/*++ Copyright (c) 2017 Microsoft Corporation Module Name: Abstract: Author: Lev Nachmanson (levnach) Revision History: --*/ #include #include "util/rational.h" #ifndef _WINDOWS #include #endif #include #include #include #include #include #include #include #include #include #include #include "math/lp/cross_nested.h" #include "math/lp/emonics.h" #include "math/lp/general_matrix.h" #include "math/lp/hnf.h" #include "math/lp/horner.h" #include "math/lp/indexed_value.h" #include "math/lp/int_cube.h" #include "math/lp/lar_solver.h" #include "math/lp/lp_bound_propagator.h" #include "math/lp/lp_utils.h" #include "math/lp/matrix.h" #include "math/lp/nla_solver.h" #include "math/lp/numeric_pair.h" #include "math/lp/static_matrix.h" #include "util/uint_set.h" #include "test/lp/argument_parser.h" #include "test/lp/gomory_test.h" #include "test/lp/smt_reader.h" #include "test/lp/test_file_reader.h" #include "util/stacked_value.h" #include "util/stopwatch.h" void test_patching(); bool my_white_space(const char &a) { return a == ' ' || a == '\t'; } size_t number_of_whites(const std::string &s) { size_t i = 0; for (; i < s.size(); i++) if (!my_white_space(s[i])) return i; return i; } size_t number_of_whites_from_end(const std::string &s) { size_t ret = 0; for (int i = static_cast(s.size()) - 1; i >= 0; i--) if (my_white_space(s[i])) ret++; else break; return ret; } std::string <rim(std::string &s) { s.erase(0, number_of_whites(s)); return s; } // trim from end inline std::string &rtrim(std::string &s) { // s.erase(std::find_if(s.rbegin(), s.rend(), // std::not1(std::ptr_fun(std::isspace))).base(), s.end()); s.erase(s.end() - number_of_whites_from_end(s), s.end()); return s; } // trim from both ends inline std::string &trim(std::string &s) { return ltrim(rtrim(s)); } vector string_split(const std::string &source, const char *delimiter, bool keep_empty) { vector results; size_t prev = 0; size_t next = 0; while ((next = source.find_first_of(delimiter, prev)) != std::string::npos) { if (keep_empty || (next - prev != 0)) { results.push_back(source.substr(prev, next - prev)); } prev = next + 1; } if (prev < source.size()) { results.push_back(source.substr(prev)); } return results; } vector split_and_trim(const std::string &line) { auto split = string_split(line, " \t", false); vector ret; for (auto s : split) { ret.push_back(trim(s)); } return ret; } namespace nla { void test_horner(); void test_monics(); void test_order_lemma(); void test_monotone_lemma(); void test_basic_sign_lemma(); void test_tangent_lemma(); void test_basic_lemma_for_mon_zero_from_monomial_to_factors(); void test_basic_lemma_for_mon_zero_from_factors_to_monomial(); void test_basic_lemma_for_mon_neutral_from_monomial_to_factors(); void test_basic_lemma_for_mon_neutral_from_factors_to_monomial(); void test_cn_on_expr(nex_sum *t, cross_nested &cn) { t = to_sum(cn.get_nex_creator().simplify(t)); TRACE(nla_test, tout << "t=" << *t << '\n';); cn.run(t); } void test_nex_order() { #if Z3DEBUG enable_trace("nla_cn"); enable_trace("nla_cn_details"); // enable_trace("nla_cn_details_"); enable_trace("nla_test"); nex_creator r; r.set_number_of_vars(3); for (unsigned j = 0; j < r.get_number_of_vars(); j++) r.set_var_weight(j, 10 - j); nex_var *a = r.mk_var(0); nex_var *b = r.mk_var(1); nex_var *c = r.mk_var(2); ENSURE(r.gt(a, b)); ENSURE(r.gt(b, c)); ENSURE(r.gt(a, c)); nex *ab = r.mk_mul(a, b); nex *ba = r.mk_mul(b, a); nex *ac = r.mk_mul(a, c); ENSURE(r.gt(ab, ac)); ENSURE(!r.gt(ac, ab)); nex *_3ac = r.mk_mul(rational(3), a, c); nex *_2ab = r.mk_mul(rational(2), a, b); ENSURE(r.gt(ab, _3ac)); ENSURE(!r.gt(_3ac, ab)); ENSURE(!r.gt(a, ab)); ENSURE(r.gt(ab, a)); ENSURE(r.gt(_2ab, _3ac)); ENSURE(!r.gt(_3ac, _2ab)); nex *_2a = r.mk_mul(rational(2), a); ENSURE(!r.gt(_2a, _2ab)); ENSURE(r.gt(_2ab, _2a)); ENSURE(nex_creator::equal(ab, ba)); nex_sum *five_a_pl_one = r.mk_sum(r.mk_mul(rational(5), a), r.mk_scalar(rational(1))); nex_mul *poly = r.mk_mul(five_a_pl_one, b); nex *p = r.simplify(poly); std::cout << "poly = " << *poly << " , p = " << *p << "\n"; #endif } void test_simplify() { #ifdef Z3DEBUG nex_creator r; cross_nested cn( [](const nex *n) { TRACE(nla_cn_test, tout << *n << "\n";); return false; }, [](unsigned) { return false; }, []() { return 1; }, // for random r); enable_trace("nla_cn"); enable_trace("nla_cn_details"); // enable_trace("nla_cn_details_"); enable_trace("nla_test"); r.set_number_of_vars(3); for (unsigned j = 0; j < r.get_number_of_vars(); j++) r.set_var_weight(j, j); nex_var *a = r.mk_var(0); nex_var *b = r.mk_var(1); nex_var *c = r.mk_var(2); auto bc = r.mk_mul(b, c); auto a_plus_bc = r.mk_sum(a, bc); auto two_a_plus_bc = r.mk_mul(r.mk_scalar(rational(2)), a_plus_bc); auto simp_two_a_plus_bc = r.simplify(two_a_plus_bc); TRACE(nla_test, tout << *simp_two_a_plus_bc << "\n";); ENSURE(nex_creator::equal(simp_two_a_plus_bc, two_a_plus_bc)); auto simp_a_plus_bc = r.simplify(a_plus_bc); ENSURE(to_sum(simp_a_plus_bc)->size() > 1); auto three_ab = r.mk_mul(r.mk_scalar(rational(3)), a, b); auto three_ab_square = r.mk_mul(three_ab, three_ab, three_ab); TRACE(nla_test, tout << "before simplify " << *three_ab_square << "\n";); three_ab_square = to_mul(r.simplify(three_ab_square)); TRACE(nla_test, tout << *three_ab_square << "\n";); const rational &s = three_ab_square->coeff(); ENSURE(s == rational(27)); auto m = r.mk_mul(a, a); TRACE(nla_test_, tout << "m = " << *m << "\n";); /* auto n = r.mk_mul(b, b, b, b, b, b, b); n->add_child_in_power(b, 7); n->add_child(r.mk_scalar(rational(3))); n->add_child_in_power(r.mk_scalar(rational(2)), 2); n->add_child(r.mk_scalar(rational(1))); TRACE(nla_test_, tout << "n = " << *n << "\n";); m->add_child_in_power(n, 3); n->add_child_in_power(r.mk_scalar(rational(1, 3)), 2); TRACE(nla_test_, tout << "m = " << *m << "\n";); nex_sum * e = r.mk_sum(a, r.mk_sum(b, m)); TRACE(nla_test, tout << "before simplify e = " << *e << "\n";); e = to_sum(r.simplify(e)); TRACE(nla_test, tout << "simplified e = " << *e << "\n";); ENSURE(e->children().size() > 2); nex_sum * e_m = r.mk_sum(); for (const nex* ex: to_sum(e)->children()) { nex* ce = r.mk_mul(r.clone(ex), r.mk_scalar(rational(3))); TRACE(nla_test, tout << "before simpl ce = " << *ce << "\n";); ce = r.simplify(ce); TRACE(nla_test, tout << "simplified ce = " << *ce << "\n";); e_m->add_child(ce); } e->add_child(e_m); TRACE(nla_test, tout << "before simplify sum e = " << *e << "\n";); e = to_sum(r.simplify(e)); TRACE(nla_test, tout << "simplified sum e = " << *e << "\n";); nex * pr = r.mk_mul(a, b, b); TRACE(nla_test, tout << "before simplify pr = " << *pr << "\n";); r.simplify(pr); TRACE(nla_test, tout << "simplified sum e = " << *pr << "\n";); */ #endif } void test_cn_shorter() { // nex_sum *clone; // nex_creator cr; // cross_nested cn( // [](const nex* n) { // TRACE(nla_test, tout <<"cn form = " << *n << "\n"; // ); // return false; // } , // [](unsigned) { return false; }, // []{ return 1; }, cr); // enable_trace("nla_test"); // enable_trace("nla_cn"); // enable_trace("nla_cn_test"); // enable_trace("nla_cn_details"); // // enable_trace("nla_cn_details_"); // enable_trace("nla_test_details"); // cr.set_number_of_vars(20); // for (unsigned j = 0; j < cr.get_number_of_vars(); j++) // cr.set_var_weight(j,j); // nex_var* a = cr.mk_var(0); // nex_var* b = cr.mk_var(1); // nex_var* c = cr.mk_var(2); // nex_var* d = cr.mk_var(3); // nex_var* e = cr.mk_var(4); // nex_var* g = cr.mk_var(6); // nex* min_1 = cr.mk_scalar(rational(-1)); // // test_cn_on_expr(min_1*c*e + min_1*b*d + min_1*a*b + a*c); // nex_mul* bcg = cr.mk_mul(b, c, g); // /* // bcg->add_child(min_1); // nex* abcd = cr.mk_mul(a, b, c, d); // nex* eae = cr.mk_mul(e, a, e); // nex* three_eac = cr.mk_mul(e, a, c); to_mul(three_eac)->coeff() = // rational(3); nex* _6aad = cr.mk_mul(cr.mk_scalar(rational(6)), a, a, // d); clone = to_sum(cr.clone(cr.mk_sum(_6aad, abcd, eae, three_eac))); // clone = to_sum(cr.simplify(clone)); // TRACE(nla_test, tout << "clone = " << *clone << "\n";); // // test_cn_on_expr(cr.mk_sum(aad, abcd, aaccd, add, eae, eac, ed), // cn); test_cn_on_expr(clone, cn); // */ } void test_cn() { // #ifdef Z3DEBUG // test_cn_shorter(); // nex_creator cr; // cross_nested cn( // [](const nex* n) { // TRACE(nla_test, tout <<"cn form = " << *n << "\n";); // return false; // } , // [](unsigned) { return false; }, // []{ return 1; }, cr); // enable_trace("nla_test"); // enable_trace("nla_cn_test"); // // enable_trace("nla_cn"); // // enable_trace("nla_test_details"); // cr.set_number_of_vars(20); // for (unsigned j = 0; j < cr.get_number_of_vars(); j++) // cr.set_var_weight(j, j); // nex_var* a = cr.mk_var(0); // nex_var* b = cr.mk_var(1); // nex_var* c = cr.mk_var(2); // nex_var* d = cr.mk_var(3); // nex_var* e = cr.mk_var(4); // nex_var* g = cr.mk_var(6); // nex_sum * a_p_ae_sq = cr.mk_sum(a, cr.mk_mul(a, e, e)); // a_p_ae_sq = to_sum(cr.simplify(a_p_ae_sq)); // test_cn_on_expr(a_p_ae_sq, cn); // nex* min_1 = cr.mk_scalar(rational(-1)); // // test_cn_on_expr(min_1*c*e + min_1*b*d + min_1*a*b + a*c); // nex* bcd = cr.mk_mul(b, c, d); // nex_mul* bcg = cr.mk_mul(b, c, g); // /* // bcg->add_child(min_1); // nex_sum* t = cr.mk_sum(bcd, bcg); // test_cn_on_expr(t, cn); // nex* abd = cr.mk_mul(a, b, d); // nex* abc = cr.mk_mul(a, b, c); // nex* abcd = cr.mk_mul(a, b, c, d); // nex* aaccd = cr.mk_mul(a, a, c, c, d); // nex* add = cr.mk_mul(a, d, d); // nex* eae = cr.mk_mul(e, a, e); // nex* eac = cr.mk_mul(e, a, c); // nex* ed = cr.mk_mul(e, d); // nex* cbd = cr.mk_mul(c, b, d); // nex* acd = cr.mk_mul(a, c, d); // nex* _6aad = cr.mk_mul(cr.mk_scalar(rational(6)), a, a, d); // nex * clone = cr.clone(cr.mk_sum(_6aad, abcd, aaccd, add, eae, eac, // ed)); clone = cr.simplify(clone); ENSURE(cr.is_simplified(clone)); // TRACE(nla_test, tout << "clone = " << *clone << "\n";); // // test_cn_on_expr(cr.mk_sum(aad, abcd, aaccd, add, eae, eac, ed), // cn); test_cn_on_expr(to_sum(clone), cn); TRACE(nla_test, tout << // "done\n";); test_cn_on_expr(cr.mk_sum(abd, abc, cbd, acd), cn); // TRACE(nla_test, tout << "done\n";);*/ // #endif // // test_cn_on_expr(a*b*b*d*d + a*b*b*c*d + c*b*b*d); // // TRACE(nla_test, tout << "done\n";); // // test_cn_on_expr(a*b*d + a*b*c + c*b*d); } } // end of namespace nla namespace lp { unsigned seed = 1; random_gen g_rand; static unsigned my_random() { return g_rand(); } struct simple_column_namer : public column_namer { std::string get_variable_name(unsigned j) const override { return std::string("x") + T_to_string(j); } }; vector allocate_basis_heading( unsigned count) { // the rest of initialization will be handled by lu_QR vector basis_heading(count, -1); return basis_heading; } void init_basic_part_of_basis_heading(vector &basis, vector &basis_heading) { SASSERT(basis_heading.size() >= basis.size()); unsigned m = basis.size(); for (unsigned i = 0; i < m; i++) { unsigned column = basis[i]; basis_heading[column] = i; } } void init_non_basic_part_of_basis_heading(vector &basis_heading, vector &non_basic_columns) { non_basic_columns.clear(); for (int j = basis_heading.size(); j--;) { if (basis_heading[j] < 0) { non_basic_columns.push_back(j); // the index of column j in m_nbasis is (- basis_heading[j] - 1) basis_heading[j] = -static_cast(non_basic_columns.size()); } } } void init_basis_heading_and_non_basic_columns_vector( vector &basis, vector &basis_heading, vector &non_basic_columns) { init_basic_part_of_basis_heading(basis, basis_heading); init_non_basic_part_of_basis_heading(basis_heading, non_basic_columns); } void change_basis(unsigned entering, unsigned leaving, vector &basis, vector &nbasis, vector &basis_heading) { int place_in_basis = basis_heading[leaving]; int place_in_non_basis = -basis_heading[entering] - 1; basis_heading[entering] = place_in_basis; basis_heading[leaving] = -place_in_non_basis - 1; basis[place_in_basis] = entering; nbasis[place_in_non_basis] = leaving; } int perm_id = 0; bool get_int_from_args_parser(const char *option, argument_parser &args_parser, unsigned &n) { std::string s = args_parser.get_option_value(option); if (!s.empty()) { n = atoi(s.c_str()); return true; } return false; } bool get_double_from_args_parser(const char *option, argument_parser &args_parser, double &n) { std::string s = args_parser.get_option_value(option); if (!s.empty()) { n = atof(s.c_str()); return true; } return false; } void get_time_limit_and_max_iters_from_parser( argument_parser &args_parser, unsigned &time_limit); // forward definition int get_random_rows() { return 5 + my_random() % 2; } int get_random_columns() { return 5 + my_random() % 3; } int get_random_int() { return -1 + my_random() % 2; // (1.0 + RAND_MAX); } std::string read_line(bool &end, std::ifstream &file) { std::string s; if (!getline(file, s)) { end = true; return std::string(); } end = false; return s; } bool contains(std::string const &s, char const *pattern) { return s.find(pattern) != std::string::npos; } void setup_args_parser(argument_parser &parser) { parser.add_option_with_help_string("-add_rows", "test add_rows of static matrix"); parser.add_option_with_help_string("-monics", "test emonics"); parser.add_option_with_help_string("-nex_order", "test nex order"); parser.add_option_with_help_string("-nla_cn", "test cross nornmal form"); parser.add_option_with_help_string("-nla_sim", "test nex simplify"); parser.add_option_with_help_string( "-nla_blfmz_mf", "test_basic_lemma_for_mon_zero_from_factor_to_monomial"); parser.add_option_with_help_string( "-nla_blfmz_fm", "test_basic_lemma_for_mon_zero_from_monomials_to_factor"); parser.add_option_with_help_string("-nla_order", "test nla_solver order lemma"); parser.add_option_with_help_string("-nla_monot", "test nla_solver order lemma"); parser.add_option_with_help_string("-nla_tan", "test_tangent_lemma"); parser.add_option_with_help_string("-nla_bsl", "test_basic_sign_lemma"); parser.add_option_with_help_string("-horner", "test horner's heuristic"); parser.add_option_with_help_string( "-nla_blnt_mf", "test_basic_lemma_for_mon_neutral_from_monomial_to_factors"); parser.add_option_with_help_string( "-nla_blnt_fm", "test_basic_lemma_for_mon_neutral_from_factors_to_monomial"); parser.add_option_with_help_string("-hnf", "test hermite normal form"); parser.add_option_with_help_string("-dio", "dioph equalities"); parser.add_option_with_help_string("-gomory", "gomory"); parser.add_option_with_help_string("-intd", "test integer_domain"); parser.add_option_with_help_string("-xyz_sample", "run a small interactive scenario"); parser.add_option_with_after_string_with_help( "--percent_for_enter", "which percent of columns check for entering column"); parser.add_option_with_help_string( "--totalinf", "minimizes the total infeasibility instead of diminishing " "infeasibility of the rows"); parser.add_option_with_after_string_with_help( "--rep_frq", "the report frequency, in how many iterations print the " "cost and other info "); parser.add_option_with_help_string("--smt", "smt file format"); parser.add_option_with_after_string_with_help( "--filelist", "the file containing the list of files"); parser.add_option_with_after_string_with_help("--file", "the input file name"); parser.add_option_with_after_string_with_help("--random_seed", "random seed"); parser.add_option_with_help_string("--bp", "bound propagation"); parser.add_option_with_help_string( "--min", "will look for the minimum for the given file if --file is " "used; the default is looking for the max"); parser.add_option_with_help_string( "--max", "will look for the maximum for the given file if --file is " "used; it is the default behavior"); parser.add_option_with_after_string_with_help( "--max_iters", "maximum total iterations in a core solver stage"); parser.add_option_with_after_string_with_help("--time_limit", "time limit in seconds"); parser.add_option_with_help_string("--mpq", "solve for rational numbers"); parser.add_option_with_after_string_with_help( "--simplex_strategy", "sets simplex strategy for rational number"); parser.add_option_with_help_string("--test_lp_0", "solve a small lp"); parser.add_option_with_help_string("--solve_some_mps", "solves a list of mps problems"); parser.add_option_with_after_string_with_help( "--test_file_directory", "loads files from the directory for testing"); parser.add_option_with_after_string_with_help( "--out_dir", "setting the output directory for tests, if not set /tmp is used"); parser.add_option_with_help_string("--dual", "using the dual simplex solver"); parser.add_option_with_help_string( "--compare_with_primal", "using the primal simplex solver for comparison"); parser.add_option_with_help_string("--lar", "test lar_solver"); parser.add_option_with_after_string_with_help( "--maxng", "max iterations without progress"); parser.add_option_with_help_string("--randomize_lar", "test randomize functionality"); parser.add_option_with_help_string("--smap", "test stacked_map"); parser.add_option_with_help_string("--term", "simple term test"); parser.add_option_with_help_string( "--eti", " run a small evidence test for total infeasibility scenario"); parser.add_option_with_help_string("--row_inf", "forces row infeasibility search"); parser.add_option_with_help_string("-pd", "presolve with double solver"); parser.add_option_with_help_string("--test_int_set", "test int_set"); parser.add_option_with_help_string("--test_mpq", "test rationals"); parser.add_option_with_help_string("--test_mpq_np", "test rationals"); parser.add_option_with_help_string("--test_mpq_np_plus", "test rationals using plus instead of +="); parser.add_option_with_help_string("--maximize_term", "test maximize_term()"); parser.add_option_with_help_string("--patching", "test patching"); } struct fff { int a; int b; }; void test_stacked_unsigned() { std::cout << "test stacked unsigned" << std::endl; stacked_value v(0); v = 1; v = 2; v.push(); v = 3; v = 4; v.pop(); SASSERT(v == 2); v++; v++; std::cout << "before push v=" << v << std::endl; v.push(); v++; v.push(); v += 1; std::cout << "v = " << v << std::endl; v.pop(2); SASSERT(v == 4); const unsigned &rr = v; std::cout << rr << std::endl; } void test_stacked_value() { test_stacked_unsigned(); } void test_stacked_vector() { std::cout << "test_stacked_vector" << std::endl; stacked_vector v; v.push(); v.push_back(0); v.push_back(1); v.push(); v[0] = 3; v[0] = 0; v.push_back(2); v.push_back(3); v.push_back(34); v.push(); v[1] = 3; v[2] = 3; v.push(); v[0] = 7; v[1] = 9; v.pop(2); if (v.size()) v[v.size() - 1] = 7; v.push(); v.push_back(33); v[0] = 13; v.pop(); } void test_stacked() { test_stacked_value(); test_stacked_vector(); } char *find_home_dir() { #ifdef _WINDOWS #else char *home_dir = getenv("HOME"); if (home_dir == nullptr) { std::cout << "cannot find home directory" << std::endl; return nullptr; } #endif return nullptr; } template void print_chunk(T *arr, unsigned len) { for (unsigned i = 0; i < len; i++) { std::cout << arr[i] << ", "; } std::cout << std::endl; } struct mem_cpy_place_holder { static void mem_copy_hook(int *destination, unsigned num) { if (destination == nullptr || num == 0) { throw "bad parameters"; } } }; void finalize(unsigned ret) { /* finalize_util_module(); finalize_numerics_module(); */ // return ret; } void get_time_limit_and_max_iters_from_parser(argument_parser &args_parser, unsigned &time_limit) { std::string time_limit_string = args_parser.get_option_value("--time_limit"); if (!time_limit_string.empty()) { time_limit = atoi(time_limit_string.c_str()); } else { time_limit = 0; } } std::string create_output_file_name(bool minimize, std::string file_name, bool use_mpq) { std::string ret = file_name + "_lp_tst_" + (minimize ? "min" : "max"); if (use_mpq) return ret + "_mpq.out"; return ret + ".out"; } std::string create_output_file_name_for_glpsol(bool minimize, std::string file_name) { return file_name + (minimize ? "_min" : "_max") + "_glpk_out"; } int run_glpk(std::string file_name, std::string glpk_out_file_name, bool minimize, unsigned time_limit) { std::string minmax(minimize ? "--min" : "--max"); std::string tmlim = time_limit > 0 ? std::string(" --tmlim ") + std::to_string(time_limit) + " " : std::string(); std::string command_line = std::string("glpsol --nointopt --nomip ") + minmax + tmlim + +" -o " + glpk_out_file_name + " " + file_name + " > /dev/null"; return system(command_line.c_str()); } std::string get_status(std::string file_name) { std::ifstream f(file_name); if (!f.is_open()) { std::cout << "cannot open " << file_name << std::endl; throw 0; } std::string str; while (getline(f, str)) { if (str.find("Status") != std::string::npos) { vector tokens = split_and_trim(str); if (tokens.size() != 2) { std::cout << "unexpected Status string " << str << std::endl; throw 0; } return tokens[1]; } } std::cout << "cannot find the status line in " << file_name << std::endl; throw 0; } struct sort_pred { bool operator()(const std::pair &left, const std::pair &right) { return left.second < right.second; } }; vector get_file_names_from_file_list(std::string filelist) { std::ifstream file(filelist); if (!file.is_open()) { std::cout << "cannot open " << filelist << std::endl; return vector(); } vector ret; bool end; do { std::string s = read_line(end, file); if (end) break; if (s.empty()) break; ret.push_back(s); } while (true); return ret; } void test_numeric_pair() { numeric_pair a; numeric_pair b(2, lp::mpq(6, 2)); a = b; numeric_pair c(0.1, 0.5); a += 2 * c; a -= c; SASSERT(a == b + c); numeric_pair d = a * 2; std::cout << a << std::endl; SASSERT(b == b); SASSERT(b < a); SASSERT(b <= a); SASSERT(a > b); SASSERT(a != b); SASSERT(a >= b); SASSERT(-a < b); SASSERT(a < 2 * b); SASSERT(b + b > a); SASSERT(lp::mpq(2.1) * b + b > a); SASSERT(-b * lp::mpq(2.1) - b < lp::mpq(0.99) * a); std::cout << -b * lp::mpq(2.1) - b << std::endl; SASSERT(-b * (lp::mpq(2.1) + 1) == -b * lp::mpq(2.1) - b); std::cout << -b * (lp::mpq(2.1) + 1) << std::endl; } void get_matrix_dimensions(std::ifstream &f, unsigned &m, unsigned &n) { std::string line; getline(f, line); getline(f, line); vector r = split_and_trim(line); m = atoi(r[1].c_str()); getline(f, line); r = split_and_trim(line); n = atoi(r[1].c_str()); } void print_st(lp_status status) { std::cout << lp_status_to_string(status) << std::endl; } void test_term() { lar_solver solver; unsigned _x = 0; unsigned _y = 1; lpvar x = solver.add_named_var(_x, true, "x"); lpvar y = solver.add_named_var(_y, true, "y"); enable_trace("lar_solver"); enable_trace("cube"); vector> pairs; pairs.push_back(std::pair(mpq(2), x)); pairs.push_back(std::pair(mpq(1), y)); int ti = 0; unsigned x_plus_y = solver.add_term(pairs, ti++); solver.add_var_bound(x_plus_y, lconstraint_kind::GE, mpq(5, 3)); solver.add_var_bound(x_plus_y, lconstraint_kind::LE, mpq(14, 3)); pairs.pop_back(); pairs.push_back(std::pair(mpq(-1), y)); unsigned x_minus_y = solver.add_term(pairs, ti++); solver.add_var_bound(x_minus_y, lconstraint_kind::GE, mpq(5, 3)); solver.add_var_bound(x_minus_y, lconstraint_kind::LE, mpq(14, 3)); auto status = solver.solve(); std::cout << lp_status_to_string(status) << std::endl; std::unordered_map model; if (status != lp_status::OPTIMAL) { std::cout << "non optimal" << std::endl; return; } std::cout << solver.constraints(); std::cout << "\ntableau before cube\n"; solver.pp(std::cout).print(); std::cout << "\n"; int_solver i_s(solver); solver.set_int_solver(&i_s); int_cube cuber(i_s); lia_move m = cuber(); std::cout << "\n" << lia_move_to_string(m) << std::endl; model.clear(); solver.get_model(model); for (auto &t : model) { std::cout << solver.get_variable_name(t.first) << " = " << t.second.get_double() << ","; } std::cout << "\ntableau after cube\n"; solver.pp(std::cout).print(); std::cout << "Ax_is_correct = " << solver.ax_is_correct() << "\n"; } void test_evidence_for_total_inf_simple(argument_parser &args_parser) { lar_solver solver; lpvar x = solver.add_var(0, false); lpvar y = solver.add_var(1, false); solver.add_var_bound(x, LE, mpq(-1)); solver.add_var_bound(y, GE, mpq(0)); vector> ls; ls.push_back(std::pair(mpq(1), x)); ls.push_back(std::pair(mpq(1), y)); unsigned j = solver.add_term(ls, 1); solver.add_var_bound(j, GE, mpq(1)); ls.pop_back(); ls.push_back(std::pair(-mpq(1), y)); j = solver.add_term(ls, 2); solver.add_var_bound(j, GE, mpq(0)); auto status = solver.solve(); std::cout << lp_status_to_string(status) << std::endl; std::unordered_map model; SASSERT(solver.get_status() == lp_status::INFEASIBLE); } void test_bound_propagation_one_small_sample1() { /* (<= (+ a (* (- 1.0) b)) 0.0) (<= (+ b (* (- 1.0) x_13)) 0.0) --> (<= (+ a (* (- 1.0) c)) 0.0) the inequality on (<= a c) is obtained from a triangle inequality (<= a b) (<= b c). If b becomes basic variable, then it is likely the old solver ends up with a row that implies (<= a c). a - b <= 0.0 b - c <= 0.0 got to get a <= c */ std::function bound_is_relevant = [&](unsigned j, bool is_lower_bound, bool strict, const rational &bound_val) { return true; }; lar_solver ls; unsigned a = ls.add_var(0, false); unsigned b = ls.add_var(1, false); unsigned c = ls.add_var(2, false); vector> coeffs; coeffs.push_back(std::pair(mpq(1), a)); coeffs.push_back(std::pair(mpq(-1), c)); ls.add_term(coeffs, -1); coeffs.pop_back(); coeffs.push_back(std::pair(mpq(-1), b)); ls.add_term(coeffs, -1); coeffs.clear(); coeffs.push_back(std::pair(mpq(1), a)); coeffs.push_back(std::pair(mpq(-1), b)); // ls.add_constraint(coeffs, LE, zero_of_type()); // coeffs.clear(); // coeffs.push_back(std::pair(mpq(1), b)); // coeffs.push_back(std::pair(mpq(-1), c)); // ls.add_constraint(coeffs, LE, zero_of_type()); // vector ev; // ls.add_var_bound(a, LE, mpq(1)); // ls.solve(); // my_bound_propagator bp(ls); // ls.propagate_bounds_for_touched_rows(bp); // std::cout << " bound ev from test_bound_propagation_one_small_sample1" << // std::endl; for (auto & be : bp.m_ibounds) { // std::cout << "bound\n"; // ls.print_implied_bound(be, std::cout); // } // todo: restore test } void test_bound_propagation_one_small_samples() { test_bound_propagation_one_small_sample1(); /* (>= x_46 0.0) (<= x_29 0.0) (not (<= x_68 0.0)) (<= (+ (* (/ 1001.0 1998.0) x_10) (* (- 1.0) x_151) x_68) (- (/ 1001.0 999.0))) (<= (+ (* (/ 1001.0 999.0) x_9) (* (- 1.0) x_152) (* (/ 1001.0 999.0) x_151) (* (/ 1001.0 999.0) x_68)) (- (/ 1502501.0 999000.0))) (not (<= (+ (* (/ 999.0 2.0) x_10) (* (- 1.0) x_152) (* (- (/ 999.0 2.0)) x_151)) (/ 1001.0 2.0))) (not (<= x_153 0.0))z (>= (+ x_9 (* (- (/ 1001.0 999.0)) x_10) (* (- 1.0) x_153) (* (- 1.0) x_68)) (/ 5003.0 1998.0)) --> (not (<= (+ x_10 x_46 (* (- 1.0) x_29)) 0.0)) and (<= (+ a (* (- 1.0) b)) 0.0) (<= (+ b (* (- 1.0) x_13)) 0.0) --> (<= (+ a (* (- 1.0) x_13)) 0.0) In the first case, there typically are no atomic formulas for bounding x_10. So there is never some basic lemma of the form (>= x46 0), (<= x29 0), (>= x10 0) -> (not (<= (+ x10 x46 (- x29)) 0)). Instead the bound on x_10 falls out from a bigger blob of constraints. In the second case, the inequality on (<= x19 x13) is obtained from a triangle inequality (<= x19 x9) (<= x9 x13). If x9 becomes basic variable, then it is likely the old solver ends up with a row that implies (<= x19 x13). */ } void test_bound_propagation_one_row() { lar_solver ls; unsigned x0 = ls.add_var(0, false); unsigned x1 = ls.add_var(1, false); vector> c; c.push_back(std::pair(mpq(1), x0)); c.push_back(std::pair(mpq(-1), x1)); // todo : restore test // ls.add_constraint(c, EQ, one_of_type()); // vector ev; // ls.add_var_bound(x0, LE, mpq(1)); // ls.solve(); // my_bound_propagator bp(ls); // ls.propagate_bounds_for_touched_rows(bp); } void test_bound_propagation_one_row_with_bounded_vars() { lar_solver ls; unsigned x0 = ls.add_var(0, false); unsigned x1 = ls.add_var(1, false); vector> c; c.push_back(std::pair(mpq(1), x0)); c.push_back(std::pair(mpq(-1), x1)); // todo: restore test // ls.add_constraint(c, EQ, one_of_type()); // vector ev; // ls.add_var_bound(x0, GE, mpq(-3)); // ls.add_var_bound(x0, LE, mpq(3)); // ls.add_var_bound(x0, LE, mpq(1)); // ls.solve(); // my_bound_propagator bp(ls); // ls.propagate_bounds_for_touched_rows(bp); } void test_bound_propagation_one_row_mixed() { lar_solver ls; unsigned x0 = ls.add_var(0, false); unsigned x1 = ls.add_var(1, false); vector> c; c.push_back(std::pair(mpq(1), x0)); c.push_back(std::pair(mpq(-1), x1)); // todo: restore test // ls.add_constraint(c, EQ, one_of_type()); // vector ev; // ls.add_var_bound(x1, LE, mpq(1)); // ls.solve(); // my_bound_propagator bp(ls); // ls.propagate_bounds_for_touched_rows(bp); } void test_bound_propagation_two_rows() { lar_solver ls; unsigned x = ls.add_var(0, false); unsigned y = ls.add_var(1, false); unsigned z = ls.add_var(2, false); vector> c; c.push_back(std::pair(mpq(1), x)); c.push_back(std::pair(mpq(2), y)); c.push_back(std::pair(mpq(3), z)); // todo: restore test // ls.add_constraint(c, GE, one_of_type()); // c.clear(); // c.push_back(std::pair(mpq(3), x)); // c.push_back(std::pair(mpq(2), y)); // c.push_back(std::pair(mpq(y), z)); // ls.add_constraint(c, GE, one_of_type()); // ls.add_var_bound(x, LE, mpq(2)); // vector ev; // ls.add_var_bound(y, LE, mpq(1)); // ls.solve(); // my_bound_propagator bp(ls); // ls.propagate_bounds_for_touched_rows(bp); } void test_total_case_u() { std::cout << "test_total_case_u\n"; lar_solver ls; unsigned x = ls.add_var(0, false); unsigned y = ls.add_var(1, false); unsigned z = ls.add_var(2, false); vector> c; c.push_back(std::pair(mpq(1), x)); c.push_back(std::pair(mpq(2), y)); c.push_back(std::pair(mpq(3), z)); // todo: restore test // ls.add_constraint(c, LE, one_of_type()); // ls.add_var_bound(x, GE, zero_of_type()); // ls.add_var_bound(y, GE, zero_of_type()); // vector ev; // ls.add_var_bound(z, GE, zero_of_type()); // ls.solve(); // my_bound_propagator bp(ls); // ls.propagate_bounds_for_touched_rows(bp); } bool contains_j_kind(unsigned j, lconstraint_kind kind, const mpq &rs, const vector &ev) { for (auto &e : ev) { if (e.m_j == j && e.m_bound == rs && e.kind() == kind) return true; } return false; } void test_total_case_l() { std::cout << "test_total_case_l\n"; lar_solver ls; unsigned x = ls.add_var(0, false); unsigned y = ls.add_var(1, false); unsigned z = ls.add_var(2, false); vector> c; c.push_back(std::pair(mpq(1), x)); c.push_back(std::pair(mpq(2), y)); c.push_back(std::pair(mpq(3), z)); // todo: restore test // ls.add_constraint(c, GE, one_of_type()); // ls.add_var_bound(x, LE, one_of_type()); // ls.add_var_bound(y, LE, one_of_type()); // ls.settings().presolve_with_double_solver_for_lar = true; // vector ev; // ls.add_var_bound(z, LE, zero_of_type()); // ls.solve(); // my_bound_propagator bp(ls); // ls.propagate_bounds_for_touched_rows(bp); // SASSERT(ev.size() == 4); // SASSERT(contains_j_kind(x, GE, - one_of_type(), ev)); } void test_bound_propagation() { test_total_case_u(); test_bound_propagation_one_small_samples(); test_bound_propagation_one_row(); test_bound_propagation_one_row_with_bounded_vars(); test_bound_propagation_two_rows(); test_bound_propagation_one_row_mixed(); test_total_case_l(); } void test_int_set() { indexed_uint_set s; s.insert(1); s.insert(2); SASSERT(s.contains(2)); SASSERT(s.size() == 2); s.remove(2); SASSERT(s.size() == 1); s.insert(3); s.insert(2); s.reset(); SASSERT(s.size() == 0); std::cout << "done test_int_set\n"; } void test_rationals_no_numeric_pairs() { stopwatch sw; vector c; for (unsigned j = 0; j < 10; j++) c.push_back(mpq(my_random() % 100, 1 + my_random() % 100)); vector x; for (unsigned j = 0; j < 10; j++) x.push_back(mpq(my_random() % 100, 1 + my_random() % 100)); unsigned k = 500000; mpq r = zero_of_type(); sw.start(); for (unsigned j = 0; j < k; j++) { mpq val = zero_of_type(); for (unsigned j = 0; j < c.size(); j++) { val += c[j] * x[j]; } r += val; } sw.stop(); std::cout << "operation with rationals no pairs " << sw.get_seconds() << std::endl; std::cout << T_to_string(r) << std::endl; } void test_rationals_no_numeric_pairs_plus() { stopwatch sw; vector c; for (unsigned j = 0; j < 10; j++) c.push_back(mpq(my_random() % 100, 1 + my_random() % 100)); vector x; for (unsigned j = 0; j < 10; j++) x.push_back(mpq(my_random() % 100, 1 + my_random() % 100)); unsigned k = 500000; mpq r = zero_of_type(); sw.start(); for (unsigned j = 0; j < k; j++) { mpq val = zero_of_type(); for (unsigned j = 0; j < c.size(); j++) { val = val + c[j] * x[j]; } r = r + val; } sw.stop(); std::cout << "operation with rationals no pairs " << sw.get_seconds() << std::endl; std::cout << T_to_string(r) << std::endl; } void test_rationals() { stopwatch sw; vector c; for (unsigned j = 0; j < 10; j++) c.push_back(rational(my_random() % 100, 1 + my_random() % 100)); vector> x; for (unsigned j = 0; j < 10; j++) x.push_back(numeric_pair( rational(my_random() % 100, 1 + my_random() % 100))); std::cout << "x = "; print_vector(x, std::cout); unsigned k = 1000000; numeric_pair r = zero_of_type>(); sw.start(); for (unsigned j = 0; j < k; j++) { for (unsigned i = 0; i < c.size(); i++) { r += c[i] * x[i]; } } sw.stop(); std::cout << "operation with rationals " << sw.get_seconds() << std::endl; std::cout << T_to_string(r) << std::endl; } void get_random_interval(bool &neg_inf, bool &pos_inf, int &x, int &y) { int i = my_random() % 10; if (i == 0) { neg_inf = true; } else { neg_inf = false; x = my_random() % 100; } i = my_random() % 10; if (i == 0) { pos_inf = true; } else { pos_inf = false; if (!neg_inf) { y = x + my_random() % (101 - x); SASSERT(y >= x); } else { y = my_random() % 100; } } SASSERT((neg_inf || (0 <= x && x <= 100)) && (pos_inf || (0 <= y && y <= 100))); } void test_gomory_cut_0() { gomory_test g( [](unsigned j) { return "v" + T_to_string(j); } // name_function_p , [](unsigned j) { // get_value_p if (j == 1) return mpq(2730, 1727); if (j == 2) return zero_of_type(); if (j == 3) return mpq(3); UNREACHABLE(); return zero_of_type(); }, [](unsigned j) { // at_low_p if (j == 1) return false; if (j == 2) return true; if (j == 3) return true; UNREACHABLE(); return false; }, [](unsigned j) { // at_upper if (j == 1) return false; if (j == 2) return true; if (j == 3) return false; UNREACHABLE(); return false; }, [](unsigned j) { // lower_bound if (j == 1) { UNREACHABLE(); // unlimited from below return impq(0); } if (j == 2) return impq(0); if (j == 3) return impq(3); UNREACHABLE(); return impq(0); }, [](unsigned j) { // upper if (j == 1) { UNREACHABLE(); // unlimited from above return impq(0); } if (j == 2) return impq(0); if (j == 3) return impq(10); UNREACHABLE(); return impq(0); }, [](unsigned) { return 0; }, [](unsigned) { return 0; }); lar_term t; mpq k; explanation expl; unsigned inf_col = 1; vector> row; row.push_back(std::make_pair(mpq(1), 1)); row.push_back(std::make_pair(mpq(2731, 1727), 2)); row.push_back(std::make_pair(mpq(-910, 1727), 3)); g.mk_gomory_cut(t, k, expl, inf_col, row); } void test_gomory_cut_1() { gomory_test g( [](unsigned j) { return "v" + T_to_string(j); } // name_function_p , [](unsigned j) { // get_value_p if (j == 1) return mpq(-2); if (j == 2) return mpq(4363334, 2730001); if (j == 3) return mpq(1); UNREACHABLE(); return zero_of_type(); }, [](unsigned j) { // at_low_p if (j == 1) return false; if (j == 2) return false; if (j == 3) return true; UNREACHABLE(); return false; }, [](unsigned j) { // at_upper if (j == 1) return true; if (j == 2) return false; if (j == 3) return true; UNREACHABLE(); return false; }, [](unsigned j) { // lower_bound if (j == 1) { UNREACHABLE(); // unlimited from below return impq(0); } if (j == 2) return impq(1); if (j == 3) return impq(1); UNREACHABLE(); return impq(0); }, [](unsigned j) { // upper if (j == 1) { return impq(-2); } if (j == 2) return impq(3333); if (j == 3) return impq(10000); UNREACHABLE(); return impq(0); }, [](unsigned) { return 0; }, [](unsigned) { return 0; }); lar_term t; mpq k; explanation expl; unsigned inf_col = 2; vector> row; row.push_back(std::make_pair(mpq(1726667, 2730001), 1)); row.push_back(std::make_pair(mpq(-910000, 2730001), 3)); row.push_back(std::make_pair(mpq(1), 2)); g.mk_gomory_cut(t, k, expl, inf_col, row); } void call_hnf(general_matrix &A); void test_hnf_m_less_than_n() { #ifdef Z3DEBUG general_matrix A; vector v; // example 4.3 from Nemhauser, Wolsey v.push_back(mpq(2)); v.push_back(mpq(6)); v.push_back(mpq(1)); v.push_back(mpq(3)); A.push_row(v); v.clear(); v.push_back(mpq(4)); v.push_back(mpq(7)); v.push_back(mpq(7)); v.push_back(mpq(3)); A.push_row(v); v.clear(); v.push_back(mpq(0)); v.push_back(mpq(0)); v.push_back(mpq(1)); v.push_back(mpq(5)); A.push_row(v); call_hnf(A); #endif } void test_hnf_m_greater_than_n() { #ifdef Z3DEBUG general_matrix A; vector v; v.push_back(mpq(2)); v.push_back(mpq(6)); A.push_row(v); v.clear(); v.push_back(mpq(4)); v.push_back(mpq(7)); A.push_row(v); v.clear(); v.push_back(mpq(0)); v.push_back(mpq(0)); A.push_row(v); v.clear(); v.push_back(mpq(12)); v.push_back(mpq(55)); A.push_row(v); call_hnf(A); #endif } void cutting_the_mix_example_1() { mpq sev(7); mpq nine(9); mpq d, u, vv; hnf_calc::extended_gcd_minimal_uv(sev, nine, d, u, vv); std::cout << "d = " << d << ", u = " << u << ", vv = " << vv << std::endl; hnf_calc::extended_gcd_minimal_uv(sev, -nine, d, u, vv); std::cout << "d = " << d << ", u = " << u << ", vv = " << vv << std::endl; hnf_calc::extended_gcd_minimal_uv(-nine, -nine, d, u, vv); std::cout << "d = " << d << ", u = " << u << ", vv = " << vv << std::endl; hnf_calc::extended_gcd_minimal_uv(-sev * 2, sev, d, u, vv); std::cout << "d = " << d << ", u = " << u << ", vv = " << vv << std::endl; hnf_calc::extended_gcd_minimal_uv(mpq(24), mpq(-7), d, u, vv); std::cout << "d = " << d << ", u = " << u << ", vv = " << vv << std::endl; hnf_calc::extended_gcd_minimal_uv(-mpq(24), mpq(7), d, u, vv); std::cout << "d = " << d << ", u = " << u << ", vv = " << vv << std::endl; hnf_calc::extended_gcd_minimal_uv(mpq(24), mpq(7), d, u, vv); std::cout << "d = " << d << ", u = " << u << ", vv = " << vv << std::endl; hnf_calc::extended_gcd_minimal_uv(-mpq(21), mpq(7), d, u, vv); std::cout << "d = " << d << ", u = " << u << ", vv = " << vv << std::endl; hnf_calc::extended_gcd_minimal_uv(mpq(21), -mpq(7), d, u, vv); std::cout << "d = " << d << ", u = " << u << ", vv = " << vv << std::endl; } #ifdef Z3DEBUG void fill_general_matrix(general_matrix &M) { unsigned m = M.row_count(); unsigned n = M.column_count(); for (unsigned i = 0; i < m; i++) for (unsigned j = 0; j < n; j++) M[i][j] = mpq(static_cast(my_random() % 13) - 6); } void call_hnf(general_matrix &A) { svector r; mpq d = hnf_calc::determinant_of_rectangular_matrix(A, r, mpq((int)1000000000)); A.shrink_to_rank(r); hnf h(A, d); } void test_hnf_for_dim(int m) { general_matrix M(m, m + my_random() % m); fill_general_matrix(M); call_hnf(M); } void test_hnf_1_2() { std::cout << "test_hnf_1_2" << std::endl; general_matrix A; vector v; v.push_back(mpq(5)); v.push_back(mpq(26)); A.push_row(v); call_hnf(A); std::cout << "test_hnf_1_2 passed" << std::endl; } void test_hnf_2_2() { std::cout << "test_hnf_2_2" << std::endl; general_matrix A; vector v; v.push_back(mpq(5)); v.push_back(mpq(26)); A.push_row(v); v.clear(); v.push_back(mpq(2)); v.push_back(mpq(11)); A.push_row(v); call_hnf(A); std::cout << "test_hnf_2_2 passed" << std::endl; } void test_hnf_3_3() { std::cout << "test_hnf_3_3" << std::endl; general_matrix A; vector v; v.push_back(mpq(-3)); v.push_back(mpq(0)); v.push_back(mpq(-1)); A.push_row(v); v.clear(); v.push_back(mpq(-1)); v.push_back(mpq(0)); v.push_back(mpq(-6)); A.push_row(v); v.clear(); v.push_back(mpq(-2)); v.push_back(mpq(-4)); v.push_back(mpq(-3)); A.push_row(v); call_hnf(A); std::cout << "test_hnf_3_3 passed" << std::endl; } void test_hnf_4_4() { std::cout << "test_hnf_4_4" << std::endl; general_matrix A; vector v; v.push_back(mpq(4)); v.push_back(mpq(3)); v.push_back(mpq(-5)); v.push_back(mpq(6)); A.push_row(v); v.clear(); v.push_back(mpq(1)); v.push_back(mpq(-3)); v.push_back(mpq(1)); v.push_back(mpq(-4)); A.push_row(v); v.clear(); v.push_back(mpq(4)); v.push_back(mpq(4)); v.push_back(mpq(4)); v.push_back(mpq(4)); A.push_row(v); v.clear(); v.push_back(mpq(2)); v.push_back(mpq(-2)); v.push_back(mpq(-5)); v.push_back(mpq(6)); A.push_row(v); call_hnf(A); std::cout << "test_hnf_4_4 passed" << std::endl; } void test_hnf_5_5() { std::cout << "test_hnf_5_5" << std::endl; general_matrix A; vector v; v.push_back(mpq(-4)); v.push_back(mpq(5)); v.push_back(mpq(-5)); v.push_back(mpq(1)); v.push_back(mpq(-3)); A.push_row(v); v.clear(); v.push_back(mpq(3)); v.push_back(mpq(-1)); v.push_back(mpq(2)); v.push_back(mpq(3)); v.push_back(mpq(-5)); A.push_row(v); v.clear(); v.push_back(mpq(0)); v.push_back(mpq(6)); v.push_back(mpq(-5)); v.push_back(mpq(-6)); v.push_back(mpq(-2)); A.push_row(v); v.clear(); v.push_back(mpq(1)); v.push_back(mpq(0)); v.push_back(mpq(-4)); v.push_back(mpq(-4)); v.push_back(mpq(4)); A.push_row(v); v.clear(); v.push_back(mpq(-2)); v.push_back(mpq(3)); v.push_back(mpq(6)); v.push_back(mpq(-5)); v.push_back(mpq(-1)); A.push_row(v); call_hnf(A); std::cout << "test_hnf_5_5 passed" << std::endl; } void test_small_generated_hnf() { std::cout << "test_small_rank_hnf" << std::endl; general_matrix A; vector v; v.push_back(mpq(5)); v.push_back(mpq(26)); A.push_row(v); v.clear(); v.push_back(zero_of_type()); v.push_back(zero_of_type()); A.push_row(v); call_hnf(A); std::cout << "test_small_rank_hnf passed" << std::endl; } void test_larger_generated_hnf() { std::cout << "test_larger_generated_rank_hnf" << std::endl; general_matrix A; vector v; v.clear(); v.push_back(mpq(5)); v.push_back(mpq(6)); v.push_back(mpq(3)); v.push_back(mpq(1)); A.push_row(v); v.clear(); v.push_back(mpq(5)); v.push_back(mpq(2)); v.push_back(mpq(3)); v.push_back(mpq(7)); A.push_row(v); v.clear(); v.push_back(mpq(5)); v.push_back(mpq(6)); v.push_back(mpq(3)); v.push_back(mpq(1)); A.push_row(v); v.clear(); v.push_back(mpq(5)); v.push_back(mpq(2)); v.push_back(mpq(3)); v.push_back(mpq(7)); A.push_row(v); call_hnf(A); std::cout << "test_larger_generated_rank_hnf passed" << std::endl; } #endif void test_maximize_term() { std::cout << "test_maximize_term\n"; lar_solver solver; int_solver i_solver(solver); // have to create it too unsigned _x = 0; unsigned _y = 1; lpvar x = solver.add_var(_x, false); lpvar y = solver.add_var(_y, true); vector> term_ls; term_ls.push_back(std::pair(mpq(1), x)); term_ls.push_back(std::pair(mpq(-1), y)); unsigned term_x_min_y = solver.add_term(term_ls, -1); term_ls.clear(); term_ls.push_back(std::pair(mpq(2), x)); term_ls.push_back(std::pair(mpq(2), y)); unsigned term_2x_pl_2y = solver.add_term(term_ls, -1); solver.add_var_bound(term_x_min_y, LE, zero_of_type()); solver.add_var_bound(term_2x_pl_2y, LE, mpq(5)); solver.find_feasible_solution(); SASSERT(solver.get_status() == lp_status::OPTIMAL); std::cout << solver.constraints(); std::unordered_map model; solver.get_model(model); for (auto p : model) { std::cout << "v[" << p.first << "] = " << p.second << std::endl; } std::cout << "calling int_solver\n"; explanation ex; lia_move lm = i_solver.check(&ex); VERIFY(lm == lia_move::sat); impq term_max; lp_status st = solver.maximize_term(term_2x_pl_2y, term_max); std::cout << "status = " << lp_status_to_string(st) << std::endl; std::cout << "term_max = " << term_max << std::endl; solver.get_model(model); for (auto p : model) { std::cout << "v[" << p.first << "] = " << p.second << std::endl; } } void test_dio() { std::cout << "test dio\n"; lar_solver solver; int_solver i_solver(solver); lp::explanation exp; i_solver.set_expl(&exp); unsigned _x1 = 0; unsigned _x2 = 1; unsigned _x3 = 2; unsigned _fx_7 = 3; unsigned _fx_17 = 4; /* 3x1 + 3x2 + 14x3 − 7 = 0 7x1 + 12x2 + 31x3 − 17 = 0 */ lpvar x1 = solver.add_var(_x1, true); lpvar x2 = solver.add_var(_x2, true); lpvar x3 = solver.add_var(_x3, true); lpvar fx_7 = solver.add_var(_fx_7, true); lpvar fx_17 = solver.add_var(_fx_17, true); vector> term_ls; /* 3x1 + 3x2 +```cpp 14x3 − 7 */ term_ls.push_back(std::pair(mpq(3), x1)); term_ls.push_back(std::pair(mpq(3), x2)); term_ls.push_back(std::pair(mpq(14), x3)); term_ls.push_back(std::pair(mpq(-1), fx_7)); for (auto & p: term_ls) { p.first = -p.first; } unsigned t0 = solver.add_term(term_ls, 10); term_ls.clear(); /* 7x1 + 12x2 + 31x3 − 17 = 0*/ term_ls.push_back(std::pair(mpq(7), x1)); term_ls.push_back(std::pair(mpq(12), x2)); term_ls.push_back(std::pair(mpq(31), x3)); term_ls.push_back(std::pair(mpq(-1), fx_17)); for (auto & p: term_ls) { p.first = -p.first; } unsigned t1 = solver.add_term(term_ls, 11); solver.add_var_bound(fx_7, LE, mpq(-7)); solver.add_var_bound(fx_7, GE, mpq(-7)); solver.add_var_bound(fx_17, LE, mpq(-17)); solver.add_var_bound(fx_17, GE, mpq(-17)); solver.add_var_bound(t0, LE, mpq(0)); solver.add_var_bound(t0, GE, mpq(0)); solver.add_var_bound(t1, LE, mpq(0)); solver.add_var_bound(t1, GE, mpq(0)); // solver.find_feasible_solution(); //SASSERT(solver.get_status() == lp_status::OPTIMAL); enable_trace("dioph_eq"); enable_trace("dioph_eq_fresh"); #ifdef Z3DEBUG auto r = i_solver.dio_test(); #endif } #ifdef Z3DEBUG void test_hnf() { test_larger_generated_hnf(); test_small_generated_hnf(); test_hnf_1_2(); test_hnf_3_3(); test_hnf_4_4(); test_hnf_5_5(); test_hnf_2_2(); for (unsigned k = 1000; k > 0; k--) for (int i = 1; i < 8; i++) test_hnf_for_dim(i); cutting_the_mix_example_1(); // test_hnf_m_less_than_n(); // test_hnf_m_greater_than_n(); } #endif void test_gomory_cut() { test_gomory_cut_0(); test_gomory_cut_1(); } void test_add_rows() { // Create a static_matrix object lp::static_matrix matrix; matrix.init_empty_matrix(3, 3); // Populate the matrix with initial values matrix.set(0, 0, mpq(1)); matrix.set(0, 1, mpq(2)); matrix.set(1, 0, mpq(3)); matrix.set(1, 2, mpq(4)); matrix.set(2, 1, mpq(5)); matrix.set(2, 2, mpq(6)); // Perform add_rows operation matrix.add_rows(mpq(2), 0, 1); // row 1 = row 1 + 2 * row 0 // Verify the results SASSERT(matrix.get_elem(1, 0) == 5); // 3 + 2*1 SASSERT(matrix.get_elem(1, 1) == 4); // 0 + 2*2 SASSERT(matrix.get_elem(1, 2) == 4); // unchanged matrix.add_rows(mpq(-2), 0, 1); SASSERT(matrix.get_elem(1, 0) == 3); // 5 - 2*1 SASSERT(matrix.get_elem(1, 1) == 0); // 4 - 2*2 SASSERT(matrix.get_elem(1, 2) == 4); // unchanged } void test_nla_order_lemma() { nla::test_order_lemma(); } void test_lp_local(int argn, char **argv) { // initialize_util_module(); // initialize_numerics_module(); int ret; argument_parser args_parser(argn, argv); setup_args_parser(args_parser); if (!args_parser.parse()) { std::cout << args_parser.m_error_message << std::endl; std::cout << args_parser.usage_string(); ret = 1; return finalize(ret); } args_parser.print(); if (args_parser.option_is_used("-add_rows")) { test_add_rows(); return finalize(0); } if (args_parser.option_is_used("-monics")) { nla::test_monics(); return finalize(0); } if (args_parser.option_is_used("--patching")) { test_patching(); return finalize(0); } if (args_parser.option_is_used("-nla_cn")) { #ifdef Z3DEBUG nla::test_cn(); #endif return finalize(0); } if (args_parser.option_is_used("-nla_sim")) { #ifdef Z3DEBUG nla::test_simplify(); #endif return finalize(0); } if (args_parser.option_is_used("-nex_order")) { nla::test_nex_order(); return finalize(0); } if (args_parser.option_is_used("-nla_order")) { #ifdef Z3DEBUG test_nla_order_lemma(); #endif return finalize(0); } if (args_parser.option_is_used("-nla_monot")) { #ifdef Z3DEBUG nla::test_monotone_lemma(); #endif return finalize(0); } if (args_parser.option_is_used("-nla_bsl")) { #ifdef Z3DEBUG nla::test_basic_sign_lemma(); #endif return finalize(0); } if (args_parser.option_is_used("-nla_horner")) { #ifdef Z3DEBUG nla::test_horner(); #endif return finalize(0); } if (args_parser.option_is_used("-nla_tan")) { #ifdef Z3DEBUG nla::test_tangent_lemma(); #endif return finalize(0); } if (args_parser.option_is_used("-nla_blfmz_mf")) { #ifdef Z3DEBUG nla::test_basic_lemma_for_mon_zero_from_monomial_to_factors(); #endif return finalize(0); } if (args_parser.option_is_used("-nla_blfmz_fm")) { #ifdef Z3DEBUG nla::test_basic_lemma_for_mon_zero_from_factors_to_monomial(); #endif return finalize(0); } if (args_parser.option_is_used("-nla_blnt_mf")) { #ifdef Z3DEBUG nla::test_basic_lemma_for_mon_neutral_from_monomial_to_factors(); #endif return finalize(0); } if (args_parser.option_is_used("-nla_blnt_fm")) { #ifdef Z3DEBUG nla::test_basic_lemma_for_mon_neutral_from_factors_to_monomial(); #endif return finalize(0); } if (args_parser.option_is_used("-hnf")) { #ifdef Z3DEBUG test_hnf(); #endif return finalize(0); } if (args_parser.option_is_used("-gomory")) { test_gomory_cut(); return finalize(0); } if (args_parser.option_is_used("--test_int_set")) { test_int_set(); return finalize(0); } if (args_parser.option_is_used("--bp")) { test_bound_propagation(); return finalize(0); } return finalize(0); // has_violations() ? 1 : 0); } } // namespace lp void tst_lp(char **argv, int argc, int &i) { lp::test_lp_local(argc - 2, argv + 2); } // clang-format on bool coprime(int a, int b) { return gcd(rational(a), rational(b)).is_one(); } bool coprime(rational &a, rational &b) { return gcd(a, b).is_one(); } void asserts_on_patching(const rational &x, const rational &alpha) { auto a1 = numerator(alpha); auto a2 = denominator(alpha); auto x1 = numerator(x); auto x2 = denominator(x); SASSERT(a1.is_pos()); SASSERT(abs(a1) < abs(a2)); SASSERT(coprime(a1, a2)); SASSERT(x1.is_pos()); SASSERT(x1 < x2); SASSERT(coprime(x1, x2)); SASSERT((a2 / x2).is_int()); } void get_patching_deltas(const rational &x, const rational &alpha, rational &delta_0, rational &delta_1) { std::cout << "get_patching_deltas(" << x << ", " << alpha << ")" << std::endl; auto a1 = numerator(alpha); auto a2 = denominator(alpha); auto x1 = numerator(x); auto x2 = denominator(x); SASSERT(divides(x2, a2)); // delta has to be integral. // We need to find delta such that x1/x2 + (a1/a2)*delta is integral. // Then a2*x1/x2 + a1*delta is integral, that means that t = a2/x2 is integral. // We established that a2 = x2*t // Then x1 + a1*delta*(x2/a2) = x1 + a1*(delta/t) is integral. Taking into account // that t and a1 are coprime we have delta = t*k, where k is an integer. rational t = a2 / x2; std::cout << "t = " << t << std::endl; // Now we have x1/x2 + (a1/x2)*k is integral, or (x1 + a1*k)/x2 is integral. // It is equivalent to x1 + a1*k = x2*m, where m is an integer // We know that a2 and a1 are coprime, and x2 divides a2, so x2 and a1 are coprime. rational u, v; auto g = gcd(a1, x2, u, v); SASSERT(g.is_one() && u.is_int() && v.is_int() && g == u * a1 + v * x2); std::cout << "u = " << u << ", v = " << v << std::endl; std::cout << "x= " << (x1 / x2) << std::endl; std::cout << "x + (a1 / a2) * (-u * t) * x1 = " << x + (a1 / a2) * (-u * t) * x1 << std::endl; SASSERT((x + (a1 / a2) * (-u * t) * x1).is_int()); // 1 = (u- l*x2 ) * a1 + (v + l*a1)*x2, for every integer l. rational d = u * t * x1; delta_0 = mod(d, a2); SASSERT(delta_0 > 0); delta_1 = delta_0 - a2; SASSERT(delta_1 < 0); std::cout << "delta_0 = " << delta_0 << std::endl; std::cout << "delta_1 = " << delta_1 << std::endl; } void try_find_smaller_delta(const rational &x, const rational &alpha, rational &delta_0, rational &delta_1) { auto a1 = numerator(alpha); auto a2 = denominator(alpha); auto x1 = numerator(x); auto x2 = denominator(x); rational delta_minus, delta_plus; auto del_min = delta_0 < delta_1 ? delta_0 : delta_1; auto del_plus = delta_0 < delta_1 ? delta_1 : delta_0; for (auto i = del_min + rational(1); i < del_plus; i += 1) { if ((x - alpha * i).is_int()) { std::cout << "found smaller delta = " << i << std::endl; std::cout << "i - del_min = " << i - del_min << std::endl; std::cout << "x - alpha*i = " << x - alpha * i << std::endl; } } } void test_patching_alpha(const rational &x, const rational &alpha) { std::cout << "\nstart patching x = " << x << ", alpha = " << alpha << "\n"; asserts_on_patching(x, alpha); rational delta_0, delta_1; get_patching_deltas(x, alpha, delta_0, delta_1); SASSERT(delta_0 * delta_1 < 0); SASSERT((x - alpha * delta_0).is_int()); SASSERT((x - alpha * delta_1).is_int()); try_find_smaller_delta(x, alpha, delta_0, delta_1); // std::cout << "delta_minus = " << delta_minus << ", delta_1 = " << delta_1 << "\n"; // std::cout << "x + alpha*delta_minus = " << x + alpha * delta_minus << "\n"; // std::cout << "x + alpha*delta_1 = " << x + alpha * delta_1 << "\n"; } void find_a1_x1_x2_and_fix_a2(int &x1, int &x2, int &a1, int &a2) { x2 = (rand() % a2) + (int)(a2 / 3); auto g = gcd(rational(a2), rational(x2)); a2 *= (x2 / numerator(g).get_int32()); SASSERT(rational(a2, x2).is_int()); do { x1 = rand() % (unsigned)x2 + 1; } while (!coprime(x1, x2)); do { a1 = rand() % (unsigned)a2 + 1; } while (!coprime(a1, a2)); } void test_patching() { srand(1); // repeat the test 100 times int range = 40; for (int i = 0; i < 100; i++) { int a1; int a2 = std::max((int)rand() % range, (int)range / 3); int x1, x2; find_a1_x1_x2_and_fix_a2(x1, x2, a1, a2); test_patching_alpha(rational(x1, x2), rational(a1, a2)); } }