/*++ Copyright (c) 2021 Microsoft Corporation Module Name: polysat constraint manager Author: Nikolaj Bjorner (nbjorner) 2021-03-19 Jakob Rath 2021-04-06 --*/ #include "math/polysat/constraint_manager.h" #include "math/polysat/clause.h" #include "math/polysat/solver.h" #include "math/polysat/log.h" #include "math/polysat/log_helper.h" #include "math/polysat/ule_constraint.h" #include "math/polysat/umul_ovfl_constraint.h" #include "math/polysat/smul_fl_constraint.h" #include "math/polysat/op_constraint.h" namespace polysat { constraint_manager::constraint_manager(solver& s): s(s) {} void constraint_manager::assign_bv2c(sat::bool_var bv, constraint* c) { SASSERT_EQ(get_bv2c(bv), nullptr); SASSERT(!c->has_bvar()); c->m_bvar = bv; m_bv2constraint.setx(bv, c, nullptr); } void constraint_manager::erase_bv2c(constraint* c) { SASSERT(c->has_bvar()); SASSERT_EQ(get_bv2c(c->bvar()), c); m_bv2constraint[c->bvar()] = nullptr; c->m_bvar = sat::null_bool_var; } constraint* constraint_manager::get_bv2c(sat::bool_var bv) const { return m_bv2constraint.get(bv, nullptr); } void constraint_manager::ensure_bvar(constraint* c) { if (!c->has_bvar()) assign_bv2c(s.m_bvars.new_var(), c); } void constraint_manager::erase_bvar(constraint* c) { if (c->has_bvar()) erase_bv2c(c); } /** Add constraint to per-level storage */ void constraint_manager::store(constraint* c) { LOG_V("Store constraint: " << show_deref(c)); m_constraints.push_back(c); } void constraint_manager::register_clause(clause* cl) { while (m_clauses.size() <= s.base_level()) m_clauses.push_back({}); m_clauses[s.base_level()].push_back(cl); } void constraint_manager::store(clause* cl, bool value_propagate) { register_clause(cl); watch(*cl, value_propagate); } // Release constraints at the given level and above. void constraint_manager::release_level(unsigned lvl) { for (unsigned l = m_clauses.size(); l-- > lvl; ) { for (auto& cl : m_clauses[l]) { unwatch(*cl); SASSERT_EQ(cl->m_ref_count, 1); // otherwise there is a leftover reference somewhere } m_clauses[l].reset(); } } // find literals that are not propagated to false // if clause is unsat then assign arbitrary // solver handles unsat clauses by creating a conflict. // solver also can propagate, but need to check that it does indeed. void constraint_manager::watch(clause& cl, bool value_propagate) { if (cl.empty()) return; bool first = true; for (unsigned i = 0; i < cl.size(); ++i) { if (s.m_bvars.is_false(cl[i])) continue; signed_constraint sc = s.lit2cnstr(cl[i]); if (value_propagate && sc.is_currently_false(s)) { if (s.m_bvars.is_true(cl[i])) { s.set_conflict(sc); return; } s.assign_eval(~cl[i]); continue; } s.m_bvars.watch(cl[i]).push_back(&cl); std::swap(cl[!first], cl[i]); if (!first) return; first = false; } if (first) s.m_bvars.watch(cl[0]).push_back(&cl); if (cl.size() > 1) s.m_bvars.watch(cl[1]).push_back(&cl); if (s.m_bvars.is_true(cl[0])) return; if (first) s.set_conflict(cl); else s.assign_propagate(cl[0], cl); } void constraint_manager::unwatch(clause& cl) { if (cl.size() <= 1) return; s.m_bvars.watch(~cl[0]).erase(&cl); s.m_bvars.watch(~cl[1]).erase(&cl); } constraint_manager::~constraint_manager() { // Release explicitly to check for leftover references in debug mode, // and to make sure all constraints are destructed before the bvar->constraint mapping. release_level(0); } constraint* constraint_manager::lookup(sat::bool_var var) const { return get_bv2c(var); } signed_constraint constraint_manager::lookup(sat::literal lit) const { return {lookup(lit.var()), lit}; } /** Look up constraint among stored constraints. */ constraint* constraint_manager::dedup(constraint* c1) { constraint* c2 = nullptr; if (m_dedup.constraints.find(c1, c2)) { dealloc(c1); return c2; } else { SASSERT(!c1->has_bvar()); ensure_bvar(c1); m_dedup.constraints.insert(c1); store(c1); return c1; } } void constraint_manager::gc() { LOG_H1("gc"); gc_clauses(); gc_constraints(); } void constraint_manager::gc_clauses() { LOG_H3("gc_clauses"); // place to gc redundant clauses } void constraint_manager::gc_constraints() { LOG_H3("gc_constraints"); uint_set used_vars; for (auto const& cls : m_clauses) for (auto const& cl : cls) for (auto lit : *cl) used_vars.insert(lit.var()); // anything on the search stack is justified by a clause? for (auto const& a : s.m_search) if (a.is_boolean()) used_vars.insert(a.lit().var()); for (unsigned i = 0; i < m_constraints.size(); ++i) { constraint* c = m_constraints[i]; if (c->has_bvar() && used_vars.contains(c->bvar())) continue; if (c->is_external()) continue; LOG("Erasing: " << show_deref(c)); erase_bvar(c); m_constraints.swap(i, m_constraints.size() - 1); m_constraints.pop_back(); --i; } } bool constraint_manager::should_gc() { return false; // TODO control gc decay rate return m_constraints.size() > m_num_external + 100; } signed_constraint constraint_manager::ule(pdd const& a, pdd const& b) { bool is_positive = true; pdd lhs = a; pdd rhs = b; ule_constraint::simplify(is_positive, lhs, rhs); return { dedup(alloc(ule_constraint, *this, lhs, rhs)), is_positive }; } signed_constraint constraint_manager::eq(pdd const& p) { return ule(p, p.manager().zero()); } signed_constraint constraint_manager::ult(pdd const& a, pdd const& b) { return ~ule(b, a); } /** * encode that the i'th bit of p is 1. * It holds if p << (K - i - 1) >= 2^{K-1}, where K is the bit-width. */ signed_constraint constraint_manager::bit(pdd const& p, unsigned i) { unsigned K = p.manager().power_of_2(); pdd q = p * rational::power_of_two(K - i - 1); rational msb = rational::power_of_two(K - 1); return ule(p.manager().mk_val(msb), q); } signed_constraint constraint_manager::umul_ovfl(pdd const& a, pdd const& b) { return { dedup(alloc(umul_ovfl_constraint, *this, a, b)), true }; } signed_constraint constraint_manager::smul_ovfl(pdd const& a, pdd const& b) { return { dedup(alloc(smul_fl_constraint, *this, a, b, true)), true }; } signed_constraint constraint_manager::smul_udfl(pdd const& a, pdd const& b) { return { dedup(alloc(smul_fl_constraint, *this, a, b, false)), true }; } signed_constraint constraint_manager::lshr(pdd const& p, pdd const& q, pdd const& r) { return { dedup(alloc(op_constraint, *this, op_constraint::code::lshr_op, p, q, r)), true }; } signed_constraint constraint_manager::band(pdd const& p, pdd const& q, pdd const& r) { return { dedup(alloc(op_constraint, *this, op_constraint::code::and_op, p, q, r)), true }; } // To do signed comparison of bitvectors, flip the msb and do unsigned comparison: // // x <=s y <=> x + 2^(w-1) <=u y + 2^(w-1) // // Example for bit width 3: // 111 -1 // 110 -2 // 101 -3 // 100 -4 // 011 3 // 010 2 // 001 1 // 000 0 // // Argument: flipping the msb swaps the negative and non-negative blocks // signed_constraint constraint_manager::sle(pdd const& a, pdd const& b) { auto shift = rational::power_of_two(a.power_of_2() - 1); return ule(a + shift, b + shift); } signed_constraint constraint_manager::slt(pdd const& a, pdd const& b) { auto shift = rational::power_of_two(a.power_of_2() - 1); return ult(a + shift, b + shift); } std::pair constraint_manager::quot_rem(pdd const& a, pdd const& b) { auto& m = a.manager(); unsigned sz = m.power_of_2(); if (a.is_val() && b.is_val()) { // TODO: just evaluate? } constraint_dedup::quot_rem_args args({a, b}); auto it = m_dedup.quot_rem_expr.find_iterator(args); if (it != m_dedup.quot_rem_expr.end()) return { m.mk_var(it->m_value.first), m.mk_var(it->m_value.second) }; pdd q = m.mk_var(s.add_var(sz)); // quotient pdd r = m.mk_var(s.add_var(sz)); // remainder m_dedup.quot_rem_expr.insert(args, { q.var(), r.var() }); // Axioms for quotient/remainder: // a = b*q + r // multiplication does not overflow in b*q // addition does not overflow in (b*q) + r; for now expressed as: r <= bq+r (TODO: maybe the version with disjunction is easier for the solver; should compare later) // b ≠ 0 ==> r < b // b = 0 ==> q = -1 s.add_eq(a, b * q + r); s.add_umul_noovfl(b, q); s.add_ule(r, b*q+r); auto c_eq = eq(b); s.add_clause(c_eq, ult(r, b), false); s.add_clause(~c_eq, eq(q + 1), false); return {q, r}; } pdd constraint_manager::lshr(pdd const& p, pdd const& q) { auto& m = p.manager(); unsigned sz = m.power_of_2(); op_constraint_args const args(op_constraint::code::lshr_op, p, q); auto it = m_dedup.op_constraint_expr.find_iterator(args); if (it != m_dedup.op_constraint_expr.end()) return m.mk_var(it->m_value); pdd r = m.mk_var(s.add_var(sz)); m_dedup.op_constraint_expr.insert(args, r.var()); s.assign_eh(lshr(p, q, r), null_dependency); return r; } pdd constraint_manager::bnot(pdd const& p) { return -p - 1; } pdd constraint_manager::band(pdd const& p, pdd const& q) { auto& m = p.manager(); unsigned sz = m.power_of_2(); op_constraint_args const args(op_constraint::code::and_op, p, q); auto it = m_dedup.op_constraint_expr.find_iterator(args); if (it != m_dedup.op_constraint_expr.end()) return m.mk_var(it->m_value); pdd r = m.mk_var(s.add_var(sz)); m_dedup.op_constraint_expr.insert(args, r.var()); s.assign_eh(band(p, q, r), null_dependency); return r; } pdd constraint_manager::bor(pdd const& p, pdd const& q) { // From "Hacker's Delight", section 2-2. Addition Combined with Logical Operations; // found via Int-Blasting paper; see https://doi.org/10.1007/978-3-030-94583-1_24 return (p + q) - band(p, q); } pdd constraint_manager::bxor(pdd const& p, pdd const& q) { // From "Hacker's Delight", section 2-2. Addition Combined with Logical Operations; // found via Int-Blasting paper; see https://doi.org/10.1007/978-3-030-94583-1_24 return (p + q) - 2*band(p, q); } pdd constraint_manager::bnand(pdd const& p, pdd const& q) { return bnot(band(p, q)); } pdd constraint_manager::bnor(pdd const& p, pdd const& q) { return bnot(bor(p, q)); } }