/*++ Copyright (c) 2020 Microsoft Corporation Module Name: bv_delay_internalize.cpp Abstract: Checking of relevant bv nodes, and if required delay axiomatize Author: Nikolaj Bjorner (nbjorner) 2020-09-22 --*/ #include "sat/smt/bv_solver.h" #include "sat/smt/euf_solver.h" namespace bv { bool solver::check_delay_internalized(expr* e) { euf::enode* n = expr2enode(e); if (!n) return true; if (!ctx.is_relevant(n)) return true; if (get_internalize_mode(e) != internalize_mode::delay_i) return true; SASSERT(bv.is_bv(e)); switch (to_app(e)->get_decl_kind()) { case OP_BMUL: return check_mul(to_app(e)); case OP_BSMUL_NO_OVFL: case OP_BSMUL_NO_UDFL: case OP_BUMUL_NO_OVFL: return check_bool_eval(expr2enode(e)); default: return check_bv_eval(expr2enode(e)); } return true; } bool solver::should_bit_blast(app* e) { if (bv.get_bv_size(e) <= 12) return true; unsigned num_vars = e->get_num_args(); for (expr* arg : *e) if (m.is_value(arg)) --num_vars; if (num_vars <= 1) return true; if (bv.is_bv_add(e) && num_vars * bv.get_bv_size(e) <= 64) return true; return false; } expr_ref solver::eval_args(euf::enode* n, expr_ref_vector& args) { for (euf::enode* arg : euf::enode_args(n)) args.push_back(eval_bv(arg)); expr_ref r(m.mk_app(n->get_decl(), args), m); ctx.get_rewriter()(r); return r; } expr_ref solver::eval_bv(euf::enode* n) { rational val; theory_var v = n->get_th_var(get_id()); SASSERT(get_fixed_value(v, val)); VERIFY(get_fixed_value(v, val)); return expr_ref(bv.mk_numeral(val, get_bv_size(v)), m); } /** \brief expose the multiplication circuit lazily. It adds clauses for multiplier output one by one to enforce the semantics of multipliers. */ bool solver::check_lazy_mul(app* e, expr* arg_value, expr* mul_value) { SASSERT(e->get_num_args() >= 2); expr_ref_vector args(m), new_args(m), new_out(m); lazy_mul* lz = nullptr; rational v0, v1; unsigned sz, diff = 0; VERIFY(bv.is_numeral(arg_value, v0, sz)); VERIFY(bv.is_numeral(mul_value, v1)); for (diff = 0; diff < sz; ++diff) if (v0.get_bit(diff) != v1.get_bit(diff)) break; SASSERT(diff < sz); auto set_bits = [&](unsigned j, expr_ref_vector& bits) { bits.reset(); for (unsigned i = 0; i < sz; ++i) bits.push_back(bv.mk_bit2bool(e->get_arg(0), j)); }; if (!m_lazymul.find(e, lz)) { set_bits(0, args); for (unsigned j = 1; j < e->get_num_args(); ++j) { new_out.reset(); set_bits(j, new_args); m_bb.mk_multiplier(sz, args.data(), new_args.data(), new_out); new_out.swap(args); } lz = alloc(lazy_mul, e, args); m_lazymul.insert(e, lz); ctx.push(new_obj_trail(lz)); ctx.push(insert_obj_map(m_lazymul, e)); } if (lz->m_out.size() == lz->m_bits) return false; for (unsigned i = lz->m_bits; i <= diff; ++i) { sat::literal bit1 = mk_literal(lz->m_out.get(i)); sat::literal bit2 = mk_literal(bv.mk_bit2bool(e, i)); add_equiv(bit1, bit2); } ctx.push(value_trail(lz->m_bits)); IF_VERBOSE(1, verbose_stream() << "expand lazy mul " << mk_pp(e, m) << " to " << diff << "\n"); lz->m_bits = diff; return false; } bool solver::check_mul(app* e) { SASSERT(e->get_num_args() >= 2); expr_ref_vector args(m); euf::enode* n = expr2enode(e); if (!reflect()) return false; auto r1 = eval_bv(n); auto r2 = eval_args(n, args); if (r1 == r2) return true; TRACE("bv", tout << mk_bounded_pp(e, m) << " evaluates to " << r1 << " arguments: " << args << "\n";); // check x*0 = 0 if (!check_mul_zero(e, args, r1, r2)) return false; // check x*1 = x if (!check_mul_one(e, args, r1, r2)) return false; // Add propagation axiom for arguments if (!check_mul_invertibility(e, args, r1)) return false; #if 0 // unsound? if (!check_lazy_mul(e, r1, r2)) return false; #endif // Some other possible approaches: // algebraic rules: // x*(y+z), and there are nodes for x*y or x*z -> x*(y+z) = x*y + x*z // compute S-polys for a set of constraints. // Hensel lifting: // The idea is dual to fixing high-order bits. Fix the low order bits where multiplication // is correct, and propagate on the next bit that shows a discrepancy. // check Montgommery properties: (x*y) mod p = (x mod p)*(y mod p) for small primes p // check ranges lo <= x <= hi, lo' <= y <= hi', lo*lo' < x*y <= hi*hi' for non-overflowing values. // check tangets hi >= y >= y0 and hi' >= x => x*y >= x*y0 if (m_cheap_axioms) return true; set_delay_internalize(e, internalize_mode::no_delay_i); internalize_circuit(e); return false; } /** * Add invertibility condition for multiplication * * x * y = z => (y | -y) & z = z * * This propagator relates to Niemetz and Preiner's consistency and invertibility conditions. * The idea is that the side-conditions for ensuring invertibility are valid * and in some cases are cheap to bit-blast. For multiplication, we include only * the _consistency_ condition because the side-constraints for invertibility * appear expensive (to paraphrase FMCAD 2020 paper): * x * s = t => (s = 0 or mcb(x << c, y << c)) * * for c = ctz(s) and y = (t >> c) / (s >> c) * * mcb(x,t/s) just mean that the bit-vectors are compatible as ternary bit-vectors, * which for propagation means that they are the same. */ bool solver::check_mul_invertibility(app* n, expr_ref_vector const& arg_values, expr* value) { expr_ref inv(m); auto invert = [&](expr* s, expr* t) { return bv.mk_bv_and(bv.mk_bv_or(s, bv.mk_bv_neg(s)), t); }; auto check_invert = [&](expr* s) { inv = invert(s, value); ctx.get_rewriter()(inv); return inv == value; }; auto add_inv = [&](expr* s) { inv = invert(s, n); TRACE("bv", tout << "enforce " << inv << "\n";); add_unit(eq_internalize(inv, n)); }; bool ok = true; for (unsigned i = 0; i < arg_values.size(); ++i) { if (!check_invert(arg_values[i])) { add_inv(n->get_arg(i)); ok = false; } } return ok; } /* * Check that multiplication with 0 is correctly propagated. * If not, create algebraic axioms enforcing 0*x = 0 and x*0 = 0 * * z = 0, then lsb(x) + 1 + lsb(y) + 1 >= sz */ bool solver::check_mul_zero(app* n, expr_ref_vector const& arg_values, expr* mul_value, expr* arg_value) { SASSERT(mul_value != arg_value); SASSERT(!(bv.is_zero(mul_value) && bv.is_zero(arg_value))); if (bv.is_zero(arg_value) && false) { unsigned sz = n->get_num_args(); expr_ref_vector args(m, sz, n->get_args()); for (unsigned i = 0; i < sz && !s().inconsistent(); ++i) { args[i] = arg_value; expr_ref r(m.mk_app(n->get_decl(), args), m); set_delay_internalize(r, internalize_mode::init_bits_only_i); // do not bit-blast this multiplier. args[i] = n->get_arg(i); add_unit(eq_internalize(r, arg_value)); } IF_VERBOSE(2, verbose_stream() << "delay internalize @" << s().scope_lvl() << " " << mk_pp(n, m) << "\n"); return false; } if (bv.is_zero(mul_value)) { return true; #if 0 vector lsb_bits; for (expr* arg : *n) { expr_ref_vector bits(m); encode_lsb_tail(arg, bits); lsb_bits.push_back(bits); } expr_ref_vector zs(m); literal_vector lits; expr_ref eq(m.mk_eq(n, mul_value), m); lits.push_back(~b_internalize(eq)); for (unsigned i = 0; i < lsb_bits.size(); ++i) { } expr_ref z(m.mk_or(zs), m); add_clause(lits); // sum of lsb should be at least sz return true; #endif } return true; } /*** * check that 1*y = y, x*1 = x */ bool solver::check_mul_one(app* n, expr_ref_vector const& arg_values, expr* mul_value, expr* arg_value) { if (arg_values.size() != 2) return true; if (bv.is_one(arg_values[0])) { expr_ref mul1(m.mk_app(n->get_decl(), arg_values[0], n->get_arg(1)), m); set_delay_internalize(mul1, internalize_mode::init_bits_only_i); add_unit(eq_internalize(mul1, n->get_arg(1))); TRACE("bv", tout << mul1 << "\n";); return false; } if (bv.is_one(arg_values[1])) { expr_ref mul1(m.mk_app(n->get_decl(), n->get_arg(0), arg_values[1]), m); set_delay_internalize(mul1, internalize_mode::init_bits_only_i); add_unit(eq_internalize(mul1, n->get_arg(0))); TRACE("bv", tout << mul1 << "\n";); return false; } return true; } /** * The i'th bit in xs is 1 if the most significant bit of x is i or higher. */ void solver::encode_msb_tail(expr* x, expr_ref_vector& xs) { theory_var v = expr2enode(x)->get_th_var(get_id()); sat::literal_vector const& bits = m_bits[v]; if (bits.empty()) return; expr_ref tmp = literal2expr(bits.back()); for (unsigned i = bits.size() - 1; i-- > 0; ) { sat::literal b = bits[i]; tmp = m.mk_or(literal2expr(b), tmp); xs.push_back(tmp); } }; /** * The i'th bit in xs is 1 if the least significant bit of x is i or lower. */ void solver::encode_lsb_tail(expr* x, expr_ref_vector& xs) { theory_var v = expr2enode(x)->get_th_var(get_id()); sat::literal_vector const& bits = m_bits[v]; if (bits.empty()) return; expr_ref tmp = literal2expr(bits[0]); for (unsigned i = 1; i < bits.size(); ++i) { auto b = bits[i]; tmp = m.mk_or(literal2expr(b), tmp); xs.push_back(tmp); } }; /** * Check non-overflow of unsigned multiplication. * * no_overflow(x, y) = > msb(x) + msb(y) <= sz; * msb(x) + msb(y) < sz => no_overflow(x,y) */ bool solver::check_umul_no_overflow(app* n, expr_ref_vector const& arg_values, expr* value) { SASSERT(arg_values.size() == 2); SASSERT(m.is_true(value) || m.is_false(value)); rational v0, v1; unsigned sz; VERIFY(bv.is_numeral(arg_values[0], v0, sz)); VERIFY(bv.is_numeral(arg_values[1], v1)); unsigned msb0 = v0.get_num_bits(); unsigned msb1 = v1.get_num_bits(); expr_ref_vector xs(m), ys(m), zs(m); if (m.is_true(value) && msb0 + msb1 > sz && !v0.is_zero() && !v1.is_zero()) { sat::literal no_overflow = expr2literal(n); encode_msb_tail(n->get_arg(0), xs); encode_msb_tail(n->get_arg(1), ys); for (unsigned i = 1; i <= sz; ++i) { sat::literal bit0 = mk_literal(xs.get(i - 1)); sat::literal bit1 = mk_literal(ys.get(sz - i)); add_clause(~no_overflow, ~bit0, ~bit1); } return false; } else if (m.is_false(value) && msb0 + msb1 < sz) { encode_msb_tail(n->get_arg(0), xs); encode_msb_tail(n->get_arg(1), ys); sat::literal_vector lits; lits.push_back(expr2literal(n)); for (unsigned i = 1; i < sz; ++i) { expr_ref msb_ge_sz(m.mk_and(xs.get(i - 1), ys.get(sz - i - 1)), m); lits.push_back(mk_literal(msb_ge_sz)); } add_clause(lits); return false; } return true; } bool solver::check_bv_eval(euf::enode* n) { expr_ref_vector args(m); app* a = n->get_app(); SASSERT(bv.is_bv(a)); auto r1 = eval_bv(n); auto r2 = eval_args(n, args); if (r1 == r2) return true; if (m_cheap_axioms) return true; set_delay_internalize(a, internalize_mode::no_delay_i); internalize_circuit(a); return false; } bool solver::check_bool_eval(euf::enode* n) { expr_ref_vector args(m); SASSERT(m.is_bool(n->get_expr())); sat::literal lit = expr2literal(n->get_expr()); expr* r1 = m.mk_bool_val(s().value(lit) == l_true); auto r2 = eval_args(n, args); if (r1 == r2) return true; app* a = n->get_app(); if (bv.is_bv_umul_no_ovfl(a) && !check_umul_no_overflow(a, args, r1)) return false; if (m_cheap_axioms) return true; set_delay_internalize(a, internalize_mode::no_delay_i); internalize_circuit(a); return false; } void solver::set_delay_internalize(expr* e, internalize_mode mode) { if (!m_delay_internalize.contains(e)) ctx.push(insert_obj_map(m_delay_internalize, e)); else ctx.push(remove_obj_map(m_delay_internalize, e, m_delay_internalize[e])); m_delay_internalize.insert(e, mode); } solver::internalize_mode solver::get_internalize_mode(expr* e) { if (!bv.is_bv(e)) return internalize_mode::no_delay_i; if (!get_config().m_bv_delay) return internalize_mode::no_delay_i; if (!reflect()) return internalize_mode::no_delay_i; internalize_mode mode; switch (to_app(e)->get_decl_kind()) { case OP_BMUL: case OP_BSMUL_NO_OVFL: case OP_BSMUL_NO_UDFL: case OP_BUMUL_NO_OVFL: case OP_BSMOD_I: case OP_BUREM_I: case OP_BSREM_I: case OP_BUDIV_I: case OP_BSDIV_I: case OP_BADD: if (should_bit_blast(to_app(e))) return internalize_mode::no_delay_i; mode = internalize_mode::delay_i; if (!m_delay_internalize.find(e, mode)) m_delay_internalize.insert(e, mode); return mode; default: return internalize_mode::no_delay_i; } } }