/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
Context.cs
Abstract:
Z3 Managed API: Context
Author:
Christoph Wintersteiger (cwinter) 2012-03-15
Notes:
--*/
using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using System.Diagnostics.Contracts;
namespace Microsoft.Z3
{
///
/// The main interaction with Z3 happens via the Context.
///
[ContractVerification(true)]
public class Context : IDisposable
{
#region Constructors
///
/// Constructor.
///
public Context()
: base()
{
m_ctx = Native.Z3_mk_context_rc(IntPtr.Zero);
InitContext();
}
///
/// Constructor.
///
///
/// The following parameters can be set:
/// - proof (Boolean) Enable proof generation
/// - debug_ref_count (Boolean) Enable debug support for Z3_ast reference counting
/// - trace (Boolean) Tracing support for VCC
/// - trace_file_name (String) Trace out file for VCC traces
/// - timeout (unsigned) default timeout (in milliseconds) used for solvers
/// - well_sorted_check type checker
/// - auto_config use heuristics to automatically select solver and configure it
/// - model model generation for solvers, this parameter can be overwritten when creating a solver
/// - model_validate validate models produced by solvers
/// - unsat_core unsat-core generation for solvers, this parameter can be overwritten when creating a solver
/// Note that in previous versions of Z3, this constructor was also used to set global and module parameters.
/// For this purpose we should now use
///
public Context(Dictionary settings)
: base()
{
Contract.Requires(settings != null);
IntPtr cfg = Native.Z3_mk_config();
foreach (KeyValuePair kv in settings)
Native.Z3_set_param_value(cfg, kv.Key, kv.Value);
m_ctx = Native.Z3_mk_context_rc(cfg);
Native.Z3_del_config(cfg);
InitContext();
}
#endregion
#region Symbols
///
/// Creates a new symbol using an integer.
///
///
/// Not all integers can be passed to this function.
/// The legal range of unsigned integers is 0 to 2^30-1.
///
public IntSymbol MkSymbol(int i)
{
Contract.Ensures(Contract.Result() != null);
return new IntSymbol(this, i);
}
///
/// Create a symbol using a string.
///
public StringSymbol MkSymbol(string name)
{
Contract.Ensures(Contract.Result() != null);
return new StringSymbol(this, name);
}
///
/// Create an array of symbols.
///
internal Symbol[] MkSymbols(string[] names)
{
Contract.Ensures(names == null || Contract.Result() != null);
Contract.Ensures(names != null || Contract.Result() == null);
Contract.Ensures(Contract.Result() == null || Contract.Result().Length == names.Length);
Contract.Ensures(Contract.Result() == null || Contract.ForAll(Contract.Result(), s => s != null));
if (names == null) return null;
Symbol[] result = new Symbol[names.Length];
for (int i = 0; i < names.Length; ++i) result[i] = MkSymbol(names[i]);
return result;
}
#endregion
#region Sorts
private BoolSort m_boolSort = null;
private IntSort m_intSort = null;
private RealSort m_realSort = null;
///
/// Retrieves the Boolean sort of the context.
///
public BoolSort BoolSort
{
get
{
Contract.Ensures(Contract.Result() != null);
if (m_boolSort == null) m_boolSort = new BoolSort(this); return m_boolSort;
}
}
///
/// Retrieves the Integer sort of the context.
///
public IntSort IntSort
{
get
{
Contract.Ensures(Contract.Result() != null);
if (m_intSort == null) m_intSort = new IntSort(this); return m_intSort;
}
}
///
/// Retrieves the Real sort of the context.
///
public RealSort RealSort
{
get
{
Contract.Ensures(Contract.Result() != null);
if (m_realSort == null) m_realSort = new RealSort(this); return m_realSort;
}
}
///
/// Create a new Boolean sort.
///
public BoolSort MkBoolSort()
{
Contract.Ensures(Contract.Result() != null);
return new BoolSort(this);
}
///
/// Create a new uninterpreted sort.
///
public UninterpretedSort MkUninterpretedSort(Symbol s)
{
Contract.Requires(s != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(s);
return new UninterpretedSort(this, s);
}
///
/// Create a new uninterpreted sort.
///
public UninterpretedSort MkUninterpretedSort(string str)
{
Contract.Ensures(Contract.Result() != null);
return MkUninterpretedSort(MkSymbol(str));
}
///
/// Create a new integer sort.
///
public IntSort MkIntSort()
{
Contract.Ensures(Contract.Result() != null);
return new IntSort(this);
}
///
/// Create a real sort.
///
public RealSort MkRealSort()
{
Contract.Ensures(Contract.Result() != null);
return new RealSort(this);
}
///
/// Create a new bit-vector sort.
///
public BitVecSort MkBitVecSort(uint size)
{
Contract.Ensures(Contract.Result() != null);
return new BitVecSort(this, Native.Z3_mk_bv_sort(nCtx, size));
}
///
/// Create a new array sort.
///
public ArraySort MkArraySort(Sort domain, Sort range)
{
Contract.Requires(domain != null);
Contract.Requires(range != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(domain);
CheckContextMatch(range);
return new ArraySort(this, domain, range);
}
///
/// Create a new tuple sort.
///
public TupleSort MkTupleSort(Symbol name, Symbol[] fieldNames, Sort[] fieldSorts)
{
Contract.Requires(name != null);
Contract.Requires(fieldNames != null);
Contract.Requires(Contract.ForAll(fieldNames, fn => fn != null));
Contract.Requires(fieldSorts == null || Contract.ForAll(fieldSorts, fs => fs != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(name);
CheckContextMatch(fieldNames);
CheckContextMatch(fieldSorts);
return new TupleSort(this, name, (uint)fieldNames.Length, fieldNames, fieldSorts);
}
///
/// Create a new enumeration sort.
///
public EnumSort MkEnumSort(Symbol name, params Symbol[] enumNames)
{
Contract.Requires(name != null);
Contract.Requires(enumNames != null);
Contract.Requires(Contract.ForAll(enumNames, f => f != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(name);
CheckContextMatch(enumNames);
return new EnumSort(this, name, enumNames);
}
///
/// Create a new enumeration sort.
///
public EnumSort MkEnumSort(string name, params string[] enumNames)
{
Contract.Requires(enumNames != null);
Contract.Ensures(Contract.Result() != null);
return new EnumSort(this, MkSymbol(name), MkSymbols(enumNames));
}
///
/// Create a new list sort.
///
public ListSort MkListSort(Symbol name, Sort elemSort)
{
Contract.Requires(name != null);
Contract.Requires(elemSort != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(name);
CheckContextMatch(elemSort);
return new ListSort(this, name, elemSort);
}
///
/// Create a new list sort.
///
public ListSort MkListSort(string name, Sort elemSort)
{
Contract.Requires(elemSort != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(elemSort);
return new ListSort(this, MkSymbol(name), elemSort);
}
///
/// Create a new finite domain sort.
/// The result is a sort
///
/// The name used to identify the sort
/// The size of the sort
public FiniteDomainSort MkFiniteDomainSort(Symbol name, ulong size)
{
Contract.Requires(name != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(name);
return new FiniteDomainSort(this, name, size);
}
///
/// Create a new finite domain sort.
/// The result is a sort
/// Elements of the sort are created using ,
/// and the elements range from 0 to size-1.
///
/// The name used to identify the sort
/// The size of the sort
public FiniteDomainSort MkFiniteDomainSort(string name, ulong size)
{
Contract.Ensures(Contract.Result() != null);
return new FiniteDomainSort(this, MkSymbol(name), size);
}
#region Datatypes
///
/// Create a datatype constructor.
///
/// constructor name
/// name of recognizer function.
/// names of the constructor fields.
/// field sorts, 0 if the field sort refers to a recursive sort.
/// reference to datatype sort that is an argument to the constructor;
/// if the corresponding sort reference is 0, then the value in sort_refs should be an index
/// referring to one of the recursive datatypes that is declared.
public Constructor MkConstructor(Symbol name, Symbol recognizer, Symbol[] fieldNames = null, Sort[] sorts = null, uint[] sortRefs = null)
{
Contract.Requires(name != null);
Contract.Requires(recognizer != null);
Contract.Ensures(Contract.Result() != null);
return new Constructor(this, name, recognizer, fieldNames, sorts, sortRefs);
}
///
/// Create a datatype constructor.
///
///
///
///
///
///
///
public Constructor MkConstructor(string name, string recognizer, string[] fieldNames = null, Sort[] sorts = null, uint[] sortRefs = null)
{
Contract.Ensures(Contract.Result() != null);
return new Constructor(this, MkSymbol(name), MkSymbol(recognizer), MkSymbols(fieldNames), sorts, sortRefs);
}
///
/// Create a new datatype sort.
///
public DatatypeSort MkDatatypeSort(Symbol name, Constructor[] constructors)
{
Contract.Requires(name != null);
Contract.Requires(constructors != null);
Contract.Requires(Contract.ForAll(constructors, c => c != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(name);
CheckContextMatch(constructors);
return new DatatypeSort(this, name, constructors);
}
///
/// Create a new datatype sort.
///
public DatatypeSort MkDatatypeSort(string name, Constructor[] constructors)
{
Contract.Requires(constructors != null);
Contract.Requires(Contract.ForAll(constructors, c => c != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(constructors);
return new DatatypeSort(this, MkSymbol(name), constructors);
}
///
/// Create mutually recursive datatypes.
///
/// names of datatype sorts
/// list of constructors, one list per sort.
public DatatypeSort[] MkDatatypeSorts(Symbol[] names, Constructor[][] c)
{
Contract.Requires(names != null);
Contract.Requires(c != null);
Contract.Requires(names.Length == c.Length);
Contract.Requires(Contract.ForAll(0, c.Length, j => c[j] != null));
Contract.Requires(Contract.ForAll(names, name => name != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(names);
uint n = (uint)names.Length;
ConstructorList[] cla = new ConstructorList[n];
IntPtr[] n_constr = new IntPtr[n];
for (uint i = 0; i < n; i++)
{
Constructor[] constructor = c[i];
Contract.Assume(Contract.ForAll(constructor, arr => arr != null), "Clousot does not support yet quantified formula on multidimensional arrays");
CheckContextMatch(constructor);
cla[i] = new ConstructorList(this, constructor);
n_constr[i] = cla[i].NativeObject;
}
IntPtr[] n_res = new IntPtr[n];
Native.Z3_mk_datatypes(nCtx, n, Symbol.ArrayToNative(names), n_res, n_constr);
DatatypeSort[] res = new DatatypeSort[n];
for (uint i = 0; i < n; i++)
res[i] = new DatatypeSort(this, n_res[i]);
return res;
}
///
/// Create mutually recursive data-types.
///
///
///
///
public DatatypeSort[] MkDatatypeSorts(string[] names, Constructor[][] c)
{
Contract.Requires(names != null);
Contract.Requires(c != null);
Contract.Requires(names.Length == c.Length);
Contract.Requires(Contract.ForAll(0, c.Length, j => c[j] != null));
Contract.Requires(Contract.ForAll(names, name => name != null));
Contract.Ensures(Contract.Result() != null);
return MkDatatypeSorts(MkSymbols(names), c);
}
#endregion
#endregion
#region Function Declarations
///
/// Creates a new function declaration.
///
public FuncDecl MkFuncDecl(Symbol name, Sort[] domain, Sort range)
{
Contract.Requires(name != null);
Contract.Requires(range != null);
Contract.Requires(Contract.ForAll(domain, d => d != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(name);
CheckContextMatch(domain);
CheckContextMatch(range);
return new FuncDecl(this, name, domain, range);
}
///
/// Creates a new function declaration.
///
public FuncDecl MkFuncDecl(Symbol name, Sort domain, Sort range)
{
Contract.Requires(name != null);
Contract.Requires(domain != null);
Contract.Requires(range != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(name);
CheckContextMatch(domain);
CheckContextMatch(range);
Sort[] q = new Sort[] { domain };
return new FuncDecl(this, name, q, range);
}
///
/// Creates a new function declaration.
///
public FuncDecl MkFuncDecl(string name, Sort[] domain, Sort range)
{
Contract.Requires(range != null);
Contract.Requires(Contract.ForAll(domain, d => d != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(domain);
CheckContextMatch(range);
return new FuncDecl(this, MkSymbol(name), domain, range);
}
///
/// Creates a new function declaration.
///
public FuncDecl MkFuncDecl(string name, Sort domain, Sort range)
{
Contract.Requires(range != null);
Contract.Requires(domain != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(domain);
CheckContextMatch(range);
Sort[] q = new Sort[] { domain };
return new FuncDecl(this, MkSymbol(name), q, range);
}
///
/// Creates a fresh function declaration with a name prefixed with .
///
///
///
public FuncDecl MkFreshFuncDecl(string prefix, Sort[] domain, Sort range)
{
Contract.Requires(range != null);
Contract.Requires(Contract.ForAll(domain, d => d != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(domain);
CheckContextMatch(range);
return new FuncDecl(this, prefix, domain, range);
}
///
/// Creates a new constant function declaration.
///
public FuncDecl MkConstDecl(Symbol name, Sort range)
{
Contract.Requires(name != null);
Contract.Requires(range != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(name);
CheckContextMatch(range);
return new FuncDecl(this, name, null, range);
}
///
/// Creates a new constant function declaration.
///
public FuncDecl MkConstDecl(string name, Sort range)
{
Contract.Requires(range != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(range);
return new FuncDecl(this, MkSymbol(name), null, range);
}
///
/// Creates a fresh constant function declaration with a name prefixed with .
///
///
///
public FuncDecl MkFreshConstDecl(string prefix, Sort range)
{
Contract.Requires(range != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(range);
return new FuncDecl(this, prefix, null, range);
}
#endregion
#region Bound Variables
///
/// Creates a new bound variable.
///
/// The de-Bruijn index of the variable
/// The sort of the variable
public Expr MkBound(uint index, Sort ty)
{
Contract.Requires(ty != null);
Contract.Ensures(Contract.Result() != null);
return Expr.Create(this, Native.Z3_mk_bound(nCtx, index, ty.NativeObject));
}
#endregion
#region Quantifier Patterns
///
/// Create a quantifier pattern.
///
public Pattern MkPattern(params Expr[] terms)
{
Contract.Requires(terms != null);
if (terms.Length == 0)
throw new Z3Exception("Cannot create a pattern from zero terms");
Contract.Ensures(Contract.Result() != null);
Contract.EndContractBlock();
IntPtr[] termsNative = AST.ArrayToNative(terms);
return new Pattern(this, Native.Z3_mk_pattern(nCtx, (uint)terms.Length, termsNative));
}
#endregion
#region Constants
///
/// Creates a new Constant of sort and named .
///
public Expr MkConst(Symbol name, Sort range)
{
Contract.Requires(name != null);
Contract.Requires(range != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(name);
CheckContextMatch(range);
return Expr.Create(this, Native.Z3_mk_const(nCtx, name.NativeObject, range.NativeObject));
}
///
/// Creates a new Constant of sort and named .
///
public Expr MkConst(string name, Sort range)
{
Contract.Requires(range != null);
Contract.Ensures(Contract.Result() != null);
return MkConst(MkSymbol(name), range);
}
///
/// Creates a fresh Constant of sort and a
/// name prefixed with .
///
public Expr MkFreshConst(string prefix, Sort range)
{
Contract.Requires(range != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(range);
return Expr.Create(this, Native.Z3_mk_fresh_const(nCtx, prefix, range.NativeObject));
}
///
/// Creates a fresh constant from the FuncDecl .
///
/// A decl of a 0-arity function
public Expr MkConst(FuncDecl f)
{
Contract.Requires(f != null);
Contract.Ensures(Contract.Result() != null);
return MkApp(f);
}
///
/// Create a Boolean constant.
///
public BoolExpr MkBoolConst(Symbol name)
{
Contract.Requires(name != null);
Contract.Ensures(Contract.Result() != null);
return (BoolExpr)MkConst(name, BoolSort);
}
///
/// Create a Boolean constant.
///
public BoolExpr MkBoolConst(string name)
{
Contract.Ensures(Contract.Result() != null);
return (BoolExpr)MkConst(MkSymbol(name), BoolSort);
}
///
/// Creates an integer constant.
///
public IntExpr MkIntConst(Symbol name)
{
Contract.Requires(name != null);
Contract.Ensures(Contract.Result() != null);
return (IntExpr)MkConst(name, IntSort);
}
///
/// Creates an integer constant.
///
public IntExpr MkIntConst(string name)
{
Contract.Requires(name != null);
Contract.Ensures(Contract.Result() != null);
return (IntExpr)MkConst(name, IntSort);
}
///
/// Creates a real constant.
///
public RealExpr MkRealConst(Symbol name)
{
Contract.Requires(name != null);
Contract.Ensures(Contract.Result() != null);
return (RealExpr)MkConst(name, RealSort);
}
///
/// Creates a real constant.
///
public RealExpr MkRealConst(string name)
{
Contract.Ensures(Contract.Result() != null);
return (RealExpr)MkConst(name, RealSort);
}
///
/// Creates a bit-vector constant.
///
public BitVecExpr MkBVConst(Symbol name, uint size)
{
Contract.Requires(name != null);
Contract.Ensures(Contract.Result() != null);
return (BitVecExpr)MkConst(name, MkBitVecSort(size));
}
///
/// Creates a bit-vector constant.
///
public BitVecExpr MkBVConst(string name, uint size)
{
Contract.Ensures(Contract.Result() != null);
return (BitVecExpr)MkConst(name, MkBitVecSort(size));
}
#endregion
#region Terms
///
/// Create a new function application.
///
public Expr MkApp(FuncDecl f, params Expr[] args)
{
Contract.Requires(f != null);
Contract.Requires(args == null || Contract.ForAll(args, a => a != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(f);
CheckContextMatch(args);
return Expr.Create(this, f, args);
}
#region Propositional
///
/// The true Term.
///
public BoolExpr MkTrue()
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_true(nCtx));
}
///
/// The false Term.
///
public BoolExpr MkFalse()
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_false(nCtx));
}
///
/// Creates a Boolean value.
///
public BoolExpr MkBool(bool value)
{
Contract.Ensures(Contract.Result() != null);
return value ? MkTrue() : MkFalse();
}
///
/// Creates the equality = .
///
public BoolExpr MkEq(Expr x, Expr y)
{
Contract.Requires(x != null);
Contract.Requires(y != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(x);
CheckContextMatch(y);
return new BoolExpr(this, Native.Z3_mk_eq(nCtx, x.NativeObject, y.NativeObject));
}
///
/// Creates a distinct term.
///
public BoolExpr MkDistinct(params Expr[] args)
{
Contract.Requires(args != null);
Contract.Requires(Contract.ForAll(args, a => a != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(args);
return new BoolExpr(this, Native.Z3_mk_distinct(nCtx, (uint)args.Length, AST.ArrayToNative(args)));
}
///
/// Mk an expression representing not(a).
///
public BoolExpr MkNot(BoolExpr a)
{
Contract.Requires(a != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(a);
return new BoolExpr(this, Native.Z3_mk_not(nCtx, a.NativeObject));
}
///
/// Create an expression representing an if-then-else: ite(t1, t2, t3).
///
/// An expression with Boolean sort
/// An expression
/// An expression with the same sort as
public Expr MkITE(BoolExpr t1, Expr t2, Expr t3)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Requires(t3 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
CheckContextMatch(t3);
return Expr.Create(this, Native.Z3_mk_ite(nCtx, t1.NativeObject, t2.NativeObject, t3.NativeObject));
}
///
/// Create an expression representing t1 iff t2.
///
public BoolExpr MkIff(BoolExpr t1, BoolExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_iff(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create an expression representing t1 -> t2.
///
public BoolExpr MkImplies(BoolExpr t1, BoolExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_implies(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create an expression representing t1 xor t2.
///
public BoolExpr MkXor(BoolExpr t1, BoolExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_xor(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create an expression representing t[0] and t[1] and ....
///
public BoolExpr MkAnd(params BoolExpr[] t)
{
Contract.Requires(t != null);
Contract.Requires(Contract.ForAll(t, a => a != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BoolExpr(this, Native.Z3_mk_and(nCtx, (uint)t.Length, AST.ArrayToNative(t)));
}
///
/// Create an expression representing t[0] or t[1] or ....
///
public BoolExpr MkOr(params BoolExpr[] t)
{
Contract.Requires(t != null);
Contract.Requires(Contract.ForAll(t, a => a != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BoolExpr(this, Native.Z3_mk_or(nCtx, (uint)t.Length, AST.ArrayToNative(t)));
}
#endregion
#region Arithmetic
///
/// Create an expression representing t[0] + t[1] + ....
///
public ArithExpr MkAdd(params ArithExpr[] t)
{
Contract.Requires(t != null);
Contract.Requires(Contract.ForAll(t, a => a != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return (ArithExpr)Expr.Create(this, Native.Z3_mk_add(nCtx, (uint)t.Length, AST.ArrayToNative(t)));
}
///
/// Create an expression representing t[0] * t[1] * ....
///
public ArithExpr MkMul(params ArithExpr[] t)
{
Contract.Requires(t != null);
Contract.Requires(Contract.ForAll(t, a => a != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return (ArithExpr)Expr.Create(this, Native.Z3_mk_mul(nCtx, (uint)t.Length, AST.ArrayToNative(t)));
}
///
/// Create an expression representing t[0] - t[1] - ....
///
public ArithExpr MkSub(params ArithExpr[] t)
{
Contract.Requires(t != null);
Contract.Requires(Contract.ForAll(t, a => a != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return (ArithExpr)Expr.Create(this, Native.Z3_mk_sub(nCtx, (uint)t.Length, AST.ArrayToNative(t)));
}
///
/// Create an expression representing -t.
///
public ArithExpr MkUnaryMinus(ArithExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return (ArithExpr)Expr.Create(this, Native.Z3_mk_unary_minus(nCtx, t.NativeObject));
}
///
/// Create an expression representing t1 / t2.
///
public ArithExpr MkDiv(ArithExpr t1, ArithExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return (ArithExpr)Expr.Create(this, Native.Z3_mk_div(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create an expression representing t1 mod t2.
///
/// The arguments must have int type.
public IntExpr MkMod(IntExpr t1, IntExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new IntExpr(this, Native.Z3_mk_mod(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create an expression representing t1 rem t2.
///
/// The arguments must have int type.
public IntExpr MkRem(IntExpr t1, IntExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new IntExpr(this, Native.Z3_mk_rem(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create an expression representing t1 ^ t2.
///
public ArithExpr MkPower(ArithExpr t1, ArithExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return (ArithExpr)Expr.Create(this, Native.Z3_mk_power(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create an expression representing t1 < t2
///
public BoolExpr MkLt(ArithExpr t1, ArithExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_lt(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create an expression representing t1 <= t2
///
public BoolExpr MkLe(ArithExpr t1, ArithExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_le(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create an expression representing t1 > t2
///
public BoolExpr MkGt(ArithExpr t1, ArithExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_gt(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create an expression representing t1 >= t2
///
public BoolExpr MkGe(ArithExpr t1, ArithExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_ge(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Coerce an integer to a real.
///
///
/// There is also a converse operation exposed. It follows the semantics prescribed by the SMT-LIB standard.
///
/// You can take the floor of a real by creating an auxiliary integer Term k and
/// and asserting MakeInt2Real(k) <= t1 < MkInt2Real(k)+1.
/// The argument must be of integer sort.
///
public RealExpr MkInt2Real(IntExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new RealExpr(this, Native.Z3_mk_int2real(nCtx, t.NativeObject));
}
///
/// Coerce a real to an integer.
///
///
/// The semantics of this function follows the SMT-LIB standard for the function to_int.
/// The argument must be of real sort.
///
public IntExpr MkReal2Int(RealExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new IntExpr(this, Native.Z3_mk_real2int(nCtx, t.NativeObject));
}
///
/// Creates an expression that checks whether a real number is an integer.
///
public BoolExpr MkIsInteger(RealExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BoolExpr(this, Native.Z3_mk_is_int(nCtx, t.NativeObject));
}
#endregion
#region Bit-vectors
///
/// Bitwise negation.
///
/// The argument must have a bit-vector sort.
public BitVecExpr MkBVNot(BitVecExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BitVecExpr(this, Native.Z3_mk_bvnot(nCtx, t.NativeObject));
}
///
/// Take conjunction of bits in a vector, return vector of length 1.
///
/// The argument must have a bit-vector sort.
public BitVecExpr MkBVRedAND(BitVecExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BitVecExpr(this, Native.Z3_mk_bvredand(nCtx, t.NativeObject));
}
///
/// Take disjunction of bits in a vector, return vector of length 1.
///
/// The argument must have a bit-vector sort.
public BitVecExpr MkBVRedOR(BitVecExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BitVecExpr(this, Native.Z3_mk_bvredor(nCtx, t.NativeObject));
}
///
/// Bitwise conjunction.
///
/// The arguments must have a bit-vector sort.
public BitVecExpr MkBVAND(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvand(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Bitwise disjunction.
///
/// The arguments must have a bit-vector sort.
public BitVecExpr MkBVOR(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvor(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Bitwise XOR.
///
/// The arguments must have a bit-vector sort.
public BitVecExpr MkBVXOR(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvxor(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Bitwise NAND.
///
/// The arguments must have a bit-vector sort.
public BitVecExpr MkBVNAND(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvnand(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Bitwise NOR.
///
/// The arguments must have a bit-vector sort.
public BitVecExpr MkBVNOR(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvnor(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Bitwise XNOR.
///
/// The arguments must have a bit-vector sort.
public BitVecExpr MkBVXNOR(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvxnor(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Standard two's complement unary minus.
///
/// The arguments must have a bit-vector sort.
public BitVecExpr MkBVNeg(BitVecExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BitVecExpr(this, Native.Z3_mk_bvneg(nCtx, t.NativeObject));
}
///
/// Two's complement addition.
///
/// The arguments must have the same bit-vector sort.
public BitVecExpr MkBVAdd(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvadd(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Two's complement subtraction.
///
/// The arguments must have the same bit-vector sort.
public BitVecExpr MkBVSub(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvsub(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Two's complement multiplication.
///
/// The arguments must have the same bit-vector sort.
public BitVecExpr MkBVMul(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvmul(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Unsigned division.
///
///
/// It is defined as the floor of t1/t2 if \c t2 is
/// different from zero. If t2 is zero, then the result
/// is undefined.
/// The arguments must have the same bit-vector sort.
///
public BitVecExpr MkBVUDiv(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvudiv(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Signed division.
///
///
/// It is defined in the following way:
///
/// - The \c floor of t1/t2 if \c t2 is different from zero, and t1*t2 >= 0.
///
/// - The \c ceiling of t1/t2 if \c t2 is different from zero, and t1*t2 < 0.
///
/// If t2 is zero, then the result is undefined.
/// The arguments must have the same bit-vector sort.
///
public BitVecExpr MkBVSDiv(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvsdiv(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Unsigned remainder.
///
///
/// It is defined as t1 - (t1 /u t2) * t2, where /u represents unsigned division.
/// If t2 is zero, then the result is undefined.
/// The arguments must have the same bit-vector sort.
///
public BitVecExpr MkBVURem(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvurem(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Signed remainder.
///
///
/// It is defined as t1 - (t1 /s t2) * t2, where /s represents signed division.
/// The most significant bit (sign) of the result is equal to the most significant bit of \c t1.
///
/// If t2 is zero, then the result is undefined.
/// The arguments must have the same bit-vector sort.
///
public BitVecExpr MkBVSRem(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvsrem(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Two's complement signed remainder (sign follows divisor).
///
///
/// If t2 is zero, then the result is undefined.
/// The arguments must have the same bit-vector sort.
///
public BitVecExpr MkBVSMod(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvsmod(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Unsigned less-than
///
///
/// The arguments must have the same bit-vector sort.
///
public BoolExpr MkBVULT(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvult(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Two's complement signed less-than
///
///
/// The arguments must have the same bit-vector sort.
///
public BoolExpr MkBVSLT(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvslt(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Unsigned less-than or equal to.
///
///
/// The arguments must have the same bit-vector sort.
///
public BoolExpr MkBVULE(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvule(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Two's complement signed less-than or equal to.
///
///
/// The arguments must have the same bit-vector sort.
///
public BoolExpr MkBVSLE(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvsle(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Unsigned greater than or equal to.
///
///
/// The arguments must have the same bit-vector sort.
///
public BoolExpr MkBVUGE(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvuge(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Two's complement signed greater than or equal to.
///
///
/// The arguments must have the same bit-vector sort.
///
public BoolExpr MkBVSGE(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvsge(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Unsigned greater-than.
///
///
/// The arguments must have the same bit-vector sort.
///
public BoolExpr MkBVUGT(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvugt(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Two's complement signed greater-than.
///
///
/// The arguments must have the same bit-vector sort.
///
public BoolExpr MkBVSGT(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvsgt(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Bit-vector concatenation.
///
///
/// The arguments must have a bit-vector sort.
///
///
/// The result is a bit-vector of size n1+n2, where n1 (n2)
/// is the size of t1 (t2).
///
public BitVecExpr MkConcat(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_concat(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Bit-vector extraction.
///
///
/// Extract the bits down to from a bitvector of
/// size m to yield a new bitvector of size n, where
/// n = high - low + 1.
/// The argument must have a bit-vector sort.
///
public BitVecExpr MkExtract(uint high, uint low, BitVecExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BitVecExpr(this, Native.Z3_mk_extract(nCtx, high, low, t.NativeObject));
}
///
/// Bit-vector sign extension.
///
///
/// Sign-extends the given bit-vector to the (signed) equivalent bitvector of
/// size m+i, where \c m is the size of the given bit-vector.
/// The argument must have a bit-vector sort.
///
public BitVecExpr MkSignExt(uint i, BitVecExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BitVecExpr(this, Native.Z3_mk_sign_ext(nCtx, i, t.NativeObject));
}
///
/// Bit-vector zero extension.
///
///
/// Extend the given bit-vector with zeros to the (unsigned) equivalent
/// bitvector of size m+i, where \c m is the size of the
/// given bit-vector.
/// The argument must have a bit-vector sort.
///
public BitVecExpr MkZeroExt(uint i, BitVecExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BitVecExpr(this, Native.Z3_mk_zero_ext(nCtx, i, t.NativeObject));
}
///
/// Bit-vector repetition.
///
///
/// The argument must have a bit-vector sort.
///
public BitVecExpr MkRepeat(uint i, BitVecExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BitVecExpr(this, Native.Z3_mk_repeat(nCtx, i, t.NativeObject));
}
///
/// Shift left.
///
///
/// It is equivalent to multiplication by 2^x where \c x is the value of .
///
/// NB. The semantics of shift operations varies between environments. This
/// definition does not necessarily capture directly the semantics of the
/// programming language or assembly architecture you are modeling.
///
/// The arguments must have a bit-vector sort.
///
public BitVecExpr MkBVSHL(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvshl(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Logical shift right
///
///
/// It is equivalent to unsigned division by 2^x where \c x is the value of .
///
/// NB. The semantics of shift operations varies between environments. This
/// definition does not necessarily capture directly the semantics of the
/// programming language or assembly architecture you are modeling.
///
/// The arguments must have a bit-vector sort.
///
public BitVecExpr MkBVLSHR(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvlshr(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Arithmetic shift right
///
///
/// It is like logical shift right except that the most significant
/// bits of the result always copy the most significant bit of the
/// second argument.
///
/// NB. The semantics of shift operations varies between environments. This
/// definition does not necessarily capture directly the semantics of the
/// programming language or assembly architecture you are modeling.
///
/// The arguments must have a bit-vector sort.
///
public BitVecExpr MkBVASHR(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_bvashr(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Rotate Left.
///
///
/// Rotate bits of \c t to the left \c i times.
/// The argument must have a bit-vector sort.
///
public BitVecExpr MkBVRotateLeft(uint i, BitVecExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BitVecExpr(this, Native.Z3_mk_rotate_left(nCtx, i, t.NativeObject));
}
///
/// Rotate Right.
///
///
/// Rotate bits of \c t to the right \c i times.
/// The argument must have a bit-vector sort.
///
public BitVecExpr MkBVRotateRight(uint i, BitVecExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BitVecExpr(this, Native.Z3_mk_rotate_right(nCtx, i, t.NativeObject));
}
///
/// Rotate Left.
///
///
/// Rotate bits of to the left times.
/// The arguments must have the same bit-vector sort.
///
public BitVecExpr MkBVRotateLeft(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_ext_rotate_left(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Rotate Right.
///
///
/// Rotate bits of to the right times.
/// The arguments must have the same bit-vector sort.
///
public BitVecExpr MkBVRotateRight(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BitVecExpr(this, Native.Z3_mk_ext_rotate_right(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create an bit bit-vector from the integer argument .
///
///
/// NB. This function is essentially treated as uninterpreted.
/// So you cannot expect Z3 to precisely reflect the semantics of this function
/// when solving constraints with this function.
///
/// The argument must be of integer sort.
///
public BitVecExpr MkInt2BV(uint n, IntExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BitVecExpr(this, Native.Z3_mk_int2bv(nCtx, n, t.NativeObject));
}
///
/// Create an integer from the bit-vector argument .
///
///
/// If \c is_signed is false, then the bit-vector \c t1 is treated as unsigned.
/// So the result is non-negative and in the range [0..2^N-1], where
/// N are the number of bits in .
/// If \c is_signed is true, \c t1 is treated as a signed bit-vector.
///
/// NB. This function is essentially treated as uninterpreted.
/// So you cannot expect Z3 to precisely reflect the semantics of this function
/// when solving constraints with this function.
///
/// The argument must be of bit-vector sort.
///
public IntExpr MkBV2Int(BitVecExpr t, bool signed)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new IntExpr(this, Native.Z3_mk_bv2int(nCtx, t.NativeObject, (signed) ? 1 : 0));
}
///
/// Create a predicate that checks that the bit-wise addition does not overflow.
///
///
/// The arguments must be of bit-vector sort.
///
public BoolExpr MkBVAddNoOverflow(BitVecExpr t1, BitVecExpr t2, bool isSigned)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvadd_no_overflow(nCtx, t1.NativeObject, t2.NativeObject, (isSigned) ? 1 : 0));
}
///
/// Create a predicate that checks that the bit-wise addition does not underflow.
///
///
/// The arguments must be of bit-vector sort.
///
public BoolExpr MkBVAddNoUnderflow(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvadd_no_underflow(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create a predicate that checks that the bit-wise subtraction does not overflow.
///
///
/// The arguments must be of bit-vector sort.
///
public BoolExpr MkBVSubNoOverflow(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvsub_no_overflow(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create a predicate that checks that the bit-wise subtraction does not underflow.
///
///
/// The arguments must be of bit-vector sort.
///
public BoolExpr MkBVSubNoUnderflow(BitVecExpr t1, BitVecExpr t2, bool isSigned)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvsub_no_underflow(nCtx, t1.NativeObject, t2.NativeObject, (isSigned) ? 1 : 0));
}
///
/// Create a predicate that checks that the bit-wise signed division does not overflow.
///
///
/// The arguments must be of bit-vector sort.
///
public BoolExpr MkBVSDivNoOverflow(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvsdiv_no_overflow(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create a predicate that checks that the bit-wise negation does not overflow.
///
///
/// The arguments must be of bit-vector sort.
///
public BoolExpr MkBVNegNoOverflow(BitVecExpr t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new BoolExpr(this, Native.Z3_mk_bvneg_no_overflow(nCtx, t.NativeObject));
}
///
/// Create a predicate that checks that the bit-wise multiplication does not overflow.
///
///
/// The arguments must be of bit-vector sort.
///
public BoolExpr MkBVMulNoOverflow(BitVecExpr t1, BitVecExpr t2, bool isSigned)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvmul_no_overflow(nCtx, t1.NativeObject, t2.NativeObject, (isSigned) ? 1 : 0));
}
///
/// Create a predicate that checks that the bit-wise multiplication does not underflow.
///
///
/// The arguments must be of bit-vector sort.
///
public BoolExpr MkBVMulNoUnderflow(BitVecExpr t1, BitVecExpr t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new BoolExpr(this, Native.Z3_mk_bvmul_no_underflow(nCtx, t1.NativeObject, t2.NativeObject));
}
#endregion
#region Arrays
///
/// Create an array constant.
///
public ArrayExpr MkArrayConst(Symbol name, Sort domain, Sort range)
{
Contract.Requires(name != null);
Contract.Requires(domain != null);
Contract.Requires(range != null);
Contract.Ensures(Contract.Result() != null);
return (ArrayExpr)MkConst(name, MkArraySort(domain, range));
}
///
/// Create an array constant.
///
public ArrayExpr MkArrayConst(string name, Sort domain, Sort range)
{
Contract.Requires(domain != null);
Contract.Requires(range != null);
Contract.Ensures(Contract.Result() != null);
return (ArrayExpr)MkConst(MkSymbol(name), MkArraySort(domain, range));
}
///
/// Array read.
///
///
/// The argument a is the array and i is the index
/// of the array that gets read.
///
/// The node a must have an array sort [domain -> range],
/// and i must have the sort domain.
/// The sort of the result is range.
///
///
///
public Expr MkSelect(ArrayExpr a, Expr i)
{
Contract.Requires(a != null);
Contract.Requires(i != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(a);
CheckContextMatch(i);
return Expr.Create(this, Native.Z3_mk_select(nCtx, a.NativeObject, i.NativeObject));
}
///
/// Array update.
///
///
/// The node a must have an array sort [domain -> range],
/// i must have sort domain,
/// v must have sort range. The sort of the result is [domain -> range].
/// The semantics of this function is given by the theory of arrays described in the SMT-LIB
/// standard. See http://smtlib.org for more details.
/// The result of this function is an array that is equal to a
/// (with respect to select)
/// on all indices except for i, where it maps to v
/// (and the select of a with
/// respect to i may be a different value).
///
///
///
public ArrayExpr MkStore(ArrayExpr a, Expr i, Expr v)
{
Contract.Requires(a != null);
Contract.Requires(i != null);
Contract.Requires(v != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(a);
CheckContextMatch(i);
CheckContextMatch(v);
return new ArrayExpr(this, Native.Z3_mk_store(nCtx, a.NativeObject, i.NativeObject, v.NativeObject));
}
///
/// Create a constant array.
///
///
/// The resulting term is an array, such that a selecton an arbitrary index
/// produces the value v.
///
///
///
public ArrayExpr MkConstArray(Sort domain, Expr v)
{
Contract.Requires(domain != null);
Contract.Requires(v != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(domain);
CheckContextMatch(v);
return new ArrayExpr(this, Native.Z3_mk_const_array(nCtx, domain.NativeObject, v.NativeObject));
}
///
/// Maps f on the argument arrays.
///
///
/// Eeach element of args must be of an array sort [domain_i -> range_i].
/// The function declaration f must have type range_1 .. range_n -> range.
/// v must have sort range. The sort of the result is [domain_i -> range].
///
///
///
///
public ArrayExpr MkMap(FuncDecl f, params ArrayExpr[] args)
{
Contract.Requires(f != null);
Contract.Requires(args == null || Contract.ForAll(args, a => a != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(f);
CheckContextMatch(args);
return (ArrayExpr)Expr.Create(this, Native.Z3_mk_map(nCtx, f.NativeObject, AST.ArrayLength(args), AST.ArrayToNative(args)));
}
///
/// Access the array default value.
///
///
/// Produces the default range value, for arrays that can be represented as
/// finite maps with a default range value.
///
public Expr MkTermArray(ArrayExpr array)
{
Contract.Requires(array != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(array);
return Expr.Create(this, Native.Z3_mk_array_default(nCtx, array.NativeObject));
}
#endregion
#region Sets
///
/// Create a set type.
///
public SetSort MkSetSort(Sort ty)
{
Contract.Requires(ty != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(ty);
return new SetSort(this, ty);
}
///
/// Create an empty set.
///
public Expr MkEmptySet(Sort domain)
{
Contract.Requires(domain != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(domain);
return Expr.Create(this, Native.Z3_mk_empty_set(nCtx, domain.NativeObject));
}
///
/// Create the full set.
///
public Expr MkFullSet(Sort domain)
{
Contract.Requires(domain != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(domain);
return Expr.Create(this, Native.Z3_mk_full_set(nCtx, domain.NativeObject));
}
///
/// Add an element to the set.
///
public Expr MkSetAdd(Expr set, Expr element)
{
Contract.Requires(set != null);
Contract.Requires(element != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(set);
CheckContextMatch(element);
return Expr.Create(this, Native.Z3_mk_set_add(nCtx, set.NativeObject, element.NativeObject));
}
///
/// Remove an element from a set.
///
public Expr MkSetDel(Expr set, Expr element)
{
Contract.Requires(set != null);
Contract.Requires(element != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(set);
CheckContextMatch(element);
return Expr.Create(this, Native.Z3_mk_set_del(nCtx, set.NativeObject, element.NativeObject));
}
///
/// Take the union of a list of sets.
///
public Expr MkSetUnion(params Expr[] args)
{
Contract.Requires(args != null);
Contract.Requires(Contract.ForAll(args, a => a != null));
CheckContextMatch(args);
return Expr.Create(this, Native.Z3_mk_set_union(nCtx, (uint)args.Length, AST.ArrayToNative(args)));
}
///
/// Take the intersection of a list of sets.
///
public Expr MkSetIntersection(params Expr[] args)
{
Contract.Requires(args != null);
Contract.Requires(Contract.ForAll(args, a => a != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(args);
return Expr.Create(this, Native.Z3_mk_set_intersect(nCtx, (uint)args.Length, AST.ArrayToNative(args)));
}
///
/// Take the difference between two sets.
///
public Expr MkSetDifference(Expr arg1, Expr arg2)
{
Contract.Requires(arg1 != null);
Contract.Requires(arg2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(arg1);
CheckContextMatch(arg2);
return Expr.Create(this, Native.Z3_mk_set_difference(nCtx, arg1.NativeObject, arg2.NativeObject));
}
///
/// Take the complement of a set.
///
public Expr MkSetComplement(Expr arg)
{
Contract.Requires(arg != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(arg);
return Expr.Create(this, Native.Z3_mk_set_complement(nCtx, arg.NativeObject));
}
///
/// Check for set membership.
///
public Expr MkSetMembership(Expr elem, Expr set)
{
Contract.Requires(elem != null);
Contract.Requires(set != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(elem);
CheckContextMatch(set);
return Expr.Create(this, Native.Z3_mk_set_member(nCtx, elem.NativeObject, set.NativeObject));
}
///
/// Check for subsetness of sets.
///
public Expr MkSetSubset(Expr arg1, Expr arg2)
{
Contract.Requires(arg1 != null);
Contract.Requires(arg2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(arg1);
CheckContextMatch(arg2);
return Expr.Create(this, Native.Z3_mk_set_subset(nCtx, arg1.NativeObject, arg2.NativeObject));
}
#endregion
#region Numerals
#region General Numerals
///
/// Create a Term of a given sort.
///
/// A string representing the Term value in decimal notation. If the given sort is a real, then the Term can be a rational, that is, a string of the form [num]* / [num]*.
/// The sort of the numeral. In the current implementation, the given sort can be an int, real, or bit-vectors of arbitrary size.
/// A Term with value and sort
public Expr MkNumeral(string v, Sort ty)
{
Contract.Requires(ty != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(ty);
return Expr.Create(this, Native.Z3_mk_numeral(nCtx, v, ty.NativeObject));
}
///
/// Create a Term of a given sort. This function can be use to create numerals that fit in a machine integer.
/// It is slightly faster than MakeNumeral since it is not necessary to parse a string.
///
/// Value of the numeral
/// Sort of the numeral
/// A Term with value and type
public Expr MkNumeral(int v, Sort ty)
{
Contract.Requires(ty != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(ty);
return Expr.Create(this, Native.Z3_mk_int(nCtx, v, ty.NativeObject));
}
///
/// Create a Term of a given sort. This function can be use to create numerals that fit in a machine integer.
/// It is slightly faster than MakeNumeral since it is not necessary to parse a string.
///
/// Value of the numeral
/// Sort of the numeral
/// A Term with value and type
public Expr MkNumeral(uint v, Sort ty)
{
Contract.Requires(ty != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(ty);
return Expr.Create(this, Native.Z3_mk_unsigned_int(nCtx, v, ty.NativeObject));
}
///
/// Create a Term of a given sort. This function can be use to create numerals that fit in a machine integer.
/// It is slightly faster than MakeNumeral since it is not necessary to parse a string.
///
/// Value of the numeral
/// Sort of the numeral
/// A Term with value and type
public Expr MkNumeral(long v, Sort ty)
{
Contract.Requires(ty != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(ty);
return Expr.Create(this, Native.Z3_mk_int64(nCtx, v, ty.NativeObject));
}
///
/// Create a Term of a given sort. This function can be use to create numerals that fit in a machine integer.
/// It is slightly faster than MakeNumeral since it is not necessary to parse a string.
///
/// Value of the numeral
/// Sort of the numeral
/// A Term with value and type
public Expr MkNumeral(ulong v, Sort ty)
{
Contract.Requires(ty != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(ty);
return Expr.Create(this, Native.Z3_mk_unsigned_int64(nCtx, v, ty.NativeObject));
}
#endregion
#region Reals
///
/// Create a real from a fraction.
///
/// numerator of rational.
/// denominator of rational.
/// A Term with value / and sort Real
///
public RatNum MkReal(int num, int den)
{
if (den == 0)
throw new Z3Exception("Denominator is zero");
Contract.Ensures(Contract.Result() != null);
Contract.EndContractBlock();
return new RatNum(this, Native.Z3_mk_real(nCtx, num, den));
}
///
/// Create a real numeral.
///
/// A string representing the Term value in decimal notation.
/// A Term with value and sort Real
public RatNum MkReal(string v)
{
Contract.Ensures(Contract.Result() != null);
return new RatNum(this, Native.Z3_mk_numeral(nCtx, v, RealSort.NativeObject));
}
///
/// Create a real numeral.
///
/// value of the numeral.
/// A Term with value and sort Real
public RatNum MkReal(int v)
{
Contract.Ensures(Contract.Result() != null);
return new RatNum(this, Native.Z3_mk_int(nCtx, v, RealSort.NativeObject));
}
///
/// Create a real numeral.
///
/// value of the numeral.
/// A Term with value and sort Real
public RatNum MkReal(uint v)
{
Contract.Ensures(Contract.Result() != null);
return new RatNum(this, Native.Z3_mk_unsigned_int(nCtx, v, RealSort.NativeObject));
}
///
/// Create a real numeral.
///
/// value of the numeral.
/// A Term with value and sort Real
public RatNum MkReal(long v)
{
Contract.Ensures(Contract.Result() != null);
return new RatNum(this, Native.Z3_mk_int64(nCtx, v, RealSort.NativeObject));
}
///
/// Create a real numeral.
///
/// value of the numeral.
/// A Term with value and sort Real
public RatNum MkReal(ulong v)
{
Contract.Ensures(Contract.Result() != null);
return new RatNum(this, Native.Z3_mk_unsigned_int64(nCtx, v, RealSort.NativeObject));
}
#endregion
#region Integers
///
/// Create an integer numeral.
///
/// A string representing the Term value in decimal notation.
public IntNum MkInt(string v)
{
Contract.Ensures(Contract.Result() != null);
return new IntNum(this, Native.Z3_mk_numeral(nCtx, v, IntSort.NativeObject));
}
///
/// Create an integer numeral.
///
/// value of the numeral.
/// A Term with value and sort Integer
public IntNum MkInt(int v)
{
Contract.Ensures(Contract.Result() != null);
return new IntNum(this, Native.Z3_mk_int(nCtx, v, IntSort.NativeObject));
}
///
/// Create an integer numeral.
///
/// value of the numeral.
/// A Term with value and sort Integer
public IntNum MkInt(uint v)
{
Contract.Ensures(Contract.Result() != null);
return new IntNum(this, Native.Z3_mk_unsigned_int(nCtx, v, IntSort.NativeObject));
}
///
/// Create an integer numeral.
///
/// value of the numeral.
/// A Term with value and sort Integer
public IntNum MkInt(long v)
{
Contract.Ensures(Contract.Result() != null);
return new IntNum(this, Native.Z3_mk_int64(nCtx, v, IntSort.NativeObject));
}
///
/// Create an integer numeral.
///
/// value of the numeral.
/// A Term with value and sort Integer
public IntNum MkInt(ulong v)
{
Contract.Ensures(Contract.Result() != null);
return new IntNum(this, Native.Z3_mk_unsigned_int64(nCtx, v, IntSort.NativeObject));
}
#endregion
#region Bit-vectors
///
/// Create a bit-vector numeral.
///
/// A string representing the value in decimal notation.
/// the size of the bit-vector
public BitVecNum MkBV(string v, uint size)
{
Contract.Ensures(Contract.Result() != null);
return (BitVecNum)MkNumeral(v, MkBitVecSort(size));
}
///
/// Create a bit-vector numeral.
///
/// value of the numeral.
/// the size of the bit-vector
public BitVecNum MkBV(int v, uint size)
{
Contract.Ensures(Contract.Result() != null);
return (BitVecNum)MkNumeral(v, MkBitVecSort(size));
}
///
/// Create a bit-vector numeral.
///
/// value of the numeral.
/// the size of the bit-vector
public BitVecNum MkBV(uint v, uint size)
{
Contract.Ensures(Contract.Result() != null);
return (BitVecNum)MkNumeral(v, MkBitVecSort(size));
}
///
/// Create a bit-vector numeral.
///
/// value of the numeral.
/// /// the size of the bit-vector
public BitVecNum MkBV(long v, uint size)
{
Contract.Ensures(Contract.Result() != null);
return (BitVecNum)MkNumeral(v, MkBitVecSort(size));
}
///
/// Create a bit-vector numeral.
///
/// value of the numeral.
/// the size of the bit-vector
public BitVecNum MkBV(ulong v, uint size)
{
Contract.Ensures(Contract.Result() != null);
return (BitVecNum)MkNumeral(v, MkBitVecSort(size));
}
#endregion
#endregion // Numerals
#region Quantifiers
///
/// Create a universal Quantifier.
///
///
/// Creates a forall formula, where is the weight,
/// is an array of patterns, is an array
/// with the sorts of the bound variables, is an array with the
/// 'names' of the bound variables, and is the body of the
/// quantifier. Quantifiers are associated with weights indicating
/// the importance of using the quantifier during instantiation.
///
/// the sorts of the bound variables.
/// names of the bound variables
/// the body of the quantifier.
/// quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
/// array containing the patterns created using MkPattern.
/// array containing the anti-patterns created using MkPattern.
/// optional symbol to track quantifier.
/// optional symbol to track skolem constants.
public Quantifier MkForall(Sort[] sorts, Symbol[] names, Expr body, uint weight = 1, Pattern[] patterns = null, Expr[] noPatterns = null, Symbol quantifierID = null, Symbol skolemID = null)
{
Contract.Requires(sorts != null);
Contract.Requires(names != null);
Contract.Requires(body != null);
Contract.Requires(sorts.Length == names.Length);
Contract.Requires(Contract.ForAll(sorts, s => s != null));
Contract.Requires(Contract.ForAll(names, n => n != null));
Contract.Requires(patterns == null || Contract.ForAll(patterns, p => p != null));
Contract.Requires(noPatterns == null || Contract.ForAll(noPatterns, np => np != null));
Contract.Ensures(Contract.Result() != null);
return new Quantifier(this, true, sorts, names, body, weight, patterns, noPatterns, quantifierID, skolemID);
}
///
/// Create a universal Quantifier.
///
public Quantifier MkForall(Expr[] boundConstants, Expr body, uint weight = 1, Pattern[] patterns = null, Expr[] noPatterns = null, Symbol quantifierID = null, Symbol skolemID = null)
{
Contract.Requires(body != null);
Contract.Requires(boundConstants == null || Contract.ForAll(boundConstants, b => b != null));
Contract.Requires(patterns == null || Contract.ForAll(patterns, p => p != null));
Contract.Requires(noPatterns == null || Contract.ForAll(noPatterns, np => np != null));
Contract.Ensures(Contract.Result() != null);
return new Quantifier(this, true, boundConstants, body, weight, patterns, noPatterns, quantifierID, skolemID);
}
///
/// Create an existential Quantifier.
///
///
public Quantifier MkExists(Sort[] sorts, Symbol[] names, Expr body, uint weight = 1, Pattern[] patterns = null, Expr[] noPatterns = null, Symbol quantifierID = null, Symbol skolemID = null)
{
Contract.Requires(sorts != null);
Contract.Requires(names != null);
Contract.Requires(body != null);
Contract.Requires(sorts.Length == names.Length);
Contract.Requires(Contract.ForAll(sorts, s => s != null));
Contract.Requires(Contract.ForAll(names, n => n != null));
Contract.Requires(patterns == null || Contract.ForAll(patterns, p => p != null));
Contract.Requires(noPatterns == null || Contract.ForAll(noPatterns, np => np != null));
Contract.Ensures(Contract.Result() != null);
return new Quantifier(this, false, sorts, names, body, weight, patterns, noPatterns, quantifierID, skolemID);
}
///
/// Create an existential Quantifier.
///
public Quantifier MkExists(Expr[] boundConstants, Expr body, uint weight = 1, Pattern[] patterns = null, Expr[] noPatterns = null, Symbol quantifierID = null, Symbol skolemID = null)
{
Contract.Requires(body != null);
Contract.Requires(boundConstants == null || Contract.ForAll(boundConstants, n => n != null));
Contract.Requires(patterns == null || Contract.ForAll(patterns, p => p != null));
Contract.Requires(noPatterns == null || Contract.ForAll(noPatterns, np => np != null));
Contract.Ensures(Contract.Result() != null);
return new Quantifier(this, false, boundConstants, body, weight, patterns, noPatterns, quantifierID, skolemID);
}
///
/// Create a Quantifier.
///
public Quantifier MkQuantifier(bool universal, Sort[] sorts, Symbol[] names, Expr body, uint weight = 1, Pattern[] patterns = null, Expr[] noPatterns = null, Symbol quantifierID = null, Symbol skolemID = null)
{
Contract.Requires(body != null);
Contract.Requires(names != null);
Contract.Requires(sorts != null);
Contract.Requires(sorts.Length == names.Length);
Contract.Requires(Contract.ForAll(sorts, s => s != null));
Contract.Requires(Contract.ForAll(names, n => n != null));
Contract.Requires(patterns == null || Contract.ForAll(patterns, p => p != null));
Contract.Requires(noPatterns == null || Contract.ForAll(noPatterns, np => np != null));
Contract.Ensures(Contract.Result() != null);
if (universal)
return MkForall(sorts, names, body, weight, patterns, noPatterns, quantifierID, skolemID);
else
return MkExists(sorts, names, body, weight, patterns, noPatterns, quantifierID, skolemID);
}
///
/// Create a Quantifier.
///
public Quantifier MkQuantifier(bool universal, Expr[] boundConstants, Expr body, uint weight = 1, Pattern[] patterns = null, Expr[] noPatterns = null, Symbol quantifierID = null, Symbol skolemID = null)
{
Contract.Requires(body != null);
Contract.Requires(boundConstants == null || Contract.ForAll(boundConstants, n => n != null));
Contract.Requires(patterns == null || Contract.ForAll(patterns, p => p != null));
Contract.Requires(noPatterns == null || Contract.ForAll(noPatterns, np => np != null));
Contract.Ensures(Contract.Result() != null);
if (universal)
return MkForall(boundConstants, body, weight, patterns, noPatterns, quantifierID, skolemID);
else
return MkExists(boundConstants, body, weight, patterns, noPatterns, quantifierID, skolemID);
}
#endregion
#endregion // Expr
#region Options
///
/// Selects the format used for pretty-printing expressions.
///
///
/// The default mode for pretty printing expressions is to produce
/// SMT-LIB style output where common subexpressions are printed
/// at each occurrence. The mode is called Z3_PRINT_SMTLIB_FULL.
/// To print shared common subexpressions only once,
/// use the Z3_PRINT_LOW_LEVEL mode.
/// To print in way that conforms to SMT-LIB standards and uses let
/// expressions to share common sub-expressions use Z3_PRINT_SMTLIB_COMPLIANT.
///
///
///
///
///
public Z3_ast_print_mode PrintMode
{
set { Native.Z3_set_ast_print_mode(nCtx, (uint)value); }
}
#endregion
#region SMT Files & Strings
///
/// Convert a benchmark into an SMT-LIB formatted string.
///
/// Name of the benchmark. The argument is optional.
/// The benchmark logic.
/// The status string (sat, unsat, or unknown)
/// Other attributes, such as source, difficulty or category.
/// Auxiliary assumptions.
/// Formula to be checked for consistency in conjunction with assumptions.
/// A string representation of the benchmark.
public string BenchmarkToSMTString(string name, string logic, string status, string attributes,
BoolExpr[] assumptions, BoolExpr formula)
{
Contract.Requires(assumptions != null);
Contract.Requires(formula != null);
Contract.Ensures(Contract.Result() != null);
return Native.Z3_benchmark_to_smtlib_string(nCtx, name, logic, status, attributes,
(uint)assumptions.Length, AST.ArrayToNative(assumptions),
formula.NativeObject);
}
///
/// Parse the given string using the SMT-LIB parser.
///
///
/// The symbol table of the parser can be initialized using the given sorts and declarations.
/// The symbols in the arrays and
/// don't need to match the names of the sorts and declarations in the arrays
/// and . This is a useful feature since we can use arbitrary names to
/// reference sorts and declarations.
///
public void ParseSMTLIBString(string str, Symbol[] sortNames = null, Sort[] sorts = null, Symbol[] declNames = null, FuncDecl[] decls = null)
{
uint csn = Symbol.ArrayLength(sortNames);
uint cs = Sort.ArrayLength(sorts);
uint cdn = Symbol.ArrayLength(declNames);
uint cd = AST.ArrayLength(decls);
if (csn != cs || cdn != cd)
throw new Z3Exception("Argument size mismatch");
Native.Z3_parse_smtlib_string(nCtx, str,
AST.ArrayLength(sorts), Symbol.ArrayToNative(sortNames), AST.ArrayToNative(sorts),
AST.ArrayLength(decls), Symbol.ArrayToNative(declNames), AST.ArrayToNative(decls));
}
///
/// Parse the given file using the SMT-LIB parser.
///
///
public void ParseSMTLIBFile(string fileName, Symbol[] sortNames = null, Sort[] sorts = null, Symbol[] declNames = null, FuncDecl[] decls = null)
{
uint csn = Symbol.ArrayLength(sortNames);
uint cs = Sort.ArrayLength(sorts);
uint cdn = Symbol.ArrayLength(declNames);
uint cd = AST.ArrayLength(decls);
if (csn != cs || cdn != cd)
throw new Z3Exception("Argument size mismatch");
Native.Z3_parse_smtlib_file(nCtx, fileName,
AST.ArrayLength(sorts), Symbol.ArrayToNative(sortNames), AST.ArrayToNative(sorts),
AST.ArrayLength(decls), Symbol.ArrayToNative(declNames), AST.ArrayToNative(decls));
}
///
/// The number of SMTLIB formulas parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile.
///
public uint NumSMTLIBFormulas { get { return Native.Z3_get_smtlib_num_formulas(nCtx); } }
///
/// The formulas parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile.
///
public BoolExpr[] SMTLIBFormulas
{
get
{
Contract.Ensures(Contract.Result() != null);
uint n = NumSMTLIBFormulas;
BoolExpr[] res = new BoolExpr[n];
for (uint i = 0; i < n; i++)
res[i] = (BoolExpr)Expr.Create(this, Native.Z3_get_smtlib_formula(nCtx, i));
return res;
}
}
///
/// The number of SMTLIB assumptions parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile.
///
public uint NumSMTLIBAssumptions { get { return Native.Z3_get_smtlib_num_assumptions(nCtx); } }
///
/// The assumptions parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile.
///
public BoolExpr[] SMTLIBAssumptions
{
get
{
Contract.Ensures(Contract.Result() != null);
uint n = NumSMTLIBAssumptions;
BoolExpr[] res = new BoolExpr[n];
for (uint i = 0; i < n; i++)
res[i] = (BoolExpr)Expr.Create(this, Native.Z3_get_smtlib_assumption(nCtx, i));
return res;
}
}
///
/// The number of SMTLIB declarations parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile.
///
public uint NumSMTLIBDecls { get { return Native.Z3_get_smtlib_num_decls(nCtx); } }
///
/// The declarations parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile.
///
public FuncDecl[] SMTLIBDecls
{
get
{
Contract.Ensures(Contract.Result() != null);
uint n = NumSMTLIBDecls;
FuncDecl[] res = new FuncDecl[n];
for (uint i = 0; i < n; i++)
res[i] = new FuncDecl(this, Native.Z3_get_smtlib_decl(nCtx, i));
return res;
}
}
///
/// The number of SMTLIB sorts parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile.
///
public uint NumSMTLIBSorts { get { return Native.Z3_get_smtlib_num_sorts(nCtx); } }
///
/// The declarations parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile.
///
public Sort[] SMTLIBSorts
{
get
{
Contract.Ensures(Contract.Result() != null);
uint n = NumSMTLIBSorts;
Sort[] res = new Sort[n];
for (uint i = 0; i < n; i++)
res[i] = Sort.Create(this, Native.Z3_get_smtlib_sort(nCtx, i));
return res;
}
}
///
/// Parse the given string using the SMT-LIB2 parser.
///
///
/// A conjunction of assertions in the scope (up to push/pop) at the end of the string.
public BoolExpr ParseSMTLIB2String(string str, Symbol[] sortNames = null, Sort[] sorts = null, Symbol[] declNames = null, FuncDecl[] decls = null)
{
Contract.Ensures(Contract.Result() != null);
uint csn = Symbol.ArrayLength(sortNames);
uint cs = Sort.ArrayLength(sorts);
uint cdn = Symbol.ArrayLength(declNames);
uint cd = AST.ArrayLength(decls);
if (csn != cs || cdn != cd)
throw new Z3Exception("Argument size mismatch");
return (BoolExpr)Expr.Create(this, Native.Z3_parse_smtlib2_string(nCtx, str,
AST.ArrayLength(sorts), Symbol.ArrayToNative(sortNames), AST.ArrayToNative(sorts),
AST.ArrayLength(decls), Symbol.ArrayToNative(declNames), AST.ArrayToNative(decls)));
}
///
/// Parse the given file using the SMT-LIB2 parser.
///
///
public BoolExpr ParseSMTLIB2File(string fileName, Symbol[] sortNames = null, Sort[] sorts = null, Symbol[] declNames = null, FuncDecl[] decls = null)
{
Contract.Ensures(Contract.Result() != null);
uint csn = Symbol.ArrayLength(sortNames);
uint cs = Sort.ArrayLength(sorts);
uint cdn = Symbol.ArrayLength(declNames);
uint cd = AST.ArrayLength(decls);
if (csn != cs || cdn != cd)
throw new Z3Exception("Argument size mismatch");
return (BoolExpr)Expr.Create(this, Native.Z3_parse_smtlib2_file(nCtx, fileName,
AST.ArrayLength(sorts), Symbol.ArrayToNative(sortNames), AST.ArrayToNative(sorts),
AST.ArrayLength(decls), Symbol.ArrayToNative(declNames), AST.ArrayToNative(decls)));
}
#endregion
#region Goals
///
/// Creates a new Goal.
///
///
/// Note that the Context must have been created with proof generation support if
/// is set to true here.
///
/// Indicates whether model generation should be enabled.
/// Indicates whether unsat core generation should be enabled.
/// Indicates whether proof generation should be enabled.
public Goal MkGoal(bool models = true, bool unsatCores = false, bool proofs = false)
{
Contract.Ensures(Contract.Result() != null);
return new Goal(this, models, unsatCores, proofs);
}
#endregion
#region ParameterSets
///
/// Creates a new ParameterSet.
///
public Params MkParams()
{
Contract.Ensures(Contract.Result() != null);
return new Params(this);
}
#endregion
#region Tactics
///
/// The number of supported tactics.
///
public uint NumTactics
{
get { return Native.Z3_get_num_tactics(nCtx); }
}
///
/// The names of all supported tactics.
///
public string[] TacticNames
{
get
{
Contract.Ensures(Contract.Result() != null);
uint n = NumTactics;
string[] res = new string[n];
for (uint i = 0; i < n; i++)
res[i] = Native.Z3_get_tactic_name(nCtx, i);
return res;
}
}
///
/// Returns a string containing a description of the tactic with the given name.
///
public string TacticDescription(string name)
{
Contract.Ensures(Contract.Result() != null);
return Native.Z3_tactic_get_descr(nCtx, name);
}
///
/// Creates a new Tactic.
///
public Tactic MkTactic(string name)
{
Contract.Ensures(Contract.Result() != null);
return new Tactic(this, name);
}
///
/// Create a tactic that applies to a Goal and
/// then to every subgoal produced by .
///
public Tactic AndThen(Tactic t1, Tactic t2, params Tactic[] ts)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Requires(ts == null || Contract.ForAll(0, ts.Length, j => ts[j] != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
CheckContextMatch(ts);
IntPtr last = IntPtr.Zero;
if (ts != null && ts.Length > 0)
{
last = ts[ts.Length - 1].NativeObject;
for (int i = ts.Length - 2; i >= 0; i--)
last = Native.Z3_tactic_and_then(nCtx, ts[i].NativeObject, last);
}
if (last != IntPtr.Zero)
{
last = Native.Z3_tactic_and_then(nCtx, t2.NativeObject, last);
return new Tactic(this, Native.Z3_tactic_and_then(nCtx, t1.NativeObject, last));
}
else
return new Tactic(this, Native.Z3_tactic_and_then(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create a tactic that applies to a Goal and
/// then to every subgoal produced by .
///
///
/// Shorthand for AndThen.
///
public Tactic Then(Tactic t1, Tactic t2, params Tactic[] ts)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Requires(ts == null || Contract.ForAll(0, ts.Length, j => ts[j] != null));
Contract.Ensures(Contract.Result() != null);
return AndThen(t1, t2, ts);
}
///
/// Create a tactic that first applies to a Goal and
/// if it fails then returns the result of applied to the Goal.
///
public Tactic OrElse(Tactic t1, Tactic t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new Tactic(this, Native.Z3_tactic_or_else(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Create a tactic that applies to a goal for milliseconds.
///
///
/// If does not terminate within milliseconds, then it fails.
///
public Tactic TryFor(Tactic t, uint ms)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new Tactic(this, Native.Z3_tactic_try_for(nCtx, t.NativeObject, ms));
}
///
/// Create a tactic that applies to a given goal if the probe
/// evaluates to true.
///
///
/// If evaluates to false, then the new tactic behaves like the skip tactic.
///
public Tactic When(Probe p, Tactic t)
{
Contract.Requires(p != null);
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
CheckContextMatch(p);
return new Tactic(this, Native.Z3_tactic_when(nCtx, p.NativeObject, t.NativeObject));
}
///
/// Create a tactic that applies to a given goal if the probe
/// evaluates to true and otherwise.
///
public Tactic Cond(Probe p, Tactic t1, Tactic t2)
{
Contract.Requires(p != null);
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(p);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new Tactic(this, Native.Z3_tactic_cond(nCtx, p.NativeObject, t1.NativeObject, t2.NativeObject));
}
///
/// Create a tactic that keeps applying until the goal is not
/// modified anymore or the maximum number of iterations is reached.
///
public Tactic Repeat(Tactic t, uint max = uint.MaxValue)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new Tactic(this, Native.Z3_tactic_repeat(nCtx, t.NativeObject, max));
}
///
/// Create a tactic that just returns the given goal.
///
public Tactic Skip()
{
Contract.Ensures(Contract.Result() != null);
return new Tactic(this, Native.Z3_tactic_skip(nCtx));
}
///
/// Create a tactic always fails.
///
public Tactic Fail()
{
Contract.Ensures(Contract.Result() != null);
return new Tactic(this, Native.Z3_tactic_fail(nCtx));
}
///
/// Create a tactic that fails if the probe evaluates to false.
///
public Tactic FailIf(Probe p)
{
Contract.Requires(p != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(p);
return new Tactic(this, Native.Z3_tactic_fail_if(nCtx, p.NativeObject));
}
///
/// Create a tactic that fails if the goal is not triviall satisfiable (i.e., empty)
/// or trivially unsatisfiable (i.e., contains `false').
///
public Tactic FailIfNotDecided()
{
Contract.Ensures(Contract.Result() != null);
return new Tactic(this, Native.Z3_tactic_fail_if_not_decided(nCtx));
}
///
/// Create a tactic that applies using the given set of parameters .
///
public Tactic UsingParams(Tactic t, Params p)
{
Contract.Requires(t != null);
Contract.Requires(p != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
CheckContextMatch(p);
return new Tactic(this, Native.Z3_tactic_using_params(nCtx, t.NativeObject, p.NativeObject));
}
///
/// Create a tactic that applies using the given set of parameters .
///
/// Alias for UsingParams
public Tactic With(Tactic t, Params p)
{
Contract.Requires(t != null);
Contract.Requires(p != null);
Contract.Ensures(Contract.Result() != null);
return UsingParams(t, p);
}
///
/// Create a tactic that applies the given tactics in parallel.
///
public Tactic ParOr(params Tactic[] t)
{
Contract.Requires(t == null || Contract.ForAll(t, tactic => tactic != null));
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t);
return new Tactic(this, Native.Z3_tactic_par_or(nCtx, Tactic.ArrayLength(t), Tactic.ArrayToNative(t)));
}
///
/// Create a tactic that applies to a given goal and then
/// to every subgoal produced by . The subgoals are processed in parallel.
///
public Tactic ParAndThen(Tactic t1, Tactic t2)
{
Contract.Requires(t1 != null);
Contract.Requires(t2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(t1);
CheckContextMatch(t2);
return new Tactic(this, Native.Z3_tactic_par_and_then(nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Interrupt the execution of a Z3 procedure.
///
/// This procedure can be used to interrupt: solvers, simplifiers and tactics.
public void Interrupt()
{
Native.Z3_interrupt(nCtx);
}
#endregion
#region Probes
///
/// The number of supported Probes.
///
public uint NumProbes
{
get { return Native.Z3_get_num_probes(nCtx); }
}
///
/// The names of all supported Probes.
///
public string[] ProbeNames
{
get
{
Contract.Ensures(Contract.Result() != null);
uint n = NumProbes;
string[] res = new string[n];
for (uint i = 0; i < n; i++)
res[i] = Native.Z3_get_probe_name(nCtx, i);
return res;
}
}
///
/// Returns a string containing a description of the probe with the given name.
///
public string ProbeDescription(string name)
{
Contract.Ensures(Contract.Result() != null);
return Native.Z3_probe_get_descr(nCtx, name);
}
///
/// Creates a new Probe.
///
public Probe MkProbe(string name)
{
Contract.Ensures(Contract.Result() != null);
return new Probe(this, name);
}
///
/// Create a probe that always evaluates to .
///
public Probe ConstProbe(double val)
{
Contract.Ensures(Contract.Result() != null);
return new Probe(this, Native.Z3_probe_const(nCtx, val));
}
///
/// Create a probe that evaluates to "true" when the value returned by
/// is less than the value returned by
///
public Probe Lt(Probe p1, Probe p2)
{
Contract.Requires(p1 != null);
Contract.Requires(p2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(p1);
CheckContextMatch(p2);
return new Probe(this, Native.Z3_probe_lt(nCtx, p1.NativeObject, p2.NativeObject));
}
///
/// Create a probe that evaluates to "true" when the value returned by
/// is greater than the value returned by
///
public Probe Gt(Probe p1, Probe p2)
{
Contract.Requires(p1 != null);
Contract.Requires(p2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(p1);
CheckContextMatch(p2);
return new Probe(this, Native.Z3_probe_gt(nCtx, p1.NativeObject, p2.NativeObject));
}
///
/// Create a probe that evaluates to "true" when the value returned by
/// is less than or equal the value returned by
///
public Probe Le(Probe p1, Probe p2)
{
Contract.Requires(p1 != null);
Contract.Requires(p2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(p1);
CheckContextMatch(p2);
return new Probe(this, Native.Z3_probe_le(nCtx, p1.NativeObject, p2.NativeObject));
}
///
/// Create a probe that evaluates to "true" when the value returned by
/// is greater than or equal the value returned by
///
public Probe Ge(Probe p1, Probe p2)
{
Contract.Requires(p1 != null);
Contract.Requires(p2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(p1);
CheckContextMatch(p2);
return new Probe(this, Native.Z3_probe_ge(nCtx, p1.NativeObject, p2.NativeObject));
}
///
/// Create a probe that evaluates to "true" when the value returned by
/// is equal to the value returned by
///
public Probe Eq(Probe p1, Probe p2)
{
Contract.Requires(p1 != null);
Contract.Requires(p2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(p1);
CheckContextMatch(p2);
return new Probe(this, Native.Z3_probe_eq(nCtx, p1.NativeObject, p2.NativeObject));
}
///
/// Create a probe that evaluates to "true" when the value
/// and evaluate to "true".
///
public Probe And(Probe p1, Probe p2)
{
Contract.Requires(p1 != null);
Contract.Requires(p2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(p1);
CheckContextMatch(p2);
return new Probe(this, Native.Z3_probe_and(nCtx, p1.NativeObject, p2.NativeObject));
}
///
/// Create a probe that evaluates to "true" when the value
/// or evaluate to "true".
///
public Probe Or(Probe p1, Probe p2)
{
Contract.Requires(p1 != null);
Contract.Requires(p2 != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(p1);
CheckContextMatch(p2);
return new Probe(this, Native.Z3_probe_or(nCtx, p1.NativeObject, p2.NativeObject));
}
///
/// Create a probe that evaluates to "true" when the value
/// does not evaluate to "true".
///
public Probe Not(Probe p)
{
Contract.Requires(p != null);
Contract.Ensures(Contract.Result() != null);
CheckContextMatch(p);
return new Probe(this, Native.Z3_probe_not(nCtx, p.NativeObject));
}
#endregion
#region Solvers
///
/// Creates a new (incremental) solver.
///
///
/// This solver also uses a set of builtin tactics for handling the first
/// check-sat command, and check-sat commands that take more than a given
/// number of milliseconds to be solved.
///
public Solver MkSolver(Symbol logic = null)
{
Contract.Ensures(Contract.Result() != null);
if (logic == null)
return new Solver(this, Native.Z3_mk_solver(nCtx));
else
return new Solver(this, Native.Z3_mk_solver_for_logic(nCtx, logic.NativeObject));
}
///
/// Creates a new (incremental) solver.
///
///
public Solver MkSolver(string logic)
{
Contract.Ensures(Contract.Result() != null);
return MkSolver(MkSymbol(logic));
}
///
/// Creates a new (incremental) solver.
///
public Solver MkSimpleSolver()
{
Contract.Ensures(Contract.Result() != null);
return new Solver(this, Native.Z3_mk_simple_solver(nCtx));
}
///
/// Creates a solver that is implemented using the given tactic.
///
///
/// The solver supports the commands Push and Pop, but it
/// will always solve each check from scratch.
///
public Solver MkSolver(Tactic t)
{
Contract.Requires(t != null);
Contract.Ensures(Contract.Result() != null);
return new Solver(this, Native.Z3_mk_solver_from_tactic(nCtx, t.NativeObject));
}
#endregion
#region Fixedpoints
///
/// Create a Fixedpoint context.
///
public Fixedpoint MkFixedpoint()
{
Contract.Ensures(Contract.Result() != null);
return new Fixedpoint(this);
}
#endregion
#region Floating-Point Arithmetic
///
/// Create a floating point rounding mode sort.
///
public FPRMSort MkFPRMSort()
{
Contract.Ensures(Contract.Result() != null);
return new FPRMSort(this);
}
///
/// Create a NearestTiesToEven rounding mode numeral.
///
public FPRMNum MkFPRMNearestTiesToEven()
{
Contract.Ensures(Contract.Result() != null);
return new FPRMNum(this, Native.Z3_mk_fpa_round_nearest_ties_to_even(nCtx));
}
///
/// Create a NearestTiesToAway rounding mode numeral.
///
public FPRMNum MkFPRMNearestTiesToAway()
{
Contract.Ensures(Contract.Result() != null);
return new FPRMNum(this, Native.Z3_mk_fpa_round_nearest_ties_to_away(nCtx));
}
///
/// Create a TowardPositive rounding mode numeral.
///
public FPRMNum MkFPRMTowardPositive()
{
Contract.Ensures(Contract.Result() != null);
return new FPRMNum(this, Native.Z3_mk_fpa_round_toward_positive(nCtx));
}
///
/// Create a TowardNegative rounding mode numeral.
///
public FPRMNum MkFPRMTowardNegative()
{
Contract.Ensures(Contract.Result() != null);
return new FPRMNum(this, Native.Z3_mk_fpa_round_toward_negative(nCtx));
}
///
/// Create a TowardZero rounding mode numeral.
///
public FPRMNum MkFPRMTowardZero()
{
Contract.Ensures(Contract.Result() != null);
return new FPRMNum(this, Native.Z3_mk_fpa_round_toward_zero(nCtx));
}
///
/// Create a floating point sort.
///
/// exponent bits in the floating point sort.
/// significand bits in the floating point sort.
public FPSort MkFPSort(uint ebits, uint sbits)
{
Contract.Ensures(Contract.Result() != null);
return new FPSort(this, ebits, sbits);
}
///
/// Create a floating point NaN numeral.
///
/// floating point sort.
public FPNum MkFPNaN(FPSort s)
{
Contract.Ensures(Contract.Result() != null);
return new FPNum(this, Native.Z3_mk_fpa_nan(nCtx, s.NativeObject));
}
///
/// Create a floating point Inf numeral.
///
/// floating point sort.
/// indicates whether the result should be negative.
public FPNum MkFPInf(FPSort s, bool negative)
{
Contract.Ensures(Contract.Result() != null);
return new FPNum(this, Native.Z3_mk_fpa_inf(nCtx, s.NativeObject, negative ? 1 : 0));
}
///
/// Create a floating point numeral.
///
/// A string representing the value in decimal notation.
/// floating point sort
public FPNum MkFP(double v, FPSort s)
{
Contract.Ensures(Contract.Result() != null);
return new FPNum(this, Native.Z3_mk_fpa_double(this.nCtx, v, s.NativeObject));
}
///
/// Floating-point absolute value
///
/// floating point term
public FPExpr MkFPAbs(FPExpr t)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_abs(this.nCtx, t.NativeObject));
}
///
/// Floating-point negation
///
/// floating point term
public FPExpr MkFPNeg(FPExpr t)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_neg(this.nCtx, t.NativeObject));
}
///
/// Floating-point addition
///
/// rounding mode term
/// floating point term
/// floating point term
public FPExpr MkFPAdd(FPRMExpr rm, FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_add(this.nCtx, rm.NativeObject, t1.NativeObject, t2.NativeObject));
}
///
/// Floating-point subtraction
///
/// rounding mode term
/// floating point term
/// floating point term
public FPExpr MkFPSub(FPRMExpr rm, FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_sub(this.nCtx, rm.NativeObject, t1.NativeObject, t2.NativeObject));
}
///
/// Floating-point multiplication
///
/// rounding mode term
/// floating point term
/// floating point term
public FPExpr MkFPMul(FPRMExpr rm, FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_mul(this.nCtx, rm.NativeObject, t1.NativeObject, t2.NativeObject));
}
///
/// Floating-point division
///
/// rounding mode term
/// floating point term
/// floating point term
public FPExpr MkFPDiv(FPRMExpr rm, FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_div(this.nCtx, rm.NativeObject, t1.NativeObject, t2.NativeObject));
}
///
/// Floating-point fused multiply-add
///
///
/// The result is round((t1 * t2) + t3)
///
/// rounding mode term
/// floating point term
/// floating point term
/// floating point term
public FPExpr MkFPFMA(FPRMExpr rm, FPExpr t1, FPExpr t2, FPExpr t3)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_fma(this.nCtx, rm.NativeObject, t1.NativeObject, t2.NativeObject, t3.NativeObject));
}
///
/// Floating-point square root
///
/// rounding mode term
/// floating point term
public FPExpr MkFPSqrt(FPRMExpr rm, FPExpr t)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_sqrt(this.nCtx, rm.NativeObject, t.NativeObject));
}
///
/// Floating-point remainder
///
/// floating point term
/// floating point term
public FPExpr MkFPRem(FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_rem(this.nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Floating-point equality
///
///
/// Note that this is IEEE 754 equality (as opposed to standard =).
///
/// floating point term
/// floating point term
public BoolExpr MkFPEq(FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_fpa_eq(this.nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Floating-point less than or equal
///
/// floating point term
/// floating point term
public BoolExpr MkFPLe(FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_fpa_le(this.nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Floating-point less than
///
/// floating point term
/// floating point term
public BoolExpr MkFPLt(FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_fpa_lt(this.nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Floating-point greater than or equal
///
/// floating point term
/// floating point term
public BoolExpr MkFPGe(FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_fpa_ge(this.nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Floating-point greater than
///
/// floating point term
/// floating point term
public BoolExpr MkFPGt(FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_fpa_gt(this.nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Predicate indicating whether t is a normal floating point number
///
/// floating point term
public BoolExpr MkFPIsNormal(FPExpr t)
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_fpa_is_normal(this.nCtx, t.NativeObject));
}
///
/// Predicate indicating whether t is a subnormal floating point number
///
/// floating point term
public BoolExpr MkFPIsSubnormal(FPExpr t)
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_fpa_is_subnormal(this.nCtx, t.NativeObject));
}
///
/// Predicate indicating whether t is a floating point number with zero value, i.e., +0 or -0.
///
/// floating point term
public BoolExpr MkFPIsZero(FPExpr t)
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_fpa_is_zero(this.nCtx, t.NativeObject));
}
///
/// Predicate indicating whether t is a floating point number representing +Inf or -Inf
///
/// floating point term
public BoolExpr MkFPIsInf(FPExpr t)
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_fpa_is_inf(this.nCtx, t.NativeObject));
}
///
/// Predicate indicating whether t is a NaN
///
/// floating point term
public BoolExpr MkFPIsNaN(FPExpr t)
{
Contract.Ensures(Contract.Result() != null);
return new BoolExpr(this, Native.Z3_mk_fpa_is_nan(this.nCtx, t.NativeObject));
}
///
/// Floating-point minimum
///
/// floating point term
/// floating point term
public FPExpr MkFPMin(FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_min(this.nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Floating-point maximium
///
/// floating point term
/// floating point term
public FPExpr MkFPMax(FPExpr t1, FPExpr t2)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_max(this.nCtx, t1.NativeObject, t2.NativeObject));
}
///
/// Conversion of a floating point number to another floating-point sort s.
///
///
/// Produces a term that represents the conversion of a floating-point term t to a different
/// floating point sort s. If necessary, rounding according to rm is applied.
///
/// floating point sort
/// floating point rounding mode term
/// floating point term
public FPExpr MkFPConvert(FPSort s, FPRMExpr rm, FPExpr t)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_convert(this.nCtx, s.NativeObject, rm.NativeObject, t.NativeObject));
}
///
/// Conversion of a floating point term to a bit-vector term in IEEE754 format.
///
///
/// The size of the resulting bit-vector is automatically determined.
///
/// floating point term
public FPExpr MkFPToIEEEBV(FPExpr t)
{
Contract.Ensures(Contract.Result() != null);
return new FPExpr(this, Native.Z3_mk_fpa_to_ieee_bv(this.nCtx, t.NativeObject));
}
#endregion
#region Miscellaneous
///
/// Wraps an AST.
///
/// This function is used for transitions between native and
/// managed objects. Note that must be a
/// native object obtained from Z3 (e.g., through )
/// and that it must have a correct reference count (see e.g.,
/// .
///
/// The native pointer to wrap.
public AST WrapAST(IntPtr nativeObject)
{
Contract.Ensures(Contract.Result() != null);
return AST.Create(this, nativeObject);
}
///
/// Unwraps an AST.
///
/// This function is used for transitions between native and
/// managed objects. It returns the native pointer to the AST. Note that
/// AST objects are reference counted and unwrapping an AST disables automatic
/// reference counting, i.e., all references to the IntPtr that is returned
/// must be handled externally and through native calls (see e.g.,
///