/*++ Copyright (c) 2015 Microsoft Corporation --*/ #include "qe_arith.h" #include "qe.h" #include "th_rewriter.h" #include "smt2parser.h" #include "arith_decl_plugin.h" #include "reg_decl_plugins.h" #include "arith_rewriter.h" #include "ast_pp.h" #include "smt_context.h" #include "expr_abstract.h" #include "expr_safe_replace.h" static expr_ref parse_fml(ast_manager& m, char const* str) { expr_ref result(m); cmd_context ctx(false, &m); ctx.set_ignore_check(true); std::ostringstream buffer; buffer << "(declare-const x Real)\n" << "(declare-const y Real)\n" << "(declare-const z Real)\n" << "(declare-const u Real)\n" << "(declare-const v Real)\n" << "(declare-const t Real)\n" << "(declare-const a Real)\n" << "(declare-const b Real)\n" << "(declare-const i Int)\n" << "(declare-const j Int)\n" << "(declare-const k Int)\n" << "(declare-const l Int)\n" << "(declare-const m Int)\n" << "(assert " << str << ")\n"; std::istringstream is(buffer.str()); VERIFY(parse_smt2_commands(ctx, is)); SASSERT(ctx.begin_assertions() != ctx.end_assertions()); result = *ctx.begin_assertions(); return result; } static char const* example1 = "(and (<= x 3.0) (<= (* 3.0 x) y) (<= z y))"; static char const* example2 = "(and (<= z x) (<= x 3.0) (<= (* 3.0 x) y) (<= z y))"; static char const* example3 = "(and (<= z x) (<= x 3.0) (< (* 3.0 x) y) (<= z y))"; static char const* example4 = "(and (<= z x) (<= x 3.0) (not (>= (* 3.0 x) y)) (<= z y))"; static char const* example5 = "(and (<= y x) (<= z x) (<= x u) (<= x v) (<= x t))"; static char const* example7 = "(and (<= x y) (<= x z) (<= u x) (< v x))"; static char const* example8 = "(and (<= (* 2 i) k) (<= j (* 3 i)))"; static char const* example6 = "(and (<= 0 (+ x z))\ (>= y x) \ (<= y x)\ (<= (- u y) 0.0)\ (>= x (+ v z))\ (>= x 0.0)\ (<= x 1.0))"; // phi[M] => result => E x . phi[x] static void test(app* var, expr_ref& fml) { ast_manager& m = fml.get_manager(); smt_params params; params.m_model = true; symbol x_name(var->get_decl()->get_name()); sort* x_sort = m.get_sort(var); expr_ref pr(m); expr_ref_vector lits(m); flatten_and(fml, lits); model_ref md; { smt::context ctx(m, params); ctx.assert_expr(fml); lbool result = ctx.check(); if (result != l_true) return; ctx.get_model(md); } VERIFY(qe::arith_project(*md, var, lits)); pr = mk_and(lits); std::cout << "original: " << mk_pp(fml, m) << "\n"; std::cout << "projected: " << mk_pp(pr, m) << "\n"; // projection is consistent with model. expr_ref tmp(m); VERIFY(md->eval(pr, tmp) && m.is_true(tmp)); // projection implies E x. fml { qe::expr_quant_elim qelim(m, params); expr_ref result(m), efml(m); expr* x = var; expr_abstract(m, 0, 1, &x, fml, efml); efml = m.mk_exists(1, &x_sort, &x_name, efml); qelim(m.mk_true(), efml, result); smt::context ctx(m, params); ctx.assert_expr(pr); ctx.assert_expr(m.mk_not(result)); std::cout << "exists: " << pr << " =>\n" << result << "\n"; VERIFY(l_false == ctx.check()); } std::cout << "\n"; } static void testR(char const *ex) { ast_manager m; reg_decl_plugins(m); arith_util a(m); expr_ref fml = parse_fml(m, ex); symbol x_name("x"); sort_ref x_sort(a.mk_real(), m); app_ref var(m.mk_const(x_name, x_sort), m); test(var, fml); } static void testI(char const *ex) { ast_manager m; reg_decl_plugins(m); arith_util a(m); expr_ref fml = parse_fml(m, ex); symbol x_name("i"); sort_ref x_sort(a.mk_int(), m); app_ref var(m.mk_const(x_name, x_sort), m); test(var, fml); } static expr_ref_vector mk_ineqs(app* x, app* y, app_ref_vector const& nums) { ast_manager& m = nums.get_manager(); arith_util a(m); expr_ref_vector result(m); for (unsigned i = 0; i < nums.size(); ++i) { expr_ref ax(a.mk_mul(nums[i], x), m); result.push_back(a.mk_le(ax, y)); result.push_back(m.mk_not(a.mk_ge(ax, y))); result.push_back(m.mk_not(a.mk_gt(y, ax))); result.push_back(a.mk_lt(y, ax)); } return result; } static app_ref generate_ineqs(ast_manager& m, sort* s, vector& cs, bool mods_too) { arith_util a(m); app_ref_vector vars(m), nums(m); vars.push_back(m.mk_const(symbol("x"), s)); vars.push_back(m.mk_const(symbol("y"), s)); vars.push_back(m.mk_const(symbol("z"), s)); vars.push_back(m.mk_const(symbol("u"), s)); vars.push_back(m.mk_const(symbol("v"), s)); vars.push_back(m.mk_const(symbol("w"), s)); nums.push_back(a.mk_numeral(rational(1), s)); nums.push_back(a.mk_numeral(rational(2), s)); nums.push_back(a.mk_numeral(rational(3), s)); app* x = vars[0].get(); app* y = vars[1].get(); app* z = vars[2].get(); // // ax <= by, ax < by, not (ax >= by), not (ax > by) // cs.push_back(mk_ineqs(x, vars[1].get(), nums)); cs.push_back(mk_ineqs(x, vars[2].get(), nums)); cs.push_back(mk_ineqs(x, vars[3].get(), nums)); cs.push_back(mk_ineqs(x, vars[4].get(), nums)); cs.push_back(mk_ineqs(x, vars[5].get(), nums)); if (mods_too) { expr_ref_vector mods(m); expr_ref zero(a.mk_numeral(rational(0), s), m); mods.push_back(m.mk_true()); for (unsigned j = 0; j < nums.size(); ++j) { mods.push_back(m.mk_eq(a.mk_mod(a.mk_add(a.mk_mul(nums[j].get(),x), y), nums[1].get()), zero)); } cs.push_back(mods); mods.resize(1); for (unsigned j = 0; j < nums.size(); ++j) { mods.push_back(m.mk_eq(a.mk_mod(a.mk_add(a.mk_mul(nums[j].get(),x), y), nums[2].get()), zero)); } cs.push_back(mods); } return app_ref(x, m); } static void test_c(app* x, expr_ref_vector const& c) { ast_manager& m = c.get_manager(); expr_ref fml(m); fml = m.mk_and(c.size(), c.c_ptr()); test(x, fml); } static void test_cs(app* x, expr_ref_vector& c, vector const& cs) { if (c.size() == cs.size()) { test_c(x, c); return; } expr_ref_vector const& c1 = cs[c.size()]; for (unsigned i = 0; i < c1.size(); ++i) { c.push_back(c1[i]); test_cs(x, c, cs); c.pop_back(); } } static void test_ineqs(ast_manager& m, sort* s, bool mods_too) { vector ineqs; app_ref x = generate_ineqs(m, s, ineqs, mods_too); expr_ref_vector cs(m); test_cs(x, cs, ineqs); } static void test_ineqs() { ast_manager m; reg_decl_plugins(m); arith_util a(m); sort* s_int = a.mk_int(); sort* s_real = a.mk_real(); test_ineqs(m, s_int, true); test_ineqs(m, s_real, false); } static void test2(char const *ex) { smt_params params; params.m_model = true; ast_manager m; reg_decl_plugins(m); arith_util a(m); expr_ref fml = parse_fml(m, ex); app_ref_vector vars(m); expr_ref_vector lits(m); vars.push_back(m.mk_const(symbol("x"), a.mk_real())); vars.push_back(m.mk_const(symbol("y"), a.mk_real())); vars.push_back(m.mk_const(symbol("z"), a.mk_real())); flatten_and(fml, lits); smt::context ctx(m, params); ctx.push(); ctx.assert_expr(fml); lbool result = ctx.check(); SASSERT(result == l_true); ref md; ctx.get_model(md); ctx.pop(1); std::cout << mk_pp(fml, m) << "\n"; expr_ref pr1(m), pr2(m), fml2(m); expr_ref_vector bound(m); ptr_vector sorts; svector names; for (unsigned i = 0; i < vars.size(); ++i) { bound.push_back(vars[i].get()); names.push_back(vars[i]->get_decl()->get_name()); sorts.push_back(m.get_sort(vars[i].get())); } expr_abstract(m, 0, bound.size(), bound.c_ptr(), fml, fml2); fml2 = m.mk_exists(bound.size(), sorts.c_ptr(), names.c_ptr(), fml2); qe::expr_quant_elim qe(m, params); for (unsigned i = 0; i < vars.size(); ++i) { VERIFY(qe::arith_project(*md, vars[i].get(), lits)); } pr1 = mk_and(lits); qe(m.mk_true(), fml2, pr2); std::cout << mk_pp(pr1, m) << "\n"; std::cout << mk_pp(pr2, m) << "\n"; expr_ref npr2(m); npr2 = m.mk_not(pr2); ctx.push(); ctx.assert_expr(pr1); ctx.assert_expr(npr2); VERIFY(l_false == ctx.check()); ctx.pop(1); } void tst_qe_arith() { // enable_trace("qe"); testI(example8); testR(example7); test_ineqs(); return; testR(example1); testR(example2); testR(example3); testR(example4); testR(example5); return; test2(example6); return; }