/*++ Copyright (c) 2006 Microsoft Corporation Module Name: dl_context.cpp Abstract: Author: Leonardo de Moura (leonardo) 2010-05-18. Revision History: --*/ #include #include #include"arith_decl_plugin.h" #include"bv_decl_plugin.h" #include"dl_context.h" #include"for_each_expr.h" #include"ast_smt_pp.h" #include"ast_smt2_pp.h" #include"datatype_decl_plugin.h" #include"scoped_proof.h" #include"fixedpoint_params.hpp" namespace datalog { // ----------------------------------- // // context::sort_domain // // ----------------------------------- class context::sort_domain { private: sort_kind m_kind; protected: sort_ref m_sort; bool m_limited_size; uint64 m_size; sort_domain(sort_kind k, context & ctx, sort * s) : m_kind(k), m_sort(s, ctx.get_manager()) { m_limited_size = ctx.get_decl_util().try_get_size(s, m_size); } public: virtual ~sort_domain() {} sort_kind get_kind() const { return m_kind; } virtual unsigned get_constant_count() const = 0; virtual void print_element(finite_element el_num, std::ostream & out) = 0; }; class context::symbol_sort_domain : public sort_domain { typedef map sym2num; typedef svector num2sym; sym2num m_el_numbers; num2sym m_el_names; public: symbol_sort_domain(context & ctx, sort * s) : sort_domain(SK_SYMBOL, ctx, s) {} finite_element get_number(symbol sym) { //we number symbols starting from zero, so table->size() is equal to the //index of the symbol to be added next unsigned newIdx = m_el_numbers.size(); sym2num::entry* sym_e = m_el_numbers.insert_if_not_there2(sym, newIdx); unsigned idx=sym_e->get_data().m_value; if (idx==newIdx) { m_el_names.push_back(sym); SASSERT(m_el_names.size()==m_el_numbers.size()); } if (m_limited_size && idx>=m_size) { std::stringstream sstm; sstm << "sort " << m_sort->get_name() << " contains more constants than its declared size " << m_size; throw default_exception(sstm.str()); } return idx; } virtual unsigned get_constant_count() const { return m_el_names.size(); } virtual void print_element(finite_element el_num, std::ostream & out) { if (el_num>=m_el_names.size()) { out << el_num; return; } out << m_el_names[el_num]; } }; class context::uint64_sort_domain : public sort_domain { typedef map > el2num; typedef svector num2el; el2num m_el_numbers; num2el m_el_names; public: uint64_sort_domain(context & ctx, sort * s) : sort_domain(SK_UINT64, ctx, s) {} finite_element get_number(uint64 el) { //we number symbols starting from zero, so table->size() is equal to the //index of the symbol to be added next unsigned newIdx = m_el_numbers.size(); el2num::entry* sym_e = m_el_numbers.insert_if_not_there2(el, newIdx); unsigned idx=sym_e->get_data().m_value; if (idx==newIdx) { m_el_names.push_back(el); SASSERT(m_el_names.size()==m_el_numbers.size()); } if (m_limited_size && idx>=m_size) { std::stringstream sstm; sstm << "sort " << m_sort->get_name() << " contains more constants than its declared size " << m_size; throw default_exception(sstm.str()); } return idx; } virtual unsigned get_constant_count() const { return m_el_names.size(); } virtual void print_element(finite_element el_num, std::ostream & out) { if (el_num >= m_el_names.size()) { out << "get_name() << ":" << el_num << '>'; return; } out << m_el_names[el_num]; } }; // ----------------------------------- // // trail stack for restoring rules // // ----------------------------------- class context::restore_rules : public trail { rule_set* m_old_rules; void reset() { dealloc(m_old_rules); m_old_rules = 0; } public: restore_rules(rule_set& r): m_old_rules(alloc(rule_set, r)) {} virtual ~restore_rules() {} virtual void undo(context& ctx) { ctx.replace_rules(*m_old_rules); reset(); } }; template class restore_vec_size_trail : public trail { Vec& m_vector; unsigned m_old_size; public: restore_vec_size_trail(Vec& v): m_vector(v), m_old_size(v.size()) {} virtual ~restore_vec_size_trail() {} virtual void undo(Ctx& ctx) { m_vector.shrink(m_old_size); } }; void context::push() { m_trail.push_scope(); m_trail.push(restore_rules(m_rule_set)); m_trail.push(restore_vec_size_trail(m_rule_fmls)); m_trail.push(restore_vec_size_trail(m_background)); } void context::pop() { if (m_trail.get_num_scopes() == 0) { throw default_exception("there are no backtracking points to pop to"); } m_trail.pop_scope(1); } // ----------------------------------- // // context // // ----------------------------------- context::context(ast_manager & m, register_engine_base& re, smt_params& fp, params_ref const& pa): m(m), m_register_engine(re), m_fparams(fp), m_params_ref(pa), m_params(alloc(fixedpoint_params, m_params_ref)), m_decl_util(m), m_rewriter(m), m_var_subst(m), m_rule_manager(*this), m_elim_unused_vars(m), m_abstractor(m), m_contains_p(*this), m_check_pred(m_contains_p, m), m_transf(*this), m_trail(*this), m_pinned(m), m_vars(m), m_rule_set(*this), m_transformed_rule_set(*this), m_rule_fmls_head(0), m_rule_fmls(m), m_background(m), m_mc(0), m_rel(0), m_engine(0), m_closed(false), m_saturation_was_run(false), m_last_status(OK), m_last_answer(m), m_engine_type(LAST_ENGINE), m_cancel(false) { re.set_context(this); } context::~context() { reset(); dealloc(m_params); } void context::reset() { m_trail.reset(); m_rule_set.reset(); m_rule_fmls_head = 0; m_rule_fmls.reset(); m_rule_names.reset(); m_argument_var_names.reset(); m_preds.reset(); m_preds_by_name.reset(); reset_dealloc_values(m_sorts); m_engine = 0; m_rel = 0; } bool context::is_fact(app * head) const { return m_rule_manager.is_fact(head); } bool context::has_sort_domain(relation_sort s) const { return m_sorts.contains(s); } context::sort_domain & context::get_sort_domain(relation_sort s) { return *m_sorts.find(s); } const context::sort_domain & context::get_sort_domain(relation_sort s) const { return *m_sorts.find(s); } bool context::generate_proof_trace() const { return m_params->generate_proof_trace(); } bool context::output_profile() const { return m_params->output_profile(); } bool context::output_tuples() const { return m_params->output_tuples(); } bool context::use_map_names() const { return m_params->use_map_names(); } bool context::fix_unbound_vars() const { return m_params->fix_unbound_vars(); } symbol context::default_table() const { return m_params->default_table(); } symbol context::default_relation() const { return m_params->default_relation(); } // external_relation_plugin::get_name()); symbol context::default_table_checker() const { return m_params->default_table_checker(); } bool context::default_table_checked() const { return m_params->default_table_checked(); } bool context::dbg_fpr_nonempty_relation_signature() const { return m_params->dbg_fpr_nonempty_relation_signature(); } unsigned context::dl_profile_milliseconds_threshold() const { return m_params->profile_timeout_milliseconds(); } bool context::all_or_nothing_deltas() const { return m_params->all_or_nothing_deltas(); } bool context::compile_with_widening() const { return m_params->compile_with_widening(); } bool context::unbound_compressor() const { return m_params->unbound_compressor(); } bool context::similarity_compressor() const { return m_params->similarity_compressor(); } unsigned context::similarity_compressor_threshold() const { return m_params->similarity_compressor_threshold(); } unsigned context::soft_timeout() const { return m_fparams.m_soft_timeout; } unsigned context::initial_restart_timeout() const { return m_params->initial_restart_timeout(); } bool context::generate_explanations() const { return m_params->generate_explanations(); } bool context::explanations_on_relation_level() const { return m_params->explanations_on_relation_level(); } bool context::magic_sets_for_queries() const { return m_params->magic_sets_for_queries(); } bool context::eager_emptiness_checking() const { return m_params->eager_emptiness_checking(); } bool context::bit_blast() const { return m_params->bit_blast(); } bool context::karr() const { return m_params->karr(); } bool context::scale() const { return m_params->scale(); } bool context::magic() const { return m_params->magic(); } bool context::quantify_arrays() const { return m_params->quantify_arrays(); } bool context::instantiate_quantifiers() const { return m_params->instantiate_quantifiers(); } void context::register_finite_sort(sort * s, sort_kind k) { m_pinned.push_back(s); SASSERT(!m_sorts.contains(s)); sort_domain * dom; switch (k) { case SK_SYMBOL: dom = alloc(symbol_sort_domain, *this, s); break; case SK_UINT64: dom = alloc(uint64_sort_domain, *this, s); break; default: UNREACHABLE(); } m_sorts.insert(s, dom); } void context::register_variable(func_decl* var) { m_vars.push_back(m.mk_const(var)); } expr_ref context::bind_variables(expr* fml, bool is_forall) { expr_ref result(m); app_ref_vector const & vars = m_vars; rule_manager& rm = get_rule_manager(); if (vars.empty()) { result = fml; } else { m_names.reset(); m_abstractor(0, vars.size(), reinterpret_cast(vars.c_ptr()), fml, result); rm.collect_vars(result); ptr_vector& sorts = rm.get_var_sorts(); if (sorts.empty()) { result = fml; } else { for (unsigned i = 0; i < sorts.size(); ++i) { if (!sorts[i]) { if (i < vars.size()) { sorts[i] = vars[i]->get_decl()->get_range(); } else { sorts[i] = m.mk_bool_sort(); } } if (i < vars.size()) { m_names.push_back(vars[i]->get_decl()->get_name()); } else { m_names.push_back(symbol(i)); } } quantifier_ref q(m); sorts.reverse(); q = m.mk_quantifier(is_forall, sorts.size(), sorts.c_ptr(), m_names.c_ptr(), result); m_elim_unused_vars(q, result); } } return result; } void context::register_predicate(func_decl * decl, bool named) { if (!is_predicate(decl)) { m_pinned.push_back(decl); m_preds.insert(decl); if (named) { m_preds_by_name.insert(decl->get_name(), decl); } } } void context::restrict_predicates(func_decl_set const& preds) { m_preds.reset(); func_decl_set::iterator it = preds.begin(), end = preds.end(); for (; it != end; ++it) { m_preds.insert(*it); } } context::finite_element context::get_constant_number(relation_sort srt, symbol sym) { sort_domain & dom0 = get_sort_domain(srt); SASSERT(dom0.get_kind() == SK_SYMBOL); symbol_sort_domain & dom = static_cast(dom0); return dom.get_number(sym); } context::finite_element context::get_constant_number(relation_sort srt, uint64 el) { sort_domain & dom0 = get_sort_domain(srt); SASSERT(dom0.get_kind()==SK_UINT64); uint64_sort_domain & dom = static_cast(dom0); return dom.get_number(el); } void context::print_constant_name(relation_sort srt, uint64 num, std::ostream & out) { if (has_sort_domain(srt)) { SASSERT(num<=UINT_MAX); get_sort_domain(srt).print_element(static_cast(num), out); } else { out << num; } } bool context::try_get_sort_constant_count(relation_sort srt, uint64 & constant_count) { if (!has_sort_domain(srt)) { return false; } constant_count = get_sort_domain(srt).get_constant_count(); return true; } uint64 context::get_sort_size_estimate(relation_sort srt) { if (get_decl_util().is_rule_sort(srt)) { return 1; } uint64 res; if (!try_get_sort_constant_count(srt, res)) { sort_size sz = srt->get_num_elements(); if (sz.is_finite()) { res = sz.size(); } else { res = std::numeric_limits::max(); } } return res; } void context::set_argument_names(const func_decl * pred, svector var_names) { SASSERT(!m_argument_var_names.contains(pred)); m_argument_var_names.insert(pred, var_names); } symbol context::get_argument_name(const func_decl * pred, unsigned arg_index) { pred2syms::obj_map_entry * e = m_argument_var_names.find_core(pred); if (!e) { std::stringstream name_stm; name_stm << '#' << arg_index; return symbol(name_stm.str().c_str()); } SASSERT(arg_index < e->get_data().m_value.size()); return e->get_data().m_value[arg_index]; } void context::set_predicate_representation(func_decl * pred, unsigned relation_name_cnt, symbol const * relation_names) { if (relation_name_cnt > 0) { ensure_engine(); } if (relation_name_cnt > 0 && m_rel) { m_rel->set_predicate_representation(pred, relation_name_cnt, relation_names); } } func_decl * context::mk_fresh_head_predicate(symbol const & prefix, symbol const & suffix, unsigned arity, sort * const * domain, func_decl* orig_pred) { func_decl* new_pred = m.mk_fresh_func_decl(prefix, suffix, arity, domain, m.mk_bool_sort()); register_predicate(new_pred, true); if (m_rel) { m_rel->inherit_predicate_kind(new_pred, orig_pred); } return new_pred; } void context::add_rule(expr* rl, symbol const& name) { m_rule_fmls.push_back(rl); m_rule_names.push_back(name); } void context::flush_add_rules() { datalog::rule_manager& rm = get_rule_manager(); scoped_proof_mode _scp(m, generate_proof_trace()?PGM_FINE:PGM_DISABLED); while (m_rule_fmls_head < m_rule_fmls.size()) { expr* fml = m_rule_fmls[m_rule_fmls_head].get(); proof* p = generate_proof_trace()?m.mk_asserted(fml):0; rm.mk_rule(fml, p, m_rule_set, m_rule_names[m_rule_fmls_head]); ++m_rule_fmls_head; } rule_set::iterator it = m_rule_set.begin(), end = m_rule_set.end(); rule_ref r(m_rule_manager); for (; it != end; ++it) { r = *it; check_rule(r); } } // // Update a rule with a new. // It requires basic subsumption. // void context::update_rule(expr* rl, symbol const& name) { datalog::rule_manager& rm = get_rule_manager(); proof* p = 0; if (generate_proof_trace()) { p = m.mk_asserted(rl); } unsigned size_before = m_rule_set.get_num_rules(); rm.mk_rule(rl, p, m_rule_set, name); unsigned size_after = m_rule_set.get_num_rules(); if (size_before + 1 != size_after) { std::stringstream strm; strm << "Rule " << name << " has a non-trivial body. It cannot be modified"; throw default_exception(strm.str()); } // The new rule is inserted last: rule_ref r(m_rule_set.get_rule(size_before), rm); rule_ref_vector const& rls = m_rule_set.get_rules(); rule* old_rule = 0; for (unsigned i = 0; i < size_before; ++i) { if (rls[i]->name() == name) { if (old_rule) { std::stringstream strm; strm << "Rule " << name << " occurs twice. It cannot be modified"; m_rule_set.del_rule(r); throw default_exception(strm.str()); } old_rule = rls[i]; } } if (old_rule) { if (!check_subsumes(*old_rule, *r)) { std::stringstream strm; strm << "Old rule "; old_rule->display(*this, strm); strm << "does not subsume new rule "; r->display(*this, strm); m_rule_set.del_rule(r); throw default_exception(strm.str()); } m_rule_set.del_rule(old_rule); } } bool context::check_subsumes(rule const& stronger_rule, rule const& weaker_rule) { if (stronger_rule.get_head() != weaker_rule.get_head()) { return false; } for (unsigned i = 0; i < stronger_rule.get_tail_size(); ++i) { app* t = stronger_rule.get_tail(i); bool found = false; for (unsigned j = 0; j < weaker_rule.get_tail_size(); ++j) { app* s = weaker_rule.get_tail(j); if (s == t) { found = true; break; } } if (!found) { return false; } } return true; } unsigned context::get_num_levels(func_decl* pred) { ensure_engine(); return m_engine->get_num_levels(pred); } expr_ref context::get_cover_delta(int level, func_decl* pred) { ensure_engine(); return m_engine->get_cover_delta(level, pred); } void context::add_cover(int level, func_decl* pred, expr* property) { ensure_engine(); m_engine->add_cover(level, pred, property); } void context::check_uninterpreted_free(rule_ref& r) { func_decl* f = 0; if (r->has_uninterpreted_non_predicates(f)) { std::stringstream stm; stm << "Uninterpreted '" << f->get_name() << "' in "; r->display(*this, stm); throw default_exception(stm.str()); } } void context::check_quantifier_free(rule_ref& r) { if (r->has_quantifiers()) { std::stringstream stm; stm << "cannot process quantifiers in rule "; r->display(*this, stm); throw default_exception(stm.str()); } } void context::check_existential_tail(rule_ref& r) { unsigned ut_size = r->get_uninterpreted_tail_size(); unsigned t_size = r->get_tail_size(); TRACE("dl", r->display_smt2(get_manager(), tout); tout << "\n";); for (unsigned i = ut_size; i < t_size; ++i) { app* t = r->get_tail(i); TRACE("dl", tout << "checking: " << mk_ismt2_pp(t, get_manager()) << "\n";); if (m_check_pred(t)) { std::ostringstream out; out << "interpreted body " << mk_ismt2_pp(t, get_manager()) << " contains recursive predicate"; throw default_exception(out.str()); } } } void context::check_positive_predicates(rule_ref& r) { ast_mark visited; ptr_vector todo, tocheck; unsigned ut_size = r->get_uninterpreted_tail_size(); unsigned t_size = r->get_tail_size(); for (unsigned i = 0; i < ut_size; ++i) { if (r->is_neg_tail(i)) { tocheck.push_back(r->get_tail(i)); } } ast_manager& m = get_manager(); contains_pred contains_p(*this); check_pred check_pred(contains_p, get_manager()); for (unsigned i = ut_size; i < t_size; ++i) { todo.push_back(r->get_tail(i)); } while (!todo.empty()) { expr* e = todo.back(), *e1, *e2; todo.pop_back(); if (visited.is_marked(e)) { continue; } visited.mark(e, true); if (is_predicate(e)) { } else if (m.is_and(e) || m.is_or(e)) { todo.append(to_app(e)->get_num_args(), to_app(e)->get_args()); } else if (m.is_implies(e, e1, e2)) { tocheck.push_back(e1); todo.push_back(e2); } else if (is_quantifier(e)) { todo.push_back(to_quantifier(e)->get_expr()); } else if ((m.is_eq(e, e1, e2) || m.is_iff(e, e1, e2)) && m.is_true(e1)) { todo.push_back(e2); } else if ((m.is_eq(e, e1, e2) || m.is_iff(e, e1, e2)) && m.is_true(e2)) { todo.push_back(e1); } else { tocheck.push_back(e); } } for (unsigned i = 0; i < tocheck.size(); ++i) { expr* e = tocheck[i]; if (check_pred(e)) { std::ostringstream out; out << "recursive predicate " << mk_ismt2_pp(e, get_manager()) << " occurs nested in body"; r->display(*this, out << "\n"); throw default_exception(out.str()); } } } void context::check_rule(rule_ref& r) { switch(get_engine()) { case DATALOG_ENGINE: check_quantifier_free(r); check_uninterpreted_free(r); check_existential_tail(r); break; case PDR_ENGINE: check_existential_tail(r); check_positive_predicates(r); check_uninterpreted_free(r); break; case QPDR_ENGINE: check_positive_predicates(r); check_uninterpreted_free(r); break; case BMC_ENGINE: check_positive_predicates(r); break; case QBMC_ENGINE: check_existential_tail(r); check_positive_predicates(r); break; case TAB_ENGINE: check_existential_tail(r); check_positive_predicates(r); break; case DUALITY_ENGINE: check_existential_tail(r); check_positive_predicates(r); break; case CLP_ENGINE: check_existential_tail(r); check_positive_predicates(r); break; case LAST_ENGINE: default: UNREACHABLE(); break; } if (generate_proof_trace() && !r->get_proof()) { m_rule_manager.mk_rule_asserted_proof(*r.get()); } } void context::add_rule(rule_ref& r) { m_rule_set.add_rule(r); } void context::add_fact(func_decl * pred, const relation_fact & fact) { if (get_engine() == DATALOG_ENGINE) { ensure_engine(); m_rel->add_fact(pred, fact); } else { expr_ref rule(m.mk_app(pred, fact.size(), (expr*const*)fact.c_ptr()), m); add_rule(rule, symbol::null); } } void context::add_fact(app * head) { SASSERT(is_fact(head)); relation_fact fact(get_manager()); unsigned n = head->get_num_args(); for (unsigned i = 0; i < n; i++) { fact.push_back(to_app(head->get_arg(i))); } add_fact(head->get_decl(), fact); } bool context::has_facts(func_decl * pred) const { return m_rel && m_rel->has_facts(pred); } void context::add_table_fact(func_decl * pred, const table_fact & fact) { if (get_engine() == DATALOG_ENGINE) { ensure_engine(); m_rel->add_fact(pred, fact); } else { relation_fact rfact(m); for (unsigned i = 0; i < fact.size(); ++i) { rfact.push_back(m_decl_util.mk_numeral(fact[i], pred->get_domain()[i])); } add_fact(pred, rfact); } } void context::add_table_fact(func_decl * pred, unsigned num_args, unsigned args[]) { if (pred->get_arity() != num_args) { std::ostringstream out; out << "miss-matched number of arguments passed to " << mk_ismt2_pp(pred, m) << " " << num_args << " passed"; throw default_exception(out.str()); } table_fact fact; for (unsigned i = 0; i < num_args; ++i) { fact.push_back(args[i]); } add_table_fact(pred, fact); } void context::close() { SASSERT(!m_closed); if (!m_rule_set.close()) { throw default_exception("Negation is not stratified!"); } m_closed = true; } void context::ensure_closed() { if (!m_closed) { close(); } } void context::ensure_opened() { if (m_closed) { reopen(); } } void context::reopen() { SASSERT(m_closed); m_rule_set.reopen(); m_closed = false; } void context::transform_rules(rule_transformer::plugin* plugin) { rule_transformer transformer(*this); transformer.register_plugin(plugin); transform_rules(transformer); } void context::transform_rules(rule_transformer& transf) { SASSERT(m_closed); //we must finish adding rules before we start transforming them TRACE("dl", display_rules(tout);); if (transf(m_rule_set)) { //we have already ensured the negation is stratified and transformations //should not break the stratification m_rule_set.ensure_closed(); TRACE("dl", display_rules(tout);); TRACE("dl_verbose", display(tout);); } } void context::replace_rules(rule_set const & rs) { SASSERT(!m_closed); m_rule_set.replace_rules(rs); if (m_rel) { m_rel->restrict_predicates(get_predicates()); } } void context::record_transformed_rules() { m_transformed_rule_set.replace_rules(m_rule_set); } void context::apply_default_transformation() { } void context::collect_params(param_descrs& p) { fixedpoint_params::collect_param_descrs(p); insert_timeout(p); } void context::updt_params(params_ref const& p) { m_params_ref.copy(p); if (m_engine.get()) m_engine->updt_params(); } expr_ref context::get_background_assertion() { expr_ref result(m); switch (m_background.size()) { case 0: result = m.mk_true(); break; case 1: result = m_background[0].get(); break; default: result = m.mk_and(m_background.size(), m_background.c_ptr()); break; } return result; } void context::assert_expr(expr* e) { TRACE("dl", tout << mk_ismt2_pp(e, m) << "\n";); m_background.push_back(e); } void context::cancel() { m_cancel = true; m_last_status = CANCELED; m_transf.cancel(); if (m_engine) m_engine->cancel(); } void context::cleanup() { m_cancel = false; m_last_status = OK; if (m_engine) m_engine->cleanup(); } class context::engine_type_proc { ast_manager& m; arith_util a; datatype_util dt; DL_ENGINE m_engine_type; public: engine_type_proc(ast_manager& m): m(m), a(m), dt(m), m_engine_type(DATALOG_ENGINE) {} DL_ENGINE get_engine() const { return m_engine_type; } void operator()(expr* e) { if (is_quantifier(e)) { m_engine_type = QPDR_ENGINE; } else if (m_engine_type != QPDR_ENGINE) { if (a.is_int_real(e)) { m_engine_type = PDR_ENGINE; } else if (is_var(e) && m.is_bool(e)) { m_engine_type = PDR_ENGINE; } else if (dt.is_datatype(m.get_sort(e))) { m_engine_type = PDR_ENGINE; } } } }; void context::configure_engine() { symbol e = m_params->engine(); if (e == symbol("datalog")) { m_engine_type = DATALOG_ENGINE; } else if (e == symbol("pdr")) { m_engine_type = PDR_ENGINE; } else if (e == symbol("qpdr")) { m_engine_type = QPDR_ENGINE; } else if (e == symbol("bmc")) { m_engine_type = BMC_ENGINE; } else if (e == symbol("qbmc")) { m_engine_type = QBMC_ENGINE; } else if (e == symbol("tab")) { m_engine_type = TAB_ENGINE; } else if (e == symbol("clp")) { m_engine_type = CLP_ENGINE; } else if (e == symbol("duality")) { m_engine_type = DUALITY_ENGINE; } if (m_engine_type == LAST_ENGINE) { expr_fast_mark1 mark; engine_type_proc proc(m); m_engine_type = DATALOG_ENGINE; for (unsigned i = 0; m_engine_type == DATALOG_ENGINE && i < m_rule_set.get_num_rules(); ++i) { rule * r = m_rule_set.get_rule(i); quick_for_each_expr(proc, mark, r->get_head()); for (unsigned j = 0; j < r->get_tail_size(); ++j) { quick_for_each_expr(proc, mark, r->get_tail(j)); } m_engine_type = proc.get_engine(); } for (unsigned i = m_rule_fmls_head; m_engine_type == DATALOG_ENGINE && i < m_rule_fmls.size(); ++i) { expr* fml = m_rule_fmls[i].get(); while (is_quantifier(fml)) { fml = to_quantifier(fml)->get_expr(); } quick_for_each_expr(proc, mark, fml); m_engine_type = proc.get_engine(); } } } lbool context::query(expr* query) { #if 0 // TODO: what? if(get_engine() != DUALITY_ENGINE) { new_query(); rule_set::iterator it = m_rule_set.begin(), end = m_rule_set.end(); rule_ref r(m_rule_manager); for (; it != end; ++it) { r = *it; check_rule(r); } } #endif m_mc = mk_skip_model_converter(); m_last_status = OK; m_last_answer = 0; switch (get_engine()) { case DATALOG_ENGINE: case PDR_ENGINE: case QPDR_ENGINE: case BMC_ENGINE: case QBMC_ENGINE: case TAB_ENGINE: case CLP_ENGINE: flush_add_rules(); break; case DUALITY_ENGINE: break; default: UNREACHABLE(); } ensure_engine(); return m_engine->query(query); } model_ref context::get_model() { ensure_engine(); return m_engine->get_model(); } proof_ref context::get_proof() { ensure_engine(); return m_engine->get_proof(); } void context::ensure_engine() { if (!m_engine.get()) { m_engine = m_register_engine.mk_engine(get_engine()); // break abstraction. if (get_engine() == DATALOG_ENGINE) { m_rel = dynamic_cast(m_engine.get()); } } } lbool context::rel_query(unsigned num_rels, func_decl * const* rels) { ensure_engine(); return m_engine->query(num_rels, rels); } expr* context::get_answer_as_formula() { if (m_last_answer) { return m_last_answer.get(); } ensure_engine(); m_last_answer = m_engine->get_answer(); return m_last_answer.get(); } void context::display_certificate(std::ostream& out) { ensure_engine(); m_engine->display_certificate(out); } void context::display(std::ostream & out) const { display_rules(out); if (m_rel) m_rel->display_facts(out); } void context::display_profile(std::ostream& out) const { out << "\n---------------\n"; out << "Original rules\n"; display_rules(out); out << "\n---------------\n"; out << "Transformed rules\n"; m_transformed_rule_set.display(out); if (m_rel) { m_rel->display_profile(out); } } void context::reset_statistics() { if (m_engine) { m_engine->reset_statistics(); } } void context::collect_statistics(statistics& st) const { if (m_engine) { m_engine->collect_statistics(st); } } execution_result context::get_status() { return m_last_status; } bool context::result_contains_fact(relation_fact const& f) { return m_rel && m_rel->result_contains_fact(f); } // NB: algebraic data-types declarations will not be printed. class free_func_visitor { ast_manager& m; func_decl_set m_funcs; obj_hashtable m_sorts; public: free_func_visitor(ast_manager& m): m(m) {} void operator()(var * n) { } void operator()(app * n) { m_funcs.insert(n->get_decl()); sort* s = m.get_sort(n); if (s->get_family_id() == null_family_id) { m_sorts.insert(s); } } void operator()(quantifier * n) { } func_decl_set& funcs() { return m_funcs; } obj_hashtable& sorts() { return m_sorts; } }; static void collect_free_funcs(unsigned sz, expr* const* exprs, expr_mark& visited, free_func_visitor& v, mk_fresh_name& fresh_names) { for (unsigned i = 0; i < sz; ++i) { expr* e = exprs[i]; for_each_expr(v, visited, e); while (is_quantifier(e)) { e = to_quantifier(e)->get_expr(); } fresh_names.add(e); } } void context::get_raw_rule_formulas(expr_ref_vector& rules, svector& names){ for (unsigned i = 0; i < m_rule_fmls.size(); ++i) { expr_ref r = bind_variables(m_rule_fmls[i].get(), true); rules.push_back(r.get()); // rules.push_back(m_rule_fmls[i].get()); names.push_back(m_rule_names[i]); } } void context::get_rules_as_formulas(expr_ref_vector& rules, svector& names) { expr_ref fml(m); datalog::rule_manager& rm = get_rule_manager(); // ensure that rules are all using bound variables. for (unsigned i = m_rule_fmls_head; i < m_rule_fmls.size(); ++i) { ptr_vector sorts; get_free_vars(m_rule_fmls[i].get(), sorts); if (!sorts.empty()) { rm.mk_rule(m_rule_fmls[i].get(), 0, m_rule_set, m_rule_names[i]); m_rule_fmls[i] = m_rule_fmls.back(); m_rule_names[i] = m_rule_names.back(); m_rule_fmls.pop_back(); m_rule_names.pop_back(); --i; } } rule_set::iterator it = m_rule_set.begin(), end = m_rule_set.end(); for (; it != end; ++it) { (*it)->to_formula(fml); rules.push_back(fml); names.push_back((*it)->name()); } for (unsigned i = m_rule_fmls_head; i < m_rule_fmls.size(); ++i) { rules.push_back(m_rule_fmls[i].get()); names.push_back(m_rule_names[i]); } } void context::display_smt2( unsigned num_queries, expr* const* queries, std::ostream& out) { ast_manager& m = get_manager(); free_func_visitor visitor(m); expr_mark visited; func_decl_set rels; unsigned num_axioms = m_background.size(); expr* const* axioms = m_background.c_ptr(); expr_ref fml(m); expr_ref_vector rules(m); svector names; bool use_fixedpoint_extensions = m_params->print_with_fixedpoint_extensions(); bool print_low_level = m_params->print_low_level_smt2(); bool do_declare_vars = m_params->print_with_variable_declarations(); #define PP(_e_) if (print_low_level) out << mk_smt_pp(_e_, m); else ast_smt2_pp(out, _e_, env); get_rules_as_formulas(rules, names); smt2_pp_environment_dbg env(m); mk_fresh_name fresh_names; collect_free_funcs(num_axioms, axioms, visited, visitor, fresh_names); collect_free_funcs(rules.size(), rules.c_ptr(), visited, visitor, fresh_names); collect_free_funcs(num_queries, queries, visited, visitor, fresh_names); func_decl_set funcs; func_decl_set::iterator it = visitor.funcs().begin(); func_decl_set::iterator end = visitor.funcs().end(); for (; it != end; ++it) { func_decl* f = *it; if (f->get_family_id() != null_family_id) { // } else if (is_predicate(f) && use_fixedpoint_extensions) { rels.insert(f); } else { funcs.insert(f); } } if (!use_fixedpoint_extensions) { out << "(set-logic HORN)\n"; } it = funcs.begin(), end = funcs.end(); obj_hashtable& sorts = visitor.sorts(); obj_hashtable::iterator sit = sorts.begin(), send = sorts.end(); for (; sit != send; ++sit) { PP(*sit); } for (; it != end; ++it) { func_decl* f = *it; PP(f); out << "\n"; } it = rels.begin(); end = rels.end(); for (; it != end; ++it) { func_decl* f = *it; out << "(declare-rel " << f->get_name() << " ("; for (unsigned i = 0; i < f->get_arity(); ++i) { ast_smt2_pp(out, f->get_domain(i), env); if (i + 1 < f->get_arity()) { out << " "; } } out << "))\n"; } if (use_fixedpoint_extensions && do_declare_vars) { declare_vars(rules, fresh_names, out); } if (num_axioms > 0 && !use_fixedpoint_extensions) { throw default_exception("Background axioms cannot be used with SMT-LIB2 HORN format"); } for (unsigned i = 0; i < num_axioms; ++i) { out << "(assert "; PP(axioms[i]); out << ")\n"; } for (unsigned i = 0; i < rules.size(); ++i) { out << (use_fixedpoint_extensions?"(rule ":"(assert "); expr* r = rules[i].get(); symbol nm = names[i]; if (symbol::null != nm) { out << "(! "; } PP(r); if (symbol::null != nm) { out << " :named "; while (fresh_names.contains(nm)) { std::ostringstream s; s << nm << "!"; nm = symbol(s.str().c_str()); } fresh_names.add(nm); if (is_smt2_quoted_symbol(nm)) { out << mk_smt2_quoted_symbol(nm); } else { out << nm; } out << ")"; } out << ")\n"; } if (use_fixedpoint_extensions) { for (unsigned i = 0; i < num_queries; ++i) { out << "(query "; PP(queries[i]); out << ")\n"; } } else { for (unsigned i = 0; i < num_queries; ++i) { if (num_queries > 1) out << "(push)\n"; out << "(assert "; expr_ref q(m); q = m.mk_not(queries[i]); PP(q); out << ")\n"; out << "(check-sat)\n"; if (num_queries > 1) out << "(pop)\n"; } } } void context::declare_vars(expr_ref_vector& rules, mk_fresh_name& fresh_names, std::ostream& out) { // // replace bound variables in rules by 'var declarations' // First remove quantifers, then replace bound variables // by fresh constants. // smt2_pp_environment_dbg env(m); var_subst vsubst(m, false); expr_ref_vector fresh_vars(m), subst(m); expr_ref res(m); obj_map var_idxs; obj_map max_vars; for (unsigned i = 0; i < rules.size(); ++i) { expr* r = rules[i].get(); if (!is_quantifier(r)) { continue; } quantifier* q = to_quantifier(r); if (!q->is_forall()) { continue; } if (has_quantifiers(q->get_expr())) { continue; } max_vars.reset(); subst.reset(); unsigned max_var = 0; unsigned num_vars = q->get_num_decls(); for (unsigned j = 0; j < num_vars; ++j) { sort* s = q->get_decl_sort(num_vars-1-j); // maximal var for the given sort. if (!max_vars.find(s, max_var)) { max_var = 0; } else { ++max_var; } max_vars.insert(s, max_var); // index into fresh variable array. // unsigned fresh_var_idx = 0; obj_map::obj_map_entry* e = var_idxs.insert_if_not_there2(s, unsigned_vector()); unsigned_vector& vars = e->get_data().m_value; if (max_var >= vars.size()) { SASSERT(vars.size() == max_var); vars.push_back(fresh_vars.size()); symbol name = fresh_names.next(); fresh_vars.push_back(m.mk_const(name, s)); out << "(declare-var " << name << " "; ast_smt2_pp(out, s, env); out << ")\n"; } subst.push_back(fresh_vars[vars[max_var]].get()); } vsubst(q->get_expr(), subst.size(), subst.c_ptr(), res); rules[i] = res.get(); } } };