vector> & row) { u_dependency *dep = nullptr; rational val; dd::pdd sum = m_pdd_manager.mk_val(rational(0)); for (const auto &p : row) sum += pdd_expr(p.coeff(), p.var(), dep); TRACE("grobner", c().print_row(row, tout) << " " << sum << "\n"); add_eq(sum, dep); } void grobner::find_nl_cluster() { prepare_rows_and_active_vars(); svector q; TRACE("grobner", for (lpvar j : c().m_to_refine) print_monic(c().emons()[j], tout) << "\n";); for (lpvar j : c().m_to_refine) q.push_back(j); while (!q.empty()) { lpvar j = q.back(); q.pop_back(); add_var_and_its_factors_to_q_and_collect_new_rows(j, q); } TRACE("grobner", tout << "vars in cluster: "; for (lpvar j : c().active_var_set()) tout << "j" << j << " "; tout << "\n"; display_matrix_of_m_rows(tout); ); } void grobner::prepare_rows_and_active_vars() { m_rows.clear(); m_rows.resize(m_lar_solver.row_count()); c().clear_and_resize_active_var_set(); } void grobner::display_matrix_of_m_rows(std::ostream & out) const { const auto& matrix = m_lar_solver.A_r(); out << m_rows.size() << " rows" << "\n"; out << "the matrix\n"; for (const auto & r : matrix.m_rows) c().print_row(r, out) << std::endl; } void grobner::set_level2var() { unsigned n = m_lar_solver.column_count(); unsigned_vector sorted_vars(n), weighted_vars(n); for (unsigned j = 0; j < n; j++) { sorted_vars[j] = j; weighted_vars[j] = c().get_var_weight(j); } #if 1 // potential update to weights for (unsigned j = 0; j < n; j++) { if (c().is_monic_var(j) && c().m_to_refine.contains(j)) { for (lpvar k : c().m_emons[j].vars()) { weighted_vars[k] += 6; } } } #endif std::sort(sorted_vars.begin(), sorted_vars.end(), [&](unsigned a, unsigned b) { unsigned wa = weighted_vars[a]; unsigned wb = weighted_vars[b]; return wa < wb || (wa == wb && a < b); }); unsigned_vector l2v(n); for (unsigned j = 0; j < n; j++) l2v[j] = sorted_vars[j]; m_pdd_manager.reset(l2v); TRACE("grobner", for (auto v : sorted_vars) tout << "j" << v << " w:" << weighted_vars[v] << " "; tout << "\n"); } }