/*++ Copyright (c) 2011 Microsoft Corporation Module Name: sat_tactic.cpp Abstract: Tactic for using the SAT solver and its preprocessing capabilities. Author: Leonardo (leonardo) 2011-10-25 Notes: --*/ #include "ast/ast_pp.h" #include "model/model_v2_pp.h" #include "tactic/tactical.h" #include "sat/tactic/goal2sat.h" #include "sat/sat_solver.h" #include "sat/sat_params.hpp" class sat_tactic : public tactic { struct imp { ast_manager & m; goal2sat m_goal2sat; sat2goal m_sat2goal; scoped_ptr m_solver; params_ref m_params; imp(ast_manager & _m, params_ref const & p): m(_m), m_solver(alloc(sat::solver, p, m.limit())), m_params(p) { updt_params(p); } void operator()(goal_ref const & g, goal_ref_buffer & result) { fail_if_proof_generation("sat", g); bool produce_models = g->models_enabled(); bool produce_core = g->unsat_core_enabled(); TRACE("before_sat_solver", g->display(tout);); g->elim_redundancies(); atom2bool_var map(m); obj_map dep2asm; sat::literal_vector assumptions; m_goal2sat(*g, m_params, *m_solver, map, dep2asm); TRACE("sat", tout << "interpreted_atoms: " << m_goal2sat.has_interpreted_funs() << "\n"; func_decl_ref_vector funs(m); m_goal2sat.get_interpreted_funs(funs); for (func_decl* f : funs) tout << mk_ismt2_pp(f, m) << "\n"; ); g->reset(); g->m().compact_memory(); CASSERT("sat_solver", m_solver->check_invariant()); IF_VERBOSE(TACTIC_VERBOSITY_LVL, m_solver->display_status(verbose_stream());); TRACE("sat_dimacs", m_solver->display_dimacs(tout);); dep2assumptions(dep2asm, assumptions); lbool r = m_solver->check(assumptions.size(), assumptions.c_ptr()); TRACE("sat", tout << "result of checking: " << r << " " << m_solver->get_reason_unknown() << "\n";); if (r == l_false) { expr_dependency * lcore = nullptr; if (produce_core) { sat::literal_vector const& ucore = m_solver->get_core(); u_map asm2dep; mk_asm2dep(dep2asm, asm2dep); for (unsigned i = 0; i < ucore.size(); ++i) { sat::literal lit = ucore[i]; expr* dep = asm2dep.find(lit.index()); lcore = m.mk_join(lcore, m.mk_leaf(dep)); } } g->assert_expr(m.mk_false(), nullptr, lcore); } else if (r == l_true && !m_goal2sat.has_interpreted_funs()) { // register model if (produce_models) { model_ref md = alloc(model, m); sat::model const & ll_m = m_solver->get_model(); TRACE("sat_tactic", for (unsigned i = 0; i < ll_m.size(); i++) tout << i << ":" << ll_m[i] << " "; tout << "\n";); for (auto const& kv : map) { expr * n = kv.m_key; sat::bool_var v = kv.m_value; TRACE("sat_tactic", tout << "extracting value of " << mk_ismt2_pp(n, m) << "\nvar: " << v << "\n";); switch (sat::value_at(v, ll_m)) { case l_true: md->register_decl(to_app(n)->get_decl(), m.mk_true()); break; case l_false: md->register_decl(to_app(n)->get_decl(), m.mk_false()); break; default: break; } } m_goal2sat.update_model(md); TRACE("sat_tactic", model_v2_pp(tout, *md);); g->add(model2model_converter(md.get())); } } else { // get simplified problem. #if 0 IF_VERBOSE(TACTIC_VERBOSITY_LVL, verbose_stream() << "\"formula constrains interpreted atoms, recovering formula from sat solver...\"\n";); #endif m_solver->pop_to_base_level(); ref mc; m_sat2goal(*m_solver, map, m_params, *(g.get()), mc); g->add(mc.get()); if (produce_core || m_goal2sat.has_interpreted_funs()) { // sat2goal does not preseve assumptions or assignments to interpreted atoms g->updt_prec(goal::OVER); } } g->inc_depth(); result.push_back(g.get()); } void dep2assumptions(obj_map& dep2asm, sat::literal_vector& assumptions) { for (auto const& kv : dep2asm) { assumptions.push_back(kv.m_value); } } void mk_asm2dep(obj_map& dep2asm, u_map& lit2asm) { for (auto const& kv : dep2asm) { lit2asm.insert(kv.m_value.index(), kv.m_key); } } void updt_params(params_ref const& p) { m_solver->updt_params(p); } }; struct scoped_set_imp { sat_tactic * m_owner; scoped_set_imp(sat_tactic * o, imp * i):m_owner(o) { m_owner->m_imp = i; m_owner->updt_params(m_owner->m_params); } ~scoped_set_imp() { m_owner->m_imp = nullptr; } }; imp * m_imp; params_ref m_params; statistics m_stats; public: sat_tactic(ast_manager & m, params_ref const & p): m_imp(nullptr), m_params(p) { sat_params p1(p); } tactic * translate(ast_manager & m) override { return alloc(sat_tactic, m, m_params); } ~sat_tactic() override { SASSERT(m_imp == 0); } void updt_params(params_ref const & p) override { m_params = p; if (m_imp) m_imp->updt_params(p); } void collect_param_descrs(param_descrs & r) override { goal2sat::collect_param_descrs(r); sat2goal::collect_param_descrs(r); sat::solver::collect_param_descrs(r); } void operator()(goal_ref const & g, goal_ref_buffer & result) override { imp proc(g->m(), m_params); scoped_set_imp set(this, &proc); try { proc(g, result); proc.m_solver->collect_statistics(m_stats); } catch (sat::solver_exception & ex) { proc.m_solver->collect_statistics(m_stats); throw tactic_exception(ex.msg()); } catch (z3_exception& ex) { (void)ex; TRACE("sat", tout << ex.msg() << "\n";); throw; } TRACE("sat_stats", m_stats.display_smt2(tout);); } void cleanup() override { SASSERT(m_imp == 0); } void collect_statistics(statistics & st) const override { st.copy(m_stats); } void reset_statistics() override { m_stats.reset(); } protected: }; tactic * mk_sat_tactic(ast_manager & m, params_ref const & p) { return clean(alloc(sat_tactic, m, p)); } tactic * mk_sat_preprocessor_tactic(ast_manager & m, params_ref const & p) { params_ref p_aux; p_aux.set_uint("max_conflicts", 0); p_aux.set_bool("enable_pre_simplify", true); tactic * t = clean(using_params(mk_sat_tactic(m, p), p_aux)); t->updt_params(p); return t; }