/*++ Copyright (c) 2020 Microsoft Corporation Module Name: q_solver.cpp Abstract: Quantifier solver plugin Author: Nikolaj Bjorner (nbjorner) 2020-09-29 --*/ #include "ast/ast_util.h" #include "ast/well_sorted.h" #include "ast/rewriter/var_subst.h" #include "ast/normal_forms/pull_quant.h" #include "sat/smt/q_solver.h" #include "sat/smt/euf_solver.h" #include "sat/smt/sat_th.h" namespace q { solver::solver(euf::solver& ctx, family_id fid) : th_euf_solver(ctx, ctx.get_manager().get_family_name(fid), fid), m_mbqi(ctx, *this), m_ematch(ctx, *this), m_expanded(ctx.get_manager()) { } void solver::asserted(sat::literal l) { expr* e = bool_var2expr(l.var()); if (!is_forall(e) && !is_exists(e)) return; quantifier* q = to_quantifier(e); auto const& exp = expand(q); if (exp.size() > 1) { for (expr* e : exp) add_clause(~l, ctx.internalize(e, l.sign(), false, false)); return; } if (l.sign() == is_forall(e)) add_clause(~l, skolemize(q)); else { ctx.push_vec(m_universal, l); if (ctx.get_config().m_ematching) m_ematch.add(q); } m_stats.m_num_quantifier_asserts++; } sat::check_result solver::check() { if (ctx.get_config().m_ematching && m_ematch()) return sat::check_result::CR_CONTINUE; if (ctx.get_config().m_mbqi) { switch (m_mbqi()) { case l_true: return sat::check_result::CR_DONE; case l_false: return sat::check_result::CR_CONTINUE; case l_undef: break; } } return sat::check_result::CR_GIVEUP; } std::ostream& solver::display(std::ostream& out) const { m_ematch.display(out); return out; } std::ostream& solver::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const { return m_ematch.display_constraint(out, idx); } void solver::collect_statistics(statistics& st) const { st.update("q asserts", m_stats.m_num_quantifier_asserts); m_mbqi.collect_statistics(st); m_ematch.collect_statistics(st); } euf::th_solver* solver::clone(euf::solver& ctx) { family_id fid = ctx.get_manager().mk_family_id(symbol("quant")); return alloc(solver, ctx, fid); } bool solver::unit_propagate() { return ctx.get_config().m_ematching && m_ematch.propagate(false); } euf::theory_var solver::mk_var(euf::enode* n) { SASSERT(is_forall(n->get_expr()) || is_exists(n->get_expr())); auto v = euf::th_euf_solver::mk_var(n); ctx.attach_th_var(n, this, v); return v; } sat::literal solver::instantiate(quantifier* _q, bool negate, std::function& mk_var) { sat::literal sk; expr_ref tmp(m); quantifier_ref q(_q, m); expr_ref_vector vars(m); if (negate) { q = m.mk_quantifier( is_forall(q) ? quantifier_kind::exists_k : quantifier_kind::forall_k, q->get_num_decls(), q->get_decl_sorts(), q->get_decl_names(), m.mk_not(q->get_expr()), q->get_weight(), q->get_qid(), q->get_skid()); } quantifier* q_flat = flatten(q); unsigned sz = q_flat->get_num_decls(); vars.resize(sz, nullptr); for (unsigned i = 0; i < sz; ++i) vars[i] = mk_var(q_flat, i); var_subst subst(m); expr_ref body = subst(q_flat->get_expr(), vars); rewrite(body); return mk_literal(body); } sat::literal solver::skolemize(quantifier* q) { std::function mk_var = [&](quantifier* q, unsigned i) { return m.mk_fresh_const(q->get_decl_name(i), q->get_decl_sort(i)); }; return instantiate(q, is_forall(q), mk_var); } /* * Find initial values to instantiate quantifier with so to make it as hard as possible for solver * to find values to free variables. */ sat::literal solver::specialize(quantifier* q) { std::function mk_var = [&](quantifier* q, unsigned i) { return get_unit(q->get_decl_sort(i)); }; return instantiate(q, is_exists(q), mk_var); } void solver::init_search() { m_mbqi.init_search(); } sat::literal solver::internalize(expr* e, bool sign, bool root, bool learned) { SASSERT(is_forall(e) || is_exists(e)); sat::bool_var v = ctx.get_si().add_bool_var(e); sat::literal lit = ctx.attach_lit(sat::literal(v, sign), e); mk_var(ctx.get_egraph().find(e)); return lit; } void solver::finalize_model(model& mdl) { m_mbqi.finalize_model(mdl); } quantifier* solver::flatten(quantifier* q) { quantifier* q_flat = nullptr; if (!has_quantifiers(q->get_expr())) return q; if (m_flat.find(q, q_flat)) return q_flat; proof_ref pr(m); expr_ref new_q(m); pull_quant pull(m); pull(q, new_q, pr); SASSERT(is_well_sorted(m, new_q)); q_flat = to_quantifier(new_q); m.inc_ref(q_flat); m.inc_ref(q); m_flat.insert(q, q_flat); ctx.push(insert_ref2_map(m, m_flat, q, q_flat)); return q_flat; } void solver::init_units() { if (!m_unit_table.empty()) return; for (euf::enode* n : ctx.get_egraph().nodes()) { if (!n->interpreted() && !m.is_uninterp(m.get_sort(n->get_expr()))) continue; expr* e = n->get_expr(); sort* s = m.get_sort(e); if (m_unit_table.contains(s)) continue; m_unit_table.insert(s, e); ctx.push(insert_map, sort*>(m_unit_table, s)); } } expr* solver::get_unit(sort* s) { expr* u = nullptr; if (m_unit_table.find(s, u)) return u; init_units(); if (m_unit_table.find(s, u)) return u; model mdl(m); expr* val = mdl.get_some_value(s); m.inc_ref(val); m.inc_ref(s); ctx.push(insert_ref2_map(m, m_unit_table, s, val)); return val; } unsigned solver::get_max_generation(expr* e) const { unsigned g = 0; expr_fast_mark1 mark; m_todo.push_back(e); while (!m_todo.empty()) { e = m_todo.back(); m_todo.pop_back(); if (mark.is_marked(e)) continue; mark.mark(e); euf::enode* n = ctx.get_egraph().find(e); if (n) g = std::max(g, n->generation()); else if (is_app(e)) for (expr* arg : *to_app(e)) m_todo.push_back(arg); } return g; } expr_ref_vector const& solver::expand(quantifier* q) { m_expanded.reset(); if (is_forall(q)) flatten_and(q->get_expr(), m_expanded); else if (is_exists(q)) flatten_or(q->get_expr(), m_expanded); else UNREACHABLE(); if (m_expanded.size() > 1) { for (unsigned i = m_expanded.size(); i-- > 0; ) { expr_ref tmp(m.update_quantifier(q, m_expanded.get(i)), m); ctx.get_rewriter()(tmp); m_expanded[i] = tmp; } return m_expanded; } #if 0 m_expanded.reset(); m_expanded2.reset(); if (is_forall(q)) flatten_or(q->get_expr(), m_expanded2); else if (is_exists(q)) flatten_and(q->get_expr(), m_expanded2); else UNREACHABLE(); for (unsigned i = m_expanded2.size(); i-- > 0; ) { expr* lit = m_expanded2.get(i); if (!is_ground(lit) && is_and(lit) && is_forall(q)) { // get free vars of lit // create fresh predicate over free vars // replace in expanded, pack and push on m_expanded expr_ref p(m); // TODO introduce fresh p. flatten_and(lit, m_expanded); for (unsigned i = m_expanded.size(); i-- > 0; ) { tmp = m.mk_or(m.mk_not(p), m_expanded.get(i)); expr_ref tmp(m.update_quantifier(q, tmp), m); ctx.get_rewriter()(tmp); m_expanded[i] = tmp; } m_expanded2[i] = p; tmp = m.mk_or(m_expanded2); expr_ref tmp(m.update_quantifier(q, tmp), m); ctx.get_rewriter()(tmp); m_expanded.push_back(tmp); return m_expanded; } } #endif m_expanded.reset(); m_expanded.push_back(q); return m_expanded; } void solver::get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing) { m_ematch.get_antecedents(l, idx, r, probing); } }