/* Copyright (c) 2017 Microsoft Corporation Author: Lev Nachmanson */ #include #include "math/lp/int_solver.h" #include "math/lp/lar_solver.h" #include "math/lp/lp_utils.h" #include "math/lp/monic.h" #include "math/lp/gomory.h" #include "math/lp/int_branch.h" #include "math/lp/int_cube.h" namespace lp { int_solver::patcher::patcher(int_solver& lia): lia(lia), lra(lia.lra), lrac(lia.lrac), m_num_nbasic_patches(0), m_patch_cost(0), m_next_patch(0), m_delay(0) {} bool int_solver::patcher::should_apply() { #if 1 return true; #else if (m_delay == 0) { return true; } --m_delay; return false; #endif } lia_move int_solver::patcher::operator()() { return patch_nbasic_columns(); } lia_move int_solver::patcher::patch_nbasic_columns() { lia.settings().stats().m_patches++; lp_assert(lia.is_feasible()); m_num_nbasic_patches = 0; m_patch_cost = 0; for (unsigned j : lia.lrac.m_r_nbasis) { patch_nbasic_column(j); } lp_assert(lia.is_feasible()); if (!lia.has_inf_int()) { lia.settings().stats().m_patches_success++; m_delay = 0; m_next_patch = 0; return lia_move::sat; } if (m_patch_cost > 0 && m_num_nbasic_patches * 10 < m_patch_cost) { m_delay = std::min(20u, m_next_patch++); } else { m_delay = 0; m_next_patch = 0; } return lia_move::undef; } void int_solver::patcher::patch_nbasic_column(unsigned j) { impq & val = lrac.m_r_x[j]; bool inf_l, inf_u; impq l, u; mpq m; bool has_free = lia.get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m); m_patch_cost += lra.A_r().number_of_non_zeroes_in_column(j); if (!has_free) { return; } bool m_is_one = m.is_one(); bool val_is_int = lia.value_is_int(j); // check whether value of j is already a multiple of m. if (val_is_int && (m_is_one || (val.x / m).is_int())) { return; } TRACE("patch_int", tout << "TARGET j" << j << " -> ["; if (inf_l) tout << "-oo"; else tout << l; tout << ", "; if (inf_u) tout << "oo"; else tout << u; tout << "]"; tout << ", m: " << m << ", val: " << val << ", is_int: " << lra.column_is_int(j) << "\n";); if (m.is_big() || (!inf_l && l.x.is_big()) || (!inf_u && u.x.is_big())) { return; } if (!inf_l) { l = impq(m_is_one ? ceil(l) : m * ceil(l / m)); if (inf_u || l <= u) { TRACE("patch_int", tout << "patching with l: " << l << '\n';); lra.set_value_for_nbasic_column(j, l); } else { --m_num_nbasic_patches; TRACE("patch_int", tout << "not patching " << l << "\n";); } } else if (!inf_u) { u = impq(m_is_one ? floor(u) : m * floor(u / m)); lra.set_value_for_nbasic_column(j, u); TRACE("patch_int", tout << "patching with u: " << u << '\n';); } else { lra.set_value_for_nbasic_column(j, impq(0)); TRACE("patch_int", tout << "patching with 0\n";); } ++m_num_nbasic_patches; } int_solver::int_solver(lar_solver& lar_slv) : lra(lar_slv), lrac(lra.m_mpq_lar_core_solver), m_gcd(*this), m_patcher(*this), m_number_of_calls(0), m_hnf_cutter(*this), m_hnf_cut_period(settings().hnf_cut_period()) { lra.set_int_solver(this); } // this will allow to enable and disable tracking of the pivot rows struct check_return_helper { lar_solver& lra; bool m_track_pivoted_rows; check_return_helper(lar_solver& ls) : lra(ls), m_track_pivoted_rows(lra.get_track_pivoted_rows()) { lra.set_track_pivoted_rows(false); } ~check_return_helper() { lra.set_track_pivoted_rows(m_track_pivoted_rows); } }; lia_move int_solver::check(lp::explanation * e) { SASSERT(lra.ax_is_correct()); if (!has_inf_int()) return lia_move::sat; m_t.clear(); m_k.reset(); m_ex = e; m_ex->clear(); m_upper = false; lia_move r = lia_move::undef; if (m_gcd.should_apply()) r = m_gcd(); check_return_helper pc(lra); if (settings().get_cancel_flag()) return lia_move::undef; ++m_number_of_calls; if (r == lia_move::undef && m_patcher.should_apply()) r = m_patcher(); if (r == lia_move::undef && should_find_cube()) r = int_cube(*this)(); if (r == lia_move::undef && should_hnf_cut()) r = hnf_cut(); if (r == lia_move::undef && should_gomory_cut()) r = gomory(*this)(); if (r == lia_move::undef) r = int_branch(*this)(); return r; } std::ostream& int_solver::display_inf_rows(std::ostream& out) const { unsigned num = lra.A_r().column_count(); for (unsigned v = 0; v < num; v++) { if (column_is_int(v) && !get_value(v).is_int()) { display_column(out, v); } } num = 0; for (unsigned i = 0; i < lra.A_r().row_count(); i++) { unsigned j = lrac.m_r_basis[i]; if (column_is_int_inf(j)) { num++; lra.print_row(lra.A_r().m_rows[i], out); out << "\n"; } } out << "num of int infeasible: " << num << "\n"; return out; } bool int_solver::cut_indices_are_columns() const { for (lar_term::ival p : m_t) { if (p.column().index() >= lra.A_r().column_count()) return false; } return true; } bool int_solver::current_solution_is_inf_on_cut() const { SASSERT(cut_indices_are_columns()); const auto & x = lrac.m_r_x; impq v = m_t.apply(x); mpq sign = m_upper ? one_of_type() : -one_of_type(); CTRACE("current_solution_is_inf_on_cut", v * sign <= impq(m_k) * sign, tout << "m_upper = " << m_upper << std::endl; tout << "v = " << v << ", k = " << m_k << std::endl; ); return v * sign > impq(m_k) * sign; } bool int_solver::has_inf_int() const { return lra.has_inf_int(); } constraint_index int_solver::column_upper_bound_constraint(unsigned j) const { return lra.get_column_upper_bound_witness(j); } constraint_index int_solver::column_lower_bound_constraint(unsigned j) const { return lra.get_column_lower_bound_witness(j); } unsigned int_solver::row_of_basic_column(unsigned j) const { return lra.row_of_basic_column(j); } lp_settings& int_solver::settings() { return lra.settings(); } const lp_settings& int_solver::settings() const { return lra.settings(); } bool int_solver::column_is_int(column_index const& j) const { return lra.column_is_int(j); } bool int_solver::is_real(unsigned j) const { return !column_is_int(j); } bool int_solver::value_is_int(unsigned j) const { return lra.column_value_is_int(j); } unsigned int_solver::random() { return settings().random_next(); } const impq& int_solver::upper_bound(unsigned j) const { return lra.column_upper_bound(j); } const impq& int_solver::lower_bound(unsigned j) const { return lra.column_lower_bound(j); } bool int_solver::is_term(unsigned j) const { return lra.column_corresponds_to_term(j); } unsigned int_solver::column_count() const { return lra.column_count(); } bool int_solver::should_find_cube() { return m_number_of_calls % settings().m_int_find_cube_period == 0; } bool int_solver::should_gomory_cut() { return m_number_of_calls % settings().m_int_gomory_cut_period == 0; } bool int_solver::should_hnf_cut() { return settings().enable_hnf() && m_number_of_calls % m_hnf_cut_period == 0; } lia_move int_solver::hnf_cut() { lia_move r = m_hnf_cutter.make_hnf_cut(); if (r == lia_move::undef) { m_hnf_cut_period *= 2; } else { m_hnf_cut_period = settings().hnf_cut_period(); } return r; } bool int_solver::has_lower(unsigned j) const { switch (lrac.m_column_types()[j]) { case column_type::fixed: case column_type::boxed: case column_type::lower_bound: return true; default: return false; } } bool int_solver::has_upper(unsigned j) const { switch (lrac.m_column_types()[j]) { case column_type::fixed: case column_type::boxed: case column_type::upper_bound: return true; default: return false; } } static void set_lower(impq & l, bool & inf_l, impq const & v ) { if (inf_l || v > l) { l = v; inf_l = false; } } static void set_upper(impq & u, bool & inf_u, impq const & v) { if (inf_u || v < u) { u = v; inf_u = false; } } // this function assumes that all basic columns dependend on j are feasible bool int_solver::get_freedom_interval_for_column(unsigned j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) { if (lrac.m_r_heading[j] >= 0) // the basic var return false; TRACE("random_update", display_column(tout, j) << ", is_int = " << column_is_int(j) << "\n";); impq const & xj = get_value(j); inf_l = true; inf_u = true; l = u = zero_of_type(); m = mpq(1); if (has_lower(j)) set_lower(l, inf_l, lower_bound(j) - xj); if (has_upper(j)) set_upper(u, inf_u, upper_bound(j) - xj); const auto & A = lra.A_r(); TRACE("random_update", tout << "m = " << m << "\n";); auto delta = [](mpq const& x, impq const& y, impq const& z) { if (x.is_one()) return y - z; if (x.is_minus_one()) return z - y; return (y - z) / x; }; for (auto c : A.column(j)) { unsigned row_index = c.var(); const mpq & a = c.coeff(); unsigned i = lrac.m_r_basis[row_index]; impq const & xi = get_value(i); lp_assert(lrac.m_r_solver.column_is_feasible(i)); if (column_is_int(i) && !a.is_int()) m = lcm(m, denominator(a)); if (!inf_l && !inf_u) { if (l == u) continue; } if (a.is_neg()) { if (has_lower(i)) set_lower(l, inf_l, delta(a, xi, lrac.m_r_lower_bounds()[i])); if (has_upper(i)) set_upper(u, inf_u, delta(a, xi, lrac.m_r_upper_bounds()[i])); } else { if (has_upper(i)) set_lower(l, inf_l, delta(a, xi, lrac.m_r_upper_bounds()[i])); if (has_lower(i)) set_upper(u, inf_u, delta(a, xi, lrac.m_r_lower_bounds()[i])); } } l += xj; u += xj; TRACE("freedom_interval", tout << "freedom variable for:\n"; tout << lra.get_variable_name(j); tout << "["; if (inf_l) tout << "-oo"; else tout << l; tout << "; "; if (inf_u) tout << "oo"; else tout << u; tout << "]\n"; tout << "val = " << get_value(j) << "\n"; tout << "return " << (inf_l || inf_u || l <= u); ); return (inf_l || inf_u || l <= u); } bool int_solver::is_feasible() const { lp_assert( lrac.m_r_solver.calc_current_x_is_feasible_include_non_basis() == lrac.m_r_solver.current_x_is_feasible()); return lrac.m_r_solver.current_x_is_feasible(); } const impq & int_solver::get_value(unsigned j) const { return lrac.m_r_x[j]; } std::ostream& int_solver::display_column(std::ostream & out, unsigned j) const { return lrac.m_r_solver.print_column_info(j, out); } bool int_solver::column_is_int_inf(unsigned j) const { return column_is_int(j) && (!value_is_int(j)); } bool int_solver::is_base(unsigned j) const { return lrac.m_r_heading[j] >= 0; } bool int_solver::is_boxed(unsigned j) const { return lrac.m_column_types[j] == column_type::boxed; } bool int_solver::is_fixed(unsigned j) const { return lrac.m_column_types[j] == column_type::fixed; } bool int_solver::is_free(unsigned j) const { return lrac.m_column_types[j] == column_type::free_column; } bool int_solver::at_bound(unsigned j) const { auto & mpq_solver = lrac.m_r_solver; switch (mpq_solver.m_column_types[j] ) { case column_type::fixed: case column_type::boxed: return mpq_solver.m_lower_bounds[j] == get_value(j) || mpq_solver.m_upper_bounds[j] == get_value(j); case column_type::lower_bound: return mpq_solver.m_lower_bounds[j] == get_value(j); case column_type::upper_bound: return mpq_solver.m_upper_bounds[j] == get_value(j); default: return false; } } bool int_solver::at_lower(unsigned j) const { auto & mpq_solver = lrac.m_r_solver; switch (mpq_solver.m_column_types[j] ) { case column_type::fixed: case column_type::boxed: case column_type::lower_bound: return mpq_solver.m_lower_bounds[j] == get_value(j); default: return false; } } bool int_solver::at_upper(unsigned j) const { auto & mpq_solver = lrac.m_r_solver; switch (mpq_solver.m_column_types[j] ) { case column_type::fixed: case column_type::boxed: case column_type::upper_bound: return mpq_solver.m_upper_bounds[j] == get_value(j); default: return false; } } std::ostream & int_solver::display_row(std::ostream & out, lp::row_strip const & row) const { bool first = true; auto & rslv = lrac.m_r_solver; for (const auto &c : row) { if (is_fixed(c.var())) { if (!get_value(c.var()).is_zero()) { impq val = get_value(c.var()) * c.coeff(); if (!first && val.is_pos()) out << "+"; if (val.y.is_zero()) out << val.x << " "; else out << val << " "; } first = false; continue; } if (c.coeff().is_one()) { if (!first) out << "+"; } else if (c.coeff().is_minus_one()) out << "-"; else { if (c.coeff().is_pos()) { if (!first) out << "+"; } if (c.coeff().is_big()) { out << " b*"; } else out << c.coeff(); } out << rslv.column_name(c.var()) << " "; first = false; } out << "\n"; for (const auto &c : row) { if (is_fixed(c.var())) continue; rslv.print_column_info(c.var(), out); if (is_base(c.var())) out << "j" << c.var() << " base\n"; } return out; } std::ostream& int_solver::display_row_info(std::ostream & out, unsigned row_index) const { auto & rslv = lrac.m_r_solver; auto const& row = rslv.m_A.m_rows[row_index]; return display_row(out, row); } bool int_solver::shift_var(unsigned j, unsigned range) { if (is_fixed(j) || is_base(j)) return false; if (settings().get_cancel_flag()) return false; bool inf_l = false, inf_u = false; impq l, u; mpq m; VERIFY(get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m) || settings().get_cancel_flag()); if (settings().get_cancel_flag()) return false; const impq & x = get_value(j); // x, the value of j column, might be shifted on a multiple of m if (inf_l && inf_u) { impq new_val = m * impq(random() % (range + 1)) + x; lra.set_value_for_nbasic_column(j, new_val); return true; } if (column_is_int(j)) { if (!inf_l) { l = impq(ceil(l)); } if (!inf_u) { u = impq(floor(u)); } } if (!inf_l && !inf_u && l >= u) return false; if (inf_u) { SASSERT(!inf_l); impq new_val = x + m * impq(random() % (range + 1)); lra.set_value_for_nbasic_column(j, new_val); return true; } if (inf_l) { SASSERT(!inf_u); impq new_val = x - m * impq(random() % (range + 1)); lra.set_value_for_nbasic_column(j, new_val); return true; } SASSERT(!inf_l && !inf_u); // The shift has to be a multiple of m: let us look for s, such that the shift is m*s. // We have new_val = x+m*s <= u, so m*s <= u-x and, finally, s <= floor((u- x)/m) = a // The symmetric reasoning gives us s >= ceil((l-x)/m) = b // We randomly pick s in the segment [b, a] mpq a = floor((u - x) / m); mpq b = ceil((l - x) / m); mpq r = a - b; if (!r.is_pos()) return false; TRACE("int_solver", tout << "a = " << a << ", b = " << b << ", r = " << r<< ", m = " << m << "\n";); if (r < mpq(range)) range = static_cast(r.get_uint64()); mpq s = b + mpq(random() % (range + 1)); impq new_val = x + m * impq(s); TRACE("int_solver", tout << "new_val = " << new_val << "\n";); SASSERT(l <= new_val && new_val <= u); lra.set_value_for_nbasic_column(j, new_val); return true; } // not used: bool int_solver::non_basic_columns_are_at_bounds() const { for (unsigned j : lrac.m_r_nbasis) { auto & val = lrac.m_r_x[j]; switch (lrac.m_column_types()[j]) { case column_type::boxed: if (val != lrac.m_r_lower_bounds()[j] && val != lrac.m_r_upper_bounds()[j]) return false; break; case column_type::lower_bound: if (val != lrac.m_r_lower_bounds()[j]) return false; break; case column_type::upper_bound: if (val != lrac.m_r_upper_bounds()[j]) return false; break; default: if (column_is_int(j) && !val.is_int()) { return false; } } } return true; } int int_solver::select_int_infeasible_var() { int result = -1; mpq range; mpq new_range; mpq small_value(1024); unsigned n = 0; lar_core_solver & lcs = lra.m_mpq_lar_core_solver; unsigned prev_usage = 0; // to quiet down the compile unsigned k = 0; unsigned usage; unsigned j; enum state { small_box, is_small_value, any_value, not_found }; state st = not_found; // 1. small box // 2. small value // 3. any value for (; k < lra.r_basis().size(); k++) { j = lra.r_basis()[k]; if (!column_is_int_inf(j)) continue; usage = lra.usage_in_terms(j); if (is_boxed(j) && (new_range = lcs.m_r_upper_bounds()[j].x - lcs.m_r_lower_bounds()[j].x - rational(2*usage)) <= small_value) { SASSERT(!is_fixed(j)); if (st != small_box) { n = 0; st = small_box; } if (n == 0 || new_range < range) { result = j; range = new_range; n = 1; } else if (new_range == range && (random() % (++n) == 0)) { result = j; } continue; } if (st == small_box) continue; impq const& value = get_value(j); if (abs(value.x) < small_value || (has_upper(j) && small_value > upper_bound(j).x - value.x) || (has_lower(j) && small_value > value.x - lower_bound(j).x)) { if (st != is_small_value) { n = 0; st = is_small_value; } if (random() % (++n) == 0) result = j; } if (st == is_small_value) continue; SASSERT(st == not_found || st == any_value); st = any_value; if (n == 0 /*|| usage > prev_usage*/) { result = j; prev_usage = usage; n = 1; } else if (usage > 0 && /*usage == prev_usage && */ (random() % (++n) == 0)) result = j; } return result; } }