#include "nlsat/levelwise.h" #include "nlsat/nlsat_types.h" #include "nlsat/nlsat_assignment.h" #include "math/polynomial/algebraic_numbers.h" #include "math/polynomial/polynomial.h" #include "nlsat_common.h" #include "util/z3_exception.h" #include #include #include #include static bool is_set(unsigned k) { return static_cast(k) != -1; } namespace nlsat { enum relation_mode { biggest_cell, chain, lowest_degree }; struct nullified_poly_exception {}; struct levelwise::impl { solver& m_solver; polynomial_ref_vector const& m_P; unsigned m_n; // maximal variable we project from pmanager& m_pm; anum_manager& m_am; polynomial::cache& m_cache; std::vector m_I; // intervals for variables 0..m_n-1 unsigned m_level = 0; // current level being processed relation_mode m_relation_mode = chain; polynomial_ref_vector m_psc_tmp; // scratch for PSC chains bool m_fail = false; assignment const& sample() const { return m_solver.sample(); } // Utility: call fn for each distinct irreducible factor of poly template void for_each_distinct_factor(polynomial_ref const& poly_in, Func&& fn) { if (!poly_in || is_zero(poly_in) || is_const(poly_in)) return; polynomial_ref poly(poly_in); polynomial_ref_vector factors(m_pm); ::nlsat::factor(poly, m_cache, factors); for (unsigned i = 0; i < factors.size(); ++i) { polynomial_ref f(factors.get(i), m_pm); if (!f || is_zero(f) || is_const(f)) continue; fn(f); } } struct root_function { scoped_anum val; indexed_root_expr ire; root_function(anum_manager& am, poly* p, unsigned idx, anum const& v) : val(am), ire{ p, idx } { am.set(val, v); } root_function(root_function&& other) noexcept : val(other.val.m()), ire(other.ire) { val = other.val; } root_function(root_function const&) = delete; root_function& operator=(root_function const&) = delete; root_function& operator=(root_function&& other) noexcept { val = other.val; ire = other.ire; return *this; } }; // Root functions (Theta) and the chosen relation (≼) on a given level. struct relation_E { std::vector m_rfunc; // Θ: root functions on current level std::vector> m_pairs; // ≼ relation on indices into m_rfunc bool empty() const { return m_rfunc.empty() && m_pairs.empty(); } void clear() { m_pairs.clear(); m_rfunc.clear(); } void add_pair(unsigned j, unsigned k) { m_pairs.emplace_back(j, k); } }; relation_E m_rel; impl( solver& solver, polynomial_ref_vector const& ps, var max_x, assignment const&, pmanager& pm, anum_manager& am, polynomial::cache& cache) : m_solver(solver), m_P(ps), m_n(max_x), m_pm(pm), m_am(am), m_cache(cache), m_psc_tmp(m_pm) { m_I.reserve(m_n); for (unsigned i = 0; i < m_n; ++i) { m_I.emplace_back(m_pm); // Avoid accidental reads of uninitialized indices. m_I.back().l_index = 0; m_I.back().u_index = 0; } } void fail() { throw nullified_poly_exception(); } static void reset_interval(root_function_interval& I) { I.section = false; I.l = nullptr; I.u = nullptr; I.l_index = 0; I.u_index = 0; } // PSC-based discriminant candidate (first non-constant/non-zero PSC of p and d/dx p). polynomial_ref psc_discriminant(polynomial_ref const& p_in, unsigned x) { if (!p_in || is_zero(p_in) || is_const(p_in)) return polynomial_ref(m_pm); if (m_pm.degree(p_in, x) < 2) return polynomial_ref(m_pm); polynomial_ref p(p_in); polynomial_ref d = derivative(p, x); polynomial_ref_vector& chain = m_psc_tmp; chain.reset(); m_cache.psc_chain(p, d, x, chain); polynomial_ref disc(m_pm); for (unsigned i = 0; i < chain.size(); ++i) { disc = polynomial_ref(chain.get(i), m_pm); if (!disc || is_zero(disc) || is_const(disc)) continue; return disc; } return polynomial_ref(m_pm); } // PSC-based resultant candidate (first non-zero/non-constant PSC of a and b). polynomial_ref psc_resultant(poly* a, poly* b, unsigned x) { if (!a || !b) return polynomial_ref(m_pm); polynomial_ref pa(a, m_pm); polynomial_ref pb(b, m_pm); polynomial_ref_vector& chain = m_psc_tmp; chain.reset(); m_cache.psc_chain(pa, pb, x, chain); polynomial_ref r(m_pm); for (unsigned i = 0; i < chain.size(); ++i) { r = polynomial_ref(chain.get(i), m_pm); if (!r || is_zero(r)) continue; if (is_const(r)) return polynomial_ref(m_pm); return r; } return polynomial_ref(m_pm); } void insert_factorized(todo_set& P, polynomial_ref const& poly) { for_each_distinct_factor(poly, [&](polynomial_ref const& f) { P.insert(f.get()); }); } // Select a coefficient c of p (wrt x) such that c(s) != 0, or return null. polynomial_ref choose_nonzero_coeff(polynomial_ref const& p, unsigned x) { unsigned deg = m_pm.degree(p, x); undef_var_assignment prefix(sample(), x); polynomial_ref coeff(m_pm); for (int j = static_cast(deg); j >= 0; --j) { coeff = m_pm.coeff(p, x, static_cast(j)); if (!coeff || is_zero(coeff)) continue; if (m_am.eval_sign_at(coeff, prefix) != 0) return coeff; } return polynomial_ref(m_pm); } void add_projections_for(todo_set& P, polynomial_ref const& p, unsigned x, polynomial_ref const& nonzero_coeff) { // Line 11 (non-null witness coefficient) if (nonzero_coeff && !is_const(nonzero_coeff)) insert_factorized(P, nonzero_coeff); // Line 12 (disc + leading coefficient) insert_factorized(P, psc_discriminant(p, x)); unsigned deg = m_pm.degree(p, x); polynomial_ref lc(m_pm); lc = m_pm.coeff(p, x, deg); insert_factorized(P, lc); } // Relation construction heuristics (same intent as previous implementation). void fill_relation_with_biggest_cell_heuristic(unsigned l, unsigned u) { if (is_set(l)) for (unsigned j = 0; j < l; ++j) m_rel.add_pair(j, l); if (is_set(u)) for (unsigned j = u + 1; j < m_rel.m_rfunc.size(); ++j) m_rel.add_pair(u, j); if (is_set(l) && is_set(u)) { SASSERT(l + 1 == u); m_rel.add_pair(l, u); } } void fill_relation_with_chain_heuristic(unsigned l, unsigned u) { if (is_set(l)) for (unsigned j = 0; j < l; ++j) m_rel.add_pair(j, j + 1); if (is_set(u)) for (unsigned j = u + 1; j < m_rel.m_rfunc.size(); ++j) m_rel.add_pair(j - 1, j); if (is_set(l) && is_set(u)) { SASSERT(l + 1 == u); m_rel.add_pair(l, u); } } void fill_relation_with_min_degree_resultant_sum(unsigned l, unsigned u) { auto const& rfs = m_rel.m_rfunc; unsigned n = rfs.size(); if (n == 0) return; std::vector degs; degs.reserve(n); for (unsigned i = 0; i < n; ++i) degs.push_back(m_pm.degree(rfs[i].ire.p, m_level)); if (is_set(l)) { unsigned min_idx = l; unsigned min_deg = degs[l]; for (int j = static_cast(l) - 1; j >= 0; --j) { unsigned jj = static_cast(j); m_rel.add_pair(jj, min_idx); if (degs[jj] < min_deg) { min_deg = degs[jj]; min_idx = jj; } } } if (is_set(u)) { unsigned min_idx = u; unsigned min_deg = degs[u]; for (unsigned j = u + 1; j < n; ++j) { m_rel.add_pair(min_idx, j); if (degs[j] < min_deg) { min_deg = degs[j]; min_idx = j; } } } if (is_set(l) && is_set(u)) { SASSERT(l + 1 == u); m_rel.add_pair(l, u); } } void fill_relation_for_section(unsigned l) { auto const& rfs = m_rel.m_rfunc; unsigned n = rfs.size(); if (n == 0) return; SASSERT(is_set(l)); SASSERT(l < n); switch (m_relation_mode) { case biggest_cell: for (unsigned j = 0; j < l; ++j) m_rel.add_pair(j, l); for (unsigned j = l + 1; j < n; ++j) m_rel.add_pair(l, j); break; case chain: for (unsigned j = 0; j < l; ++j) m_rel.add_pair(j, j + 1); for (unsigned j = l + 1; j < n; ++j) m_rel.add_pair(j - 1, j); break; case lowest_degree: { std::vector degs; degs.reserve(n); for (unsigned i = 0; i < n; ++i) degs.push_back(m_pm.degree(rfs[i].ire.p, m_level)); unsigned min_idx = l; unsigned min_deg = degs[l]; for (int j = static_cast(l) - 1; j >= 0; --j) { unsigned jj = static_cast(j); m_rel.add_pair(jj, min_idx); if (degs[jj] < min_deg) { min_deg = degs[jj]; min_idx = jj; } } min_idx = l; min_deg = degs[l]; for (unsigned j = l + 1; j < n; ++j) { m_rel.add_pair(min_idx, j); if (degs[j] < min_deg) { min_deg = degs[j]; min_idx = j; } } break; } default: NOT_IMPLEMENTED_YET(); } } void fill_relation_pairs(unsigned l, unsigned u) { auto const& I = m_I[m_level]; if (I.section) { fill_relation_for_section(l); return; } switch (m_relation_mode) { case biggest_cell: fill_relation_with_biggest_cell_heuristic(l, u); break; case chain: fill_relation_with_chain_heuristic(l, u); break; case lowest_degree: fill_relation_with_min_degree_resultant_sum(l, u); break; default: NOT_IMPLEMENTED_YET(); } } // Build Θ (root functions), pick I_level around sample(level), and build relation ≼. void build_interval_and_relation(unsigned level, polynomial_ref_vector const& level_ps) { m_level = level; m_rel.clear(); reset_interval(m_I[level]); for (unsigned i = 0; i < level_ps.size(); ++i) { poly* p = level_ps.get(i); scoped_anum_vector roots(m_am); m_am.isolate_roots(polynomial_ref(p, m_pm), undef_var_assignment(sample(), level), roots); for (unsigned k = 0; k < roots.size(); ++k) m_rel.m_rfunc.emplace_back(m_am, p, k + 1, roots[k]); } if (m_rel.m_rfunc.empty()) return; anum const& v = sample().value(level); auto cmp = [&](root_function const& a, root_function const& b) { if (a.ire.p == b.ire.p) return a.ire.i < b.ire.i; if (m_am.lt(a.val, b.val)) return true; if (m_am.lt(b.val, a.val)) return false; // deterministic tie-break: same value unsigned ida = m_pm.id(a.ire.p); unsigned idb = m_pm.id(b.ire.p); if (ida != idb) return ida < idb; return a.ire.i < b.ire.i; }; auto& rfs = m_rel.m_rfunc; auto mid = std::partition(rfs.begin(), rfs.end(), [&](root_function const& f) { return m_am.compare(f.val, v) <= 0; }); std::sort(rfs.begin(), mid, cmp); std::sort(mid, rfs.end(), cmp); unsigned l_index = static_cast(-1); unsigned u_index = static_cast(-1); if (mid != rfs.begin()) { l_index = static_cast((mid - rfs.begin()) - 1); auto& r = *(mid - 1); if (m_am.eq(r.val, v)) { m_I[level].section = true; m_I[level].l = r.ire.p; m_I[level].l_index = r.ire.i; } else { m_I[level].l = r.ire.p; m_I[level].l_index = r.ire.i; if (mid != rfs.end()) { u_index = l_index + 1; m_I[level].u = mid->ire.p; m_I[level].u_index = mid->ire.i; } } } else { // sample is below all roots: I = (-oo, theta_1) u_index = 0; auto& r = *mid; m_I[level].u = r.ire.p; m_I[level].u_index = r.ire.i; } fill_relation_pairs(l_index, u_index); } void add_relation_resultants(todo_set& P, unsigned level) { std::set> added_pairs; for (auto const& pr : m_rel.m_pairs) { poly* a = m_rel.m_rfunc[pr.first].ire.p; poly* b = m_rel.m_rfunc[pr.second].ire.p; if (!a || !b) continue; unsigned id1 = m_pm.id(a); unsigned id2 = m_pm.id(b); if (id1 == id2) continue; std::pair key = id1 < id2 ? std::make_pair(id1, id2) : std::make_pair(id2, id1); if (!added_pairs.insert(key).second) continue; insert_factorized(P, psc_resultant(a, b, level)); } } // Top level (m_n): add resultants between adjacent roots of different polynomials. void add_adjacent_root_resultants(todo_set& P, polynomial_ref_vector const& top_ps) { std::vector> root_vals; for (unsigned i = 0; i < top_ps.size(); ++i) { poly* p = top_ps.get(i); scoped_anum_vector roots(m_am); m_am.isolate_roots(polynomial_ref(p, m_pm), undef_var_assignment(sample(), m_n), roots); for (unsigned k = 0; k < roots.size(); ++k) { scoped_anum v(m_am); m_am.set(v, roots[k]); root_vals.emplace_back(std::move(v), p); } } if (root_vals.size() < 2) return; std::sort(root_vals.begin(), root_vals.end(), [&](auto const& a, auto const& b) { return m_am.lt(a.first, b.first); }); std::set> added_pairs; for (unsigned j = 0; j + 1 < root_vals.size(); ++j) { poly* p1 = root_vals[j].second; poly* p2 = root_vals[j + 1].second; if (!p1 || !p2) continue; unsigned id1 = m_pm.id(p1); unsigned id2 = m_pm.id(p2); if (id1 == id2) continue; std::pair key = id1 < id2 ? std::make_pair(id1, id2) : std::make_pair(id2, id1); if (!added_pairs.insert(key).second) continue; insert_factorized(P, psc_resultant(p1, p2, m_n)); } } void process_level(todo_set& P, unsigned level, polynomial_ref_vector const& level_ps) { // Line 10/11: detect nullification + pick a non-zero coefficient witness per p. std::vector witnesses; witnesses.reserve(level_ps.size()); for (unsigned i = 0; i < level_ps.size(); ++i) { polynomial_ref p(level_ps.get(i), m_pm); polynomial_ref w = choose_nonzero_coeff(p, level); if (!w) fail(); witnesses.push_back(w); } // Lines 3-8: Θ + I_level + relation ≼ build_interval_and_relation(level, level_ps); // Lines 11-12: add projections for each p for (unsigned i = 0; i < level_ps.size(); ++i) { polynomial_ref p(level_ps.get(i), m_pm); add_projections_for(P, p, level, witnesses[i]); } // Lines 13-14: add resultants for chosen relation pairs add_relation_resultants(P, level); } void process_top_level(todo_set& P, polynomial_ref_vector const& top_ps) { std::vector witnesses; witnesses.reserve(top_ps.size()); for (unsigned i = 0; i < top_ps.size(); ++i) { polynomial_ref p(top_ps.get(i), m_pm); polynomial_ref w = choose_nonzero_coeff(p, m_n); if (!w) fail(); witnesses.push_back(w); } // Resultants between adjacent root functions (a lightweight ordering for the top level). add_adjacent_root_resultants(P, top_ps); // Projections (coeff witness, disc, leading coeff). for (unsigned i = 0; i < top_ps.size(); ++i) { polynomial_ref p(top_ps.get(i), m_pm); add_projections_for(P, p, m_n, witnesses[i]); } } std::vector single_cell_work() { if (m_n == 0) return m_I; todo_set P(m_cache, true); // Initialize P with distinct irreducible factors of the input polynomials. for (unsigned i = 0; i < m_P.size(); ++i) { polynomial_ref pi(m_P.get(i), m_pm); for_each_distinct_factor(pi, [&](polynomial_ref const& f) { P.insert(f.get()); }); } if (P.empty()) return m_I; // Process top level m_n (we project from x_{m_n} and do not return an interval for it). if (P.max_var() == m_n) { polynomial_ref_vector top_ps(m_pm); P.extract_max_polys(top_ps); process_top_level(P, top_ps); } // Now iteratively process remaining levels (descending). while (!P.empty()) { polynomial_ref_vector level_ps(m_pm); var level = P.extract_max_polys(level_ps); SASSERT(level < m_n); process_level(P, level, level_ps); } return m_I; } std::vector single_cell() { try { return single_cell_work(); } catch (nullified_poly_exception&) { m_fail = true; return m_I; } } }; levelwise::levelwise( nlsat::solver& solver, polynomial_ref_vector const& ps, var n, assignment const& s, pmanager& pm, anum_manager& am, polynomial::cache& cache) : m_impl(new impl(solver, ps, n, s, pm, am, cache)) {} levelwise::~levelwise() { delete m_impl; } std::vector levelwise::single_cell() { return m_impl->single_cell(); } bool levelwise::failed() const { return m_impl->m_fail; } } // namespace nlsat // Free pretty-printer for symbolic_interval std::ostream& nlsat::display(std::ostream& out, solver& s, levelwise::root_function_interval const& I) { if (I.section) { out << "Section: "; if (I.l == nullptr) out << "(undef)"; else { ::nlsat::display(out, s, I.l); out << "[root_index:" << I.l_index << "]"; } } else { out << "Sector: ("; if (I.l_inf()) out << "-oo"; else { ::nlsat::display(out, s, I.l); out << "[root_index:" << I.l_index << "]"; } out << ", "; if (I.u_inf()) out << "+oo"; else { ::nlsat::display(out, s, I.u); out << "[root_index:" << I.u_index << "]"; } out << ")"; } return out; }