/*++ Copyright (c) 2012 Microsoft Corporation Module Name: dl_mk_array_blast.cpp Abstract: Remove array stores from rules. Author: Nikolaj Bjorner (nbjorner) 2012-11-23 Revision History: --*/ #include "dl_mk_array_blast.h" #include "qe_util.h" namespace datalog { mk_array_blast::mk_array_blast(context & ctx, unsigned priority) : rule_transformer::plugin(priority, false), m_ctx(ctx), m(ctx.get_manager()), a(m), rm(ctx.get_rule_manager()), m_rewriter(m, m_params), m_simplifier(ctx), m_sub(m), m_next_var(0) { m_params.set_bool("expand_select_store",true); m_rewriter.updt_params(m_params); } mk_array_blast::~mk_array_blast() { } bool mk_array_blast::is_store_def(expr* e, expr*& x, expr*& y) { if (m.is_iff(e, x, y) || m.is_eq(e, x, y)) { if (!a.is_store(y)) { std::swap(x,y); } if (is_var(x) && a.is_store(y)) { return true; } } return false; } expr* mk_array_blast::get_select(expr* e) const { while (a.is_select(e)) { e = to_app(e)->get_arg(0); } return e; } void mk_array_blast::get_select_args(expr* e, ptr_vector& args) const { while (a.is_select(e)) { app* ap = to_app(e); for (unsigned i = 1; i < ap->get_num_args(); ++i) { args.push_back(ap->get_arg(i)); } e = ap->get_arg(0); } } bool mk_array_blast::insert_def(rule const& r, app* e, var* v) { // // For the Ackermann reduction we would like the arrays // to be variables, so that variables can be // assumed to represent difference (alias) // classes. Ehm., Soundness of this approach depends on // if the arrays are finite domains... // if (!is_var(get_select(e))) { return false; } if (v) { m_sub.insert(e, v); m_defs.insert(e, to_var(v)); } else { if (m_next_var == 0) { ptr_vector vars; r.get_vars(vars); m_next_var = vars.size() + 1; } v = m.mk_var(m_next_var, m.get_sort(e)); m_sub.insert(e, v); m_defs.insert(e, v); ++m_next_var; } return true; } bool mk_array_blast::ackermanize(rule const& r, expr_ref& body, expr_ref& head) { expr_ref_vector conjs(m); qe::flatten_and(body, conjs); m_defs.reset(); m_sub.reset(); m_next_var = 0; ptr_vector todo; todo.push_back(head); for (unsigned i = 0; i < conjs.size(); ++i) { expr* e = conjs[i].get(); expr* x, *y; if (m.is_eq(e, x, y) || m.is_iff(e, x, y)) { if (a.is_select(y)) { std::swap(x,y); } if (a.is_select(x) && is_var(y)) { if (!insert_def(r, to_app(x), to_var(y))) { return false; } } } if (a.is_select(e) && !insert_def(r, to_app(e), 0)) { return false; } todo.push_back(e); } // now make sure to cover all occurrences. ast_mark mark; while (!todo.empty()) { expr* e = todo.back(); todo.pop_back(); if (mark.is_marked(e)) { continue; } mark.mark(e, true); if (is_var(e)) { continue; } if (!is_app(e)) { return false; } app* ap = to_app(e); if (a.is_select(ap) && !m_defs.contains(ap)) { if (!insert_def(r, ap, 0)) { return false; } } if (a.is_select(e)) { get_select_args(e, todo); continue; } for (unsigned i = 0; i < ap->get_num_args(); ++i) { todo.push_back(ap->get_arg(i)); } } m_sub(body); m_sub(head); conjs.reset(); // perform the Ackermann reduction by creating implications // i1 = i2 => val1 = val2 for each equality pair: // (= val1 (select a_i i1)) // (= val2 (select a_i i2)) defs_t::iterator it1 = m_defs.begin(), end = m_defs.end(); for (; it1 != end; ++it1) { app* a1 = it1->m_key; var* v1 = it1->m_value; defs_t::iterator it2 = it1; ++it2; for (; it2 != end; ++it2) { app* a2 = it2->m_key; var* v2 = it2->m_value; if (get_select(a1) != get_select(a2)) { continue; } expr_ref_vector eqs(m); ptr_vector args1, args2; get_select_args(a1, args1); get_select_args(a2, args2); for (unsigned j = 0; j < args1.size(); ++j) { eqs.push_back(m.mk_eq(args1[j], args2[j])); } conjs.push_back(m.mk_implies(m.mk_and(eqs.size(), eqs.c_ptr()), m.mk_eq(v1, v2))); } } if (!conjs.empty()) { conjs.push_back(body); body = m.mk_and(conjs.size(), conjs.c_ptr()); } m_rewriter(body); return true; } bool mk_array_blast::blast(rule& r, rule_set& rules) { unsigned utsz = r.get_uninterpreted_tail_size(); unsigned tsz = r.get_tail_size(); expr_ref_vector conjs(m), new_conjs(m); expr_ref tmp(m); expr_safe_replace sub(m); bool change = false; bool inserted = false; for (unsigned i = 0; i < utsz; ++i) { new_conjs.push_back(r.get_tail(i)); } for (unsigned i = utsz; i < tsz; ++i) { conjs.push_back(r.get_tail(i)); } qe::flatten_and(conjs); for (unsigned i = 0; i < conjs.size(); ++i) { expr* x, *y, *e = conjs[i].get(); if (is_store_def(e, x, y)) { // enforce topological order consistency: uint_set lhs = rm.collect_vars(x); uint_set rhs_vars = rm.collect_vars(y); lhs &= rhs_vars; if (!lhs.empty()) { TRACE("dl", tout << "unusable equality " << mk_pp(e, m) << "\n";); new_conjs.push_back(e); } else { sub.insert(x, y); inserted = true; } } else { m_rewriter(e, tmp); change = change || (tmp != e); new_conjs.push_back(tmp); } } expr_ref fml2(m), body(m), head(m); body = m.mk_and(new_conjs.size(), new_conjs.c_ptr()); head = r.get_head(); sub(body); m_rewriter(body); sub(head); m_rewriter(head); change = ackermanize(r, body, head) || change; if (!inserted && !change) { rules.add_rule(&r); return false; } fml2 = m.mk_implies(body, head); proof_ref p(m); rule_set new_rules(m_ctx); rm.mk_rule(fml2, p, new_rules, r.name()); rule_ref new_rule(rm); if (m_simplifier.transform_rule(new_rules.last(), new_rule)) { rules.add_rule(new_rule.get()); rm.mk_rule_rewrite_proof(r, *new_rule.get()); TRACE("dl", new_rule->display(m_ctx, tout << "new rule\n");); } return true; } rule_set * mk_array_blast::operator()(rule_set const & source) { rule_set* rules = alloc(rule_set, m_ctx); rules->inherit_predicates(source); rule_set::iterator it = source.begin(), end = source.end(); bool change = false; for (; !m_ctx.canceled() && it != end; ++it) { change = blast(**it, *rules) || change; } if (!change) { dealloc(rules); rules = 0; } return rules; } };