/*++ Copyright (c) 2020 Microsoft Corporation Module Name: dt_solver.h Abstract: Theory plugin for altegraic datatypes Author: Nikolaj Bjorner (nbjorner) 2020-09-08 --*/ #pragma once #include "sat/smt/sat_th.h" #include "ast/datatype_decl_plugin.h" #include "ast/array_decl_plugin.h" #include "ast/seq_decl_plugin.h" namespace euf { class solver; } namespace dt { class solver : public euf::th_euf_solver { typedef euf::theory_var theory_var; typedef euf::theory_id theory_id; typedef euf::enode enode; typedef euf::enode_pair enode_pair; typedef euf::enode_pair_vector enode_pair_vector; typedef sat::bool_var bool_var; typedef sat::literal literal; typedef sat::literal_vector literal_vector; typedef union_find dt_union_find; struct var_data { ptr_vector m_recognizers; //!< recognizers of this equivalence class that are being watched. enode * m_constructor; //!< constructor of this equivalence class, 0 if there is no constructor in the eqc. var_data(): m_constructor(nullptr) { } }; // class for managing state of final_check class final_check_st { solver& s; public: final_check_st(solver& s); ~final_check_st(); }; struct stats { unsigned m_occurs_check, m_splits; unsigned m_assert_cnstr, m_assert_accessor, m_assert_update_field; void reset() { memset(this, 0, sizeof(*this)); } stats() { reset(); } }; mutable datatype_util dt; array_util m_autil; seq_util m_sutil; stats m_stats; ptr_vector m_var_data; dt_union_find m_find; expr_ref_vector m_args; bool is_constructor(expr * f) const { return dt.is_constructor(f); } bool is_recognizer(expr * f) const { return dt.is_recognizer(f); } bool is_accessor(expr * f) const { return dt.is_accessor(f); } bool is_update_field(expr * f) const { return dt.is_update_field(f); } bool is_constructor(enode * n) const { return is_constructor(n->get_expr()); } bool is_recognizer(enode * n) const { return is_recognizer(n->get_expr()); } bool is_accessor(enode * n) const { return is_accessor(n->get_expr()); } bool is_update_field(enode * n) const { return dt.is_update_field(n->get_expr()); } bool is_datatype(expr* e) const { return dt.is_datatype(e->get_sort()); } bool is_datatype(enode* n) const { return is_datatype(n->get_expr()); } void assert_eq_axiom(enode * lhs, expr * rhs, literal antecedent = sat::null_literal); void assert_is_constructor_axiom(enode * n, func_decl * c, literal antecedent = sat::null_literal); void assert_accessor_axioms(enode * n); void assert_update_field_axioms(enode * n); void add_recognizer(theory_var v, enode * recognizer); void propagate_recognizer(theory_var v, enode * r); void sign_recognizer_conflict(enode * c, enode * r); typedef enum { ENTER, EXIT } stack_op; typedef obj_map parent_tbl; typedef std::pair stack_entry; ptr_vector m_to_unmark1; ptr_vector m_to_unmark2; enode_pair_vector m_used_eqs; // conflict, if any parent_tbl m_parent; // parent explanation for occurs_check svector m_dfs; // stack for DFS for occurs_check sat::literal_vector m_lits; void clear_mark(); void oc_mark_on_stack(enode * n); bool oc_on_stack(enode * n) const { return n->get_root()->is_marked1(); } void oc_mark_cycle_free(enode * n); bool oc_cycle_free(enode * n) const { return n->get_root()->is_marked2(); } void oc_push_stack(enode * n); ptr_vector m_nodes, m_todo; ptr_vector const& get_array_args(enode* n); ptr_vector const& get_seq_args(enode* n, enode*& sibling); void pop_core(unsigned n) override; enode * oc_get_cstor(enode * n) const; bool occurs_check(enode * n); bool occurs_check_enter(enode * n); void occurs_check_explain(enode * top, enode * root); void explain_is_child(enode* parent, enode* child); void mk_split(theory_var v, bool is_final); void mk_enum_split(theory_var v); void display_var(std::ostream & out, theory_var v) const; // internalize bool visit(expr* e) override; bool visited(expr* e) override; bool post_visit(expr* e, bool sign, bool root) override; void clone_var(solver& src, theory_var v); sat::literal mk_recognizer_constructor_literal(func_decl* c, euf::enode* n); public: solver(euf::solver& ctx, theory_id id); ~solver() override; bool is_external(bool_var v) override { return false; } void get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) override; void asserted(literal l) override; sat::check_result check() override; std::ostream& display(std::ostream& out) const override; std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override { return euf::th_explain::from_index(idx).display(out); } std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override { return display_justification(out, idx); } void collect_statistics(statistics& st) const override; euf::th_solver* clone(euf::solver& ctx) override; void new_eq_eh(euf::th_eq const& eq) override; bool unit_propagate() override { return false; } void add_value(euf::enode* n, model& mdl, expr_ref_vector& values) override; bool add_dep(euf::enode* n, top_sort& dep) override; bool include_func_interp(func_decl* f) const override; sat::literal internalize(expr* e, bool sign, bool root) override; void internalize(expr* e) override; euf::theory_var mk_var(euf::enode* n) override; void apply_sort_cnstr(euf::enode* n, sort* s) override; bool is_shared(theory_var v) const override { return false; } lbool get_phase(bool_var v) override { return l_true; } bool enable_self_propagate() const override { return true; } void merge_eh(theory_var, theory_var, theory_var v1, theory_var v2); void after_merge_eh(theory_var r1, theory_var r2, theory_var v1, theory_var v2) {} void unmerge_eh(theory_var v1, theory_var v2) {} }; }