/*++ Copyright (c) 2015 Microsoft Corporation Module Name: theory_seq.h Abstract: Native theory solver for sequences. Author: Nikolaj Bjorner (nbjorner) 2015-6-12 Revision History: --*/ #include "value_factory.h" #include "smt_context.h" #include "smt_model_generator.h" #include "theory_seq.h" #include "seq_rewriter.h" #include "ast_trail.h" #include "theory_arith.h" using namespace smt; struct display_expr { ast_manager& m; display_expr(ast_manager& m): m(m) {} std::ostream& display(std::ostream& out, expr* e) const { return out << mk_pp(e, m); } }; void theory_seq::solution_map::update(expr* e, expr* r, enode_pair_dependency* d) { if (e == r) { return; } m_cache.reset(); std::pair value; if (m_map.find(e, value)) { add_trail(DEL, e, value.first, value.second); } value.first = r; value.second = d; m_map.insert(e, value); add_trail(INS, e, r, d); } void theory_seq::solution_map::add_trail(map_update op, expr* l, expr* r, enode_pair_dependency* d) { m_updates.push_back(op); m_lhs.push_back(l); m_rhs.push_back(r); m_deps.push_back(d); } expr* theory_seq::solution_map::find(expr* e, enode_pair_dependency*& d) { std::pair value; d = 0; expr* result = e; while (m_map.find(result, value)) { d = m_dm.mk_join(d, value.second); TRACE("seq", tout << mk_pp(result, m) << " -> " << mk_pp(value.first, m) << "\n";); SASSERT(result != value.first); SASSERT(e != value.first); result = value.first; } return result; } void theory_seq::solution_map::pop_scope(unsigned num_scopes) { if (num_scopes == 0) return; m_cache.reset(); unsigned start = m_limit[m_limit.size() - num_scopes]; for (unsigned i = m_updates.size(); i > start; ) { --i; if (m_updates[i] == INS) { m_map.remove(m_lhs[i].get()); } else { m_map.insert(m_lhs[i].get(), std::make_pair(m_rhs[i].get(), m_deps[i])); } } m_updates.resize(start); m_lhs.resize(start); m_rhs.resize(start); m_deps.resize(start); m_limit.resize(m_limit.size() - num_scopes); } void theory_seq::solution_map::display(std::ostream& out) const { eqdep_map_t::iterator it = m_map.begin(), end = m_map.end(); for (; it != end; ++it) { out << mk_pp(it->m_key, m) << " |-> " << mk_pp(it->m_value.first, m) << "\n"; } } bool theory_seq::exclusion_table::contains(expr* e, expr* r) const { if (e->get_id() > r->get_id()) { std::swap(e, r); } return m_table.contains(std::make_pair(e, r)); } void theory_seq::exclusion_table::update(expr* e, expr* r) { if (e->get_id() > r->get_id()) { std::swap(e, r); } if (e != r && !m_table.contains(std::make_pair(e, r))) { m_lhs.push_back(e); m_rhs.push_back(r); m_table.insert(std::make_pair(e, r)); } } void theory_seq::exclusion_table::pop_scope(unsigned num_scopes) { if (num_scopes == 0) return; unsigned start = m_limit[m_limit.size() - num_scopes]; for (unsigned i = start; i < m_lhs.size(); ++i) { m_table.erase(std::make_pair(m_lhs[i].get(), m_rhs[i].get())); } m_lhs.resize(start); m_rhs.resize(start); m_limit.resize(m_limit.size() - num_scopes); } void theory_seq::exclusion_table::display(std::ostream& out) const { table_t::iterator it = m_table.begin(), end = m_table.end(); for (; it != end; ++it) { out << mk_pp(it->first, m) << " != " << mk_pp(it->second, m) << "\n"; } } theory_seq::theory_seq(ast_manager& m): theory(m.mk_family_id("seq")), m(m), m_rep(m, m_dm), m_factory(0), m_ineqs(m), m_exclude(m), m_axioms(m), m_axioms_head(0), m_branch_variable_head(0), m_model_completion(false), m_mg(0), m_rewrite(m), m_util(m), m_autil(m), m_trail_stack(*this), m_accepts_qhead(0), m_rejects_qhead(0), m_steps_qhead(0) { m_prefix = "seq.prefix.suffix"; m_suffix = "seq.suffix.prefix"; m_left = "seq.left"; m_right = "seq.right"; m_contains_left = "seq.contains.left"; m_contains_right = "seq.contains.right"; m_accept = "aut.accept"; m_reject = "aut.reject"; m_tail = "seq.tail"; m_head_elem = "seq.head.elem"; m_seq_first = "seq.first"; m_seq_last = "seq.last"; m_indexof_left = "seq.indexof.left"; m_indexof_right = "seq.indexof.right"; m_aut_step = "aut.step"; m_extract_prefix = "seq.extract.prefix"; m_at_left = "seq.at.left"; m_at_right = "seq.at.right"; } theory_seq::~theory_seq() { m_trail_stack.reset(); } final_check_status theory_seq::final_check_eh() { context & ctx = get_context(); TRACE("seq", display(tout);); if (!check_ineqs()) { TRACE("seq", tout << "check_ineqs\n";); return FC_CONTINUE; } if (simplify_and_solve_eqs()) { TRACE("seq", tout << "solve_eqs\n";); return FC_CONTINUE; } if (solve_nqs()) { TRACE("seq", tout << "solve_nqs\n";); return FC_CONTINUE; } if (branch_variable()) { TRACE("seq", tout << "branch\n";); return FC_CONTINUE; } if (!check_length_coherence()) { TRACE("seq", tout << "check_length_coherence\n";); return FC_CONTINUE; } if (propagate_automata()) { TRACE("seq", tout << "propagate_automata\n";); return FC_CONTINUE; } if (is_solved()) { TRACE("seq", tout << "is_solved\n";); return FC_DONE; } return FC_GIVEUP; } bool theory_seq::check_ineqs() { context & ctx = get_context(); for (unsigned i = 0; i < m_ineqs.size(); ++i) { expr* a = m_ineqs[i].get(); enode_pair_dependency* eqs = 0; expr_ref b = canonize(a, eqs); if (m.is_true(b)) { TRACE("seq", tout << "Evaluates to false: " << mk_pp(a,m) << "\n";); ctx.internalize(a, false); propagate_lit(eqs, ctx.get_literal(a)); return false; } else if (!m.is_false(b)) { TRACE("seq", tout << "Disequality is undetermined: " << mk_pp(a, m) << " " << b << "\n";); } } return true; } bool theory_seq::branch_variable() { context& ctx = get_context(); unsigned sz = m_eqs.size(); expr_ref_vector ls(m), rs(m); for (unsigned i = 0; i < sz; ++i) { unsigned k = (i + m_branch_variable_head) % sz; eq e = m_eqs[k]; TRACE("seq", tout << e.m_lhs << " = " << e.m_rhs << "\n";); ls.reset(); rs.reset(); m_util.str.get_concat(e.m_lhs, ls); m_util.str.get_concat(e.m_rhs, rs); if (!ls.empty() && find_branch_candidate(ls[0].get(), rs)) { m_branch_variable_head = k; return true; } if (!rs.empty() && find_branch_candidate(rs[0].get(), ls)) { m_branch_variable_head = k; return true; } } return ctx.inconsistent(); } bool theory_seq::find_branch_candidate(expr* l, expr_ref_vector const& rs) { TRACE("seq", tout << mk_pp(l, m) << " " << (is_var(l)?"var":"not var") << "\n";); if (!is_var(l)) { return false; } expr_ref v0(m), v(m); v0 = m_util.str.mk_empty(m.get_sort(l)); if (assume_equality(l, v0)) { return true; } for (unsigned j = 0; j < rs.size(); ++j) { if (occurs(l, rs[j])) { return false; } zstring s; if (m_util.str.is_string(rs[j], s)) { for (unsigned k = 1; k < s.length(); ++k) { v = m_util.str.mk_string(s.extract(0, k)); if (v0) v = m_util.str.mk_concat(v0, v); if (assume_equality(l, v)) { return true; } } } v0 = (j == 0)? rs[0] : m_util.str.mk_concat(v0, rs[j]); if (assume_equality(l, v0)) { return true; } } return false; } bool theory_seq::assume_equality(expr* l, expr* r) { context& ctx = get_context(); if (m_exclude.contains(l, r)) { return false; } else { TRACE("seq", tout << mk_pp(l, m) << " = " << mk_pp(r, m) << "\n";); enode* n1 = ensure_enode(l); enode* n2 = ensure_enode(r); ctx.mark_as_relevant(n1); ctx.mark_as_relevant(n2); ctx.assume_eq(n1, n2); return true; } } bool theory_seq::check_length_coherence() { if (m_length.empty()) return true; context& ctx = get_context(); bool coherent = true; // each variable that canonizes to itself can have length 0. unsigned sz = get_num_vars(); for (unsigned i = 0; i < sz; ++i) { unsigned j = (i + m_branch_variable_head) % sz; enode* n = get_enode(j); expr* e = n->get_owner(); if (m_util.is_re(e)) { continue; } SASSERT(m_util.is_seq(e)); // extend length of variables. enode_pair_dependency* dep = 0; expr* f = m_rep.find(e, dep); if (is_var(f) && f == e) { expr_ref emp(m_util.str.mk_empty(m.get_sort(e)), m); expr_ref head(m), tail(m); rational lo, hi; TRACE("seq", tout << "Unsolved " << mk_pp(e, m) << "\n";); if (lower_bound(e, lo) && lo.is_pos() && lo < rational(512)) { TRACE("seq", tout << "lower bound: " << mk_pp(e, m) << " " << lo << "\n";); expr_ref low(m_autil.mk_ge(m_util.str.mk_length(e), m_autil.mk_numeral(lo, true)), m); expr_ref seq(e, m); expr_ref_vector elems(m); unsigned _lo = lo.get_unsigned(); for (unsigned j = 0; j < _lo; ++j) { mk_decompose(seq, emp, head, tail); elems.push_back(head); seq = tail; } elems.push_back(seq); tail = m_util.str.mk_concat(elems.size(), elems.c_ptr()); // len(e) >= low => e = tail add_axiom(~mk_literal(low), mk_eq(e, tail, false)); assume_equality(tail, e); if (upper_bound(e, hi) && hi == lo) { expr_ref high(m_autil.mk_le(m_util.str.mk_length(e), m_autil.mk_numeral(lo, true)), m); add_axiom(~mk_literal(high), mk_eq(seq, emp, false)); } } else if (upper_bound(e, hi) && hi.is_zero()) { expr_ref len(m_util.str.mk_length(e), m); expr_ref zero(m_autil.mk_int(0), m); add_axiom(~mk_eq(len, zero, false), mk_eq(e, emp, false)); } else if (!assume_equality(e, emp)) { mk_decompose(e, emp, head, tail); // e = emp \/ e = unit(head.elem(e))*tail(e) expr_ref conc(m_util.str.mk_concat(head, tail), m); add_axiom(mk_eq(e, emp, false), mk_eq(e, conc, false)); assume_equality(tail, emp); } m_branch_variable_head = j + 1; return false; } } return coherent; } void theory_seq::mk_decompose(expr* e, expr_ref& emp, expr_ref& head, expr_ref& tail) { expr* e1, *e2; sort* char_sort = 0; zstring s; VERIFY(m_util.is_seq(m.get_sort(e), char_sort)); emp = m_util.str.mk_empty(m.get_sort(e)); if (m_util.str.is_empty(e)) { head = m_util.str.mk_unit(mk_skolem(m_head_elem, e, 0, 0, char_sort)); tail = mk_skolem(m_tail, e); } else if (m_util.str.is_string(e, s)) { head = m_util.str.mk_unit(m_util.str.mk_char(s, 0)); tail = m_util.str.mk_string(s.extract(1, s.length()-1)); } else if (m_util.str.is_unit(e)) { head = e; tail = emp; } else if (m_util.str.is_concat(e, e1, e2) && m_util.str.is_unit(e1)) { head = e1; tail = e2; } else { head = m_util.str.mk_unit(mk_skolem(m_head_elem, e, 0, 0, char_sort)); tail = mk_skolem(m_tail, e); if (!m_util.is_skolem(e)) { expr_ref conc(m_util.str.mk_concat(head, tail), m); add_axiom(mk_eq(e, emp, false), mk_eq(e, conc, false)); } } } bool theory_seq::check_ineq_coherence() { bool all_false = true; for (unsigned i = 0; all_false && i < m_ineqs.size(); ++i) { expr* a = m_ineqs[i].get(); enode_pair_dependency* eqs = 0; expr_ref b = canonize(a, eqs); all_false = m.is_false(b); if (all_false) { TRACE("seq", tout << "equality is undetermined: " << mk_pp(a, m) << " " << b << "\n";); } } return all_false; } /* - Eqs = 0 - Diseqs evaluate to false - lengths are coherent. */ bool theory_seq::is_solved() { if (!m_eqs.empty()) { return false; } if (!check_ineq_coherence()) { return false; } for (unsigned i = 0; i < m_automata.size(); ++i) { if (!m_automata[i]) return false; } return true; } void theory_seq::propagate_lit(enode_pair_dependency* dep, unsigned n, literal const* lits, literal lit) { context& ctx = get_context(); ctx.mark_as_relevant(lit); vector _eqs; m_dm.linearize(dep, _eqs); TRACE("seq", ctx.display_detailed_literal(tout, lit); tout << " <- "; ctx.display_literals_verbose(tout, n, lits); display_deps(tout, dep);); justification* js = ctx.mk_justification( ext_theory_propagation_justification( get_id(), ctx.get_region(), n, lits, _eqs.size(), _eqs.c_ptr(), lit)); ctx.assign(lit, js); } void theory_seq::set_conflict(enode_pair_dependency* dep, literal_vector const& lits) { context& ctx = get_context(); vector _eqs; m_dm.linearize(dep, _eqs); TRACE("seq", ctx.display_literals_verbose(tout, lits.size(), lits.c_ptr()); display_deps(tout, dep); ;); ctx.set_conflict( ctx.mk_justification( ext_theory_conflict_justification( get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), _eqs.size(), _eqs.c_ptr(), 0, 0))); } void theory_seq::propagate_eq(enode_pair_dependency* dep, enode* n1, enode* n2) { context& ctx = get_context(); vector _eqs; m_dm.linearize(dep, _eqs); TRACE("seq", tout << mk_pp(n1->get_owner(), m) << " = " << mk_pp(n2->get_owner(), m) << " <- "; display_deps(tout, dep); ); justification* js = ctx.mk_justification( ext_theory_eq_propagation_justification( get_id(), ctx.get_region(), 0, 0, _eqs.size(), _eqs.c_ptr(), n1, n2)); ctx.assign_eq(n1, n2, eq_justification(js)); } bool theory_seq::simplify_eq(expr* l, expr* r, enode_pair_dependency* deps, bool& propagated) { context& ctx = get_context(); seq_rewriter rw(m); expr_ref_vector lhs(m), rhs(m); expr_ref lh = canonize(l, deps); expr_ref rh = canonize(r, deps); if (!rw.reduce_eq(lh, rh, lhs, rhs)) { // equality is inconsistent. TRACE("seq", tout << lh << " != " << rh << "\n";); set_conflict(deps); propagated = true; return true; } if (unchanged(l, lhs) && unchanged(r, rhs)) { return false; } if (unchanged(r, lhs) && unchanged(l, rhs)) { return false; } SASSERT(lhs.size() == rhs.size()); for (unsigned i = 0; i < lhs.size(); ++i) { expr_ref li(lhs[i].get(), m); expr_ref ri(rhs[i].get(), m); if (m_util.is_seq(li) || m_util.is_re(li)) { m_eqs.push_back(eq(li, ri, deps)); } else { propagate_eq(deps, ensure_enode(li), ensure_enode(ri)); propagated = true; } } TRACE("seq", tout << mk_pp(l, m) << " = " << mk_pp(r, m) << " => "; for (unsigned i = 0; i < lhs.size(); ++i) { tout << mk_pp(lhs[i].get(), m) << " = " << mk_pp(rhs[i].get(), m) << "; "; } tout << "\n";); return true; } bool theory_seq::solve_unit_eq(expr* l, expr* r, enode_pair_dependency* deps, bool& propagated) { expr_ref lh = canonize(l, deps); expr_ref rh = canonize(r, deps); if (lh == rh) { return true; } if (is_var(lh) && !occurs(lh, rh)) { propagated = add_solution(lh, rh, deps) || propagated; } if (is_var(rh) && !occurs(rh, lh)) { propagated = add_solution(rh, lh, deps) || propagated; return true; } // Use instead reference counts for dependencies to GC? // TBD: Solutions to units are not necessarily variables, but // they may induce new equations. return false; } bool theory_seq::occurs(expr* a, expr* b) { // true if a occurs under an interpreted function or under left/right selector. SASSERT(is_var(a)); expr* e1, *e2; while (is_left_select(a, e1) || is_right_select(a, e1)) { a = e1; } if (m_util.str.is_concat(b, e1, e2)) { return occurs(a, e1) || occurs(a, e2); } while (is_left_select(b, e1) || is_right_select(b, e1)) { b = e1; } if (a == b) { return true; } return false; } bool theory_seq::is_var(expr* a) { return m_util.is_seq(a) && !m_util.str.is_concat(a) && !m_util.str.is_empty(a) && !m_util.str.is_string(a) && !m_util.str.is_unit(a); } bool theory_seq::is_left_select(expr* a, expr*& b) { return is_skolem(m_left, a) && (b = to_app(a)->get_arg(0), true); } bool theory_seq::is_right_select(expr* a, expr*& b) { return is_skolem(m_right, a) && (b = to_app(a)->get_arg(0), true); } bool theory_seq::is_head_elem(expr* e) const { return is_skolem(m_head_elem, e); } bool theory_seq::add_solution(expr* l, expr* r, enode_pair_dependency* deps) { if (l == r) { return false; } context& ctx = get_context(); m_rep.update(l, r, deps); // TBD: skip new equalities for non-internalized terms. if (ctx.e_internalized(l) && ctx.e_internalized(r) && ctx.get_enode(l)->get_root() != ctx.get_enode(r)->get_root()) { propagate_eq(deps, ctx.get_enode(l), ctx.get_enode(r)); return true; } else { return false; } } bool theory_seq::pre_process_eqs(bool simplify_or_solve, bool& propagated) { context& ctx = get_context(); bool change = false; for (unsigned i = 0; !ctx.inconsistent() && i < m_eqs.size(); ++i) { eq e = m_eqs[i]; if (simplify_or_solve? simplify_eq(e.m_lhs, e.m_rhs, e.m_dep, propagated): solve_unit_eq(e.m_lhs, e.m_rhs, e.m_dep, propagated)) { if (i + 1 != m_eqs.size()) { eq e1 = m_eqs[m_eqs.size()-1]; m_eqs.set(i, e1); --i; ++m_stats.m_num_reductions; } m_eqs.pop_back(); change = true; } } return change; } bool theory_seq::solve_nqs() { bool change = false; context & ctx = get_context(); for (unsigned i = 0; !ctx.inconsistent() && i < m_nqs.size(); ++i) { if (!m_nqs[i].is_solved()) { change = solve_ne(i) || change; } } return change || ctx.inconsistent(); } bool theory_seq::solve_ne(unsigned idx) { context& ctx = get_context(); seq_rewriter rw(m); bool change = false; ne const& n = m_nqs[idx]; TRACE("seq", display_disequation(tout, n);); SASSERT(!n.is_solved()); unsigned num_undef_lits = 0; for (unsigned i = 0; i < n.m_lits.size(); ++i) { switch (ctx.get_assignment(n.m_lits[i])) { case l_false: // mark as solved in mark_solved(idx); return false; case l_true: break; case l_undef: ++num_undef_lits; break; } } for (unsigned i = 0; i < n.m_lhs.size(); ++i) { expr_ref_vector lhs(m), rhs(m); enode_pair_dependency* deps = 0; expr* l = n.m_lhs[i]; expr* r = n.m_rhs[i]; expr_ref lh = canonize(l, deps); expr_ref rh = canonize(r, deps); if (!rw.reduce_eq(lh, rh, lhs, rhs)) { mark_solved(idx); return change; } else if (unchanged(l, lhs) && unchanged(r, rhs)) { // continue } else if (unchanged(r, lhs) && unchanged(l, rhs)) { // continue } else { TRACE("seq", for (unsigned j = 0; j < lhs.size(); ++j) { tout << mk_pp(lhs[j].get(), m) << " "; } tout << "\n"; tout << mk_pp(l, m) << " != " << mk_pp(r, m) << "\n";); for (unsigned j = 0; j < lhs.size(); ++j) { expr_ref nl(lhs[j].get(), m); expr_ref nr(rhs[j].get(), m); if (m_util.is_seq(nl) || m_util.is_re(nl)) { m_trail_stack.push(push_ne(*this, idx, nl, nr)); } else { literal lit(mk_eq(nl, nr, false)); m_trail_stack.push(push_lit(*this, idx, lit)); ctx.mark_as_relevant(lit); switch (ctx.get_assignment(lit)) { case l_false: mark_solved(idx); return false; case l_true: break; case l_undef: ++num_undef_lits; break; } } } m_trail_stack.push(push_dep(*this, idx, deps)); erase_index(idx, i); --i; change = true; } } if (num_undef_lits == 0 && n.m_lhs.empty()) { literal_vector lits(n.m_lits); lits.push_back(~mk_eq(n.m_l, n.m_r, false)); set_conflict(n.m_dep, lits); return true; } return change; } void theory_seq::mark_solved(unsigned idx) { m_trail_stack.push(solved_ne(*this, idx)); } void theory_seq::erase_index(unsigned idx, unsigned i) { ne const& n = m_nqs[idx]; unsigned sz = n.m_lhs.size(); if (i + 1 != sz) { m_trail_stack.push(set_ne(*this, idx, i, n.m_lhs[sz-1], n.m_rhs[sz-1])); } m_trail_stack.push(pop_ne(*this, idx)); } bool theory_seq::simplify_and_solve_eqs() { context & ctx = get_context(); bool propagated = false; simplify_eqs(propagated); while (!ctx.inconsistent() && solve_basic_eqs(propagated)) { simplify_eqs(propagated); } return propagated || ctx.inconsistent(); } bool theory_seq::internalize_term(app* term) { TRACE("seq", tout << mk_pp(term, m) << "\n";); context & ctx = get_context(); unsigned num_args = term->get_num_args(); expr* arg; for (unsigned i = 0; i < num_args; i++) { arg = term->get_arg(i); mk_var(ensure_enode(arg)); } if (m.is_bool(term)) { bool_var bv = ctx.mk_bool_var(term); ctx.set_var_theory(bv, get_id()); ctx.mark_as_relevant(bv); TRACE("seq", tout << mk_pp(term, m) << ": " << bv << "\n";); } else { enode* e = 0; if (ctx.e_internalized(term)) { e = ctx.get_enode(term); } else { e = ctx.mk_enode(term, false, m.is_bool(term), true); } mk_var(e); } if (m_util.str.is_length(term, arg) && !has_length(arg)) { add_length(arg); } return true; } void theory_seq::add_length(expr* e) { SASSERT(!has_length(e)); m_length.insert(e); m_trail_stack.push(insert_obj_trail(m_length, e)); } /* ensure that all elements in equivalence class occur under an applicatin of 'length' */ void theory_seq::enforce_length(enode* n) { enode* n1 = n; do { expr* o = n->get_owner(); if (!has_length(o)) { expr_ref len(m_util.str.mk_length(o), m); enque_axiom(len); add_length(o); } n = n->get_next(); } while (n1 != n); } void theory_seq::apply_sort_cnstr(enode* n, sort* s) { mk_var(n); } void theory_seq::display(std::ostream & out) const { if (m_eqs.size() == 0 && m_nqs.size() == 0 && m_ineqs.empty() && m_rep.empty() && m_exclude.empty()) { return; } out << "Theory seq\n"; if (m_eqs.size() > 0) { out << "Equations:\n"; display_equations(out); } if (m_nqs.size() > 0) { out << "Disequations:\n"; display_disequations(out); } if (!m_ineqs.empty()) { out << "Negative constraints:\n"; for (unsigned i = 0; i < m_ineqs.size(); ++i) { out << mk_pp(m_ineqs[i], m) << "\n"; } } if (!m_re2aut.empty()) { out << "Regex\n"; obj_map::iterator it = m_re2aut.begin(), end = m_re2aut.end(); for (; it != end; ++it) { out << mk_pp(it->m_key, m) << "\n"; display_expr disp(m); it->m_value->display(out, disp); } } if (!m_rep.empty()) { out << "Solved equations:\n"; m_rep.display(out); } if (!m_exclude.empty()) { out << "Exclusions:\n"; m_exclude.display(out); } } void theory_seq::display_equations(std::ostream& out) const { for (unsigned i = 0; i < m_eqs.size(); ++i) { eq const& e = m_eqs[i]; out << e.m_lhs << " = " << e.m_rhs << " <- "; display_deps(out, e.m_dep); } } void theory_seq::display_disequations(std::ostream& out) const { for (unsigned i = 0; i < m_nqs.size(); ++i) { display_disequation(out, m_nqs[i]); } } void theory_seq::display_disequation(std::ostream& out, ne const& e) const { for (unsigned j = 0; j < e.m_lits.size(); ++j) { out << e.m_lits[j] << " "; } if (e.m_lits.size() > 0) { out << "\n"; } for (unsigned j = 0; j < e.m_lhs.size(); ++j) { out << mk_pp(e.m_lhs[j], m) << " != " << mk_pp(e.m_rhs[j], m) << "\n"; } display_deps(out, e.m_dep); } void theory_seq::display_deps(std::ostream& out, enode_pair_dependency* dep) const { vector _eqs; const_cast(m_dm).linearize(dep, _eqs); for (unsigned i = 0; i < _eqs.size(); ++i) { out << " " << mk_pp(_eqs[i].first->get_owner(), m) << " = " << mk_pp(_eqs[i].second->get_owner(), m); } out << "\n"; } void theory_seq::collect_statistics(::statistics & st) const { st.update("seq num splits", m_stats.m_num_splits); st.update("seq num reductions", m_stats.m_num_reductions); } void theory_seq::init_model(model_generator & mg) { m_factory = alloc(seq_factory, get_manager(), get_family_id(), mg.get_model()); mg.register_factory(m_factory); } model_value_proc * theory_seq::mk_value(enode * n, model_generator & mg) { enode_pair_dependency* deps = 0; expr_ref e(n->get_owner(), m); flet _model_completion(m_model_completion, true); m_rep.reset_cache(); m_mg = &mg; e = canonize(e, deps); m_mg = 0; SASSERT(is_app(e)); TRACE("seq", tout << mk_pp(n->get_owner(), m) << " -> " << e << "\n";); m_factory->add_trail(e); return alloc(expr_wrapper_proc, to_app(e)); } theory_var theory_seq::mk_var(enode* n) { if (!m_util.is_seq(n->get_owner()) && !m_util.is_re(n->get_owner())) { return null_theory_var; } if (is_attached_to_var(n)) { return n->get_th_var(get_id()); } else { theory_var v = theory::mk_var(n); get_context().attach_th_var(n, this, v); get_context().mark_as_relevant(n); return v; } } bool theory_seq::can_propagate() { return m_axioms_head < m_axioms.size(); } expr_ref theory_seq::canonize(expr* e, enode_pair_dependency*& eqs) { expr_ref result = expand(e, eqs); m_rewrite(result); return result; } expr_ref theory_seq::expand(expr* e0, enode_pair_dependency*& eqs) { expr_ref result(m); enode_pair_dependency* deps = 0; expr_dep ed; if (m_rep.find_cache(e0, ed)) { eqs = m_dm.mk_join(eqs, ed.second); result = ed.first; return result; } expr* e = m_rep.find(e0, deps); expr* e1, *e2; if (m_util.str.is_concat(e, e1, e2)) { result = m_util.str.mk_concat(expand(e1, deps), expand(e2, deps)); } else if (m_util.str.is_empty(e) || m_util.str.is_string(e)) { result = e; } else if (m_util.str.is_prefix(e, e1, e2)) { result = m_util.str.mk_prefix(expand(e1, deps), expand(e2, deps)); } else if (m_util.str.is_suffix(e, e1, e2)) { result = m_util.str.mk_suffix(expand(e1, deps), expand(e2, deps)); } else if (m_util.str.is_contains(e, e1, e2)) { result = m_util.str.mk_contains(expand(e1, deps), expand(e2, deps)); } else if (m_model_completion && is_var(e)) { SASSERT(m_factory); expr_ref val(m); val = m_factory->get_some_value(m.get_sort(e)); if (val) { m_rep.update(e, val, 0); result = val; } else { result = e; } } else if (m_model_completion && m_util.str.is_unit(e, e1)) { result = expand(e1, deps); bv_util bv(m); rational val; unsigned sz; if (bv.is_numeral(result, val, sz) && sz == zstring().num_bits()) { svector val_as_bits; for (unsigned i = 0; i < sz; ++i) { val_as_bits.push_back(!val.is_even()); val = div(val, rational(2)); } result = m_util.str.mk_string(zstring(sz, val_as_bits.c_ptr())); } else { result = m_util.str.mk_unit(result); } } else if (m_model_completion && is_head_elem(e)) { enode* n = get_context().get_enode(e)->get_root(); result = n->get_owner(); if (!m.is_model_value(result)) { if (m_util.is_char(result)) { result = m_util.str.mk_char('#'); } else { result = m_mg->get_some_value(m.get_sort(result)); } } m_rep.update(e, result, 0); TRACE("seq", tout << mk_pp(e, m) << " |-> " << result << "\n";); } else { result = e; } if (result == e0) { deps = 0; } expr_dep edr(result, deps); m_rep.add_cache(e0, edr); eqs = m_dm.mk_join(eqs, deps); TRACE("seq_verbose", tout << mk_pp(e0, m) << " |--> " << result << "\n"; display_deps(tout, eqs);); return result; } void theory_seq::add_dependency(enode_pair_dependency*& dep, enode* a, enode* b) { if (a != b) { dep = m_dm.mk_join(dep, m_dm.mk_leaf(std::make_pair(a, b))); } } void theory_seq::propagate() { context & ctx = get_context(); while (m_axioms_head < m_axioms.size() && !ctx.inconsistent()) { expr_ref e(m); e = m_axioms[m_axioms_head].get(); deque_axiom(e); ++m_axioms_head; } } void theory_seq::enque_axiom(expr* e) { TRACE("seq", tout << "add axioms for: " << mk_pp(e, m) << "\n";); m_trail_stack.push(push_back_vector(m_axioms)); m_axioms.push_back(e); } void theory_seq::deque_axiom(expr* n) { if (m_util.str.is_length(n)) { add_length_axiom(n); } else if (m_util.str.is_index(n)) { add_indexof_axiom(n); } else if (m_util.str.is_replace(n)) { add_replace_axiom(n); } else if (m_util.str.is_extract(n)) { add_extract_axiom(n); } else if (m_util.str.is_at(n)) { add_at_axiom(n); } else if (m_util.str.is_string(n)) { add_elim_string_axiom(n); } } /* encode that s is not a proper prefix of xs1 where s1 is all of s, except the last element. lit or s = "" or s = s1*c lit or s = "" or len(c) = 1 lit or s = "" or !prefix(s, x*s1) */ void theory_seq::tightest_prefix(expr* s, expr* x, literal lit1, literal lit2) { expr_ref s1 = mk_skolem(m_seq_first, s); expr_ref c = mk_skolem(m_seq_last, s); expr_ref s1c(m_util.str.mk_concat(s1, c), m); expr_ref lc(m_util.str.mk_length(c), m); expr_ref one(m_autil.mk_int(1), m); expr_ref emp(m_util.str.mk_empty(m.get_sort(s)), m); literal s_eq_emp = mk_eq(s, emp, false); add_axiom(lit1, lit2, s_eq_emp, mk_eq(s, s1c, false)); add_axiom(lit1, lit2, s_eq_emp, mk_eq(lc, one, false)); add_axiom(lit1, lit2, s_eq_emp, ~mk_literal(m_util.str.mk_contains(s, m_util.str.mk_concat(x, s1)))); } /* // index of s in t starting at offset. let i = Index(t, s, 0): len(t) = 0 => i = -1 len(t) != 0 & !contains(t, s) => i = -1 len(t) != 0 & contains(t, s) => t = xsy & i = len(x) len(t) != 0 & contains(t, s) & s != emp => tightest_prefix(x, s) let i = Index(t, s, offset) 0 <= offset < len(t) => xy = t & len(x) = offset & (-1 = indexof(t, s, 0) => -1 = i) & (indexof(t, s, 0) >= 0 => indexof(t, s, 0) + offset = i) offset = len(t) => i = -1 if offset < 0 or offset >= len(t) under specified optional lemmas: (len(s) > len(t) -> i = -1) (len(s) <= len(t) -> i <= len(t)-len(s)) */ void theory_seq::add_indexof_axiom(expr* i) { expr* s, *t, *offset; rational r; VERIFY(m_util.str.is_index(i, t, s, offset)); expr_ref emp(m), minus_one(m), zero(m), xsy(m); minus_one = m_autil.mk_int(-1); zero = m_autil.mk_int(0); emp = m_util.str.mk_empty(m.get_sort(s)); literal offset_ne_zero = null_literal; bool is_num = m_autil.is_numeral(offset, r); if (is_num && r.is_zero()) { offset_ne_zero = null_literal; } else { offset_ne_zero = ~mk_eq(offset, zero, false); } if (!is_num || r.is_zero()) { expr_ref x = mk_skolem(m_contains_left, t, s); expr_ref y = mk_skolem(m_contains_right, t, s); xsy = m_util.str.mk_concat(x,s,y); literal cnt = mk_literal(m_util.str.mk_contains(t, s)); literal eq_empty = mk_eq(s, emp, false); add_axiom(offset_ne_zero, cnt, mk_eq(i, minus_one, false)); add_axiom(offset_ne_zero, ~eq_empty, mk_eq(i, zero, false)); add_axiom(offset_ne_zero, ~cnt, eq_empty, mk_eq(t, xsy, false)); tightest_prefix(s, x, ~cnt, offset_ne_zero); } if (is_num && r.is_zero()) { return; } // offset >= len(t) => indexof(s, t, offset) = -1 expr_ref len_t(m_util.str.mk_length(t), m); literal offset_ge_len = mk_literal(m_autil.mk_ge(mk_sub(offset, len_t), zero)); add_axiom(offset_ge_len, mk_eq(i, minus_one, false)); // 0 <= offset & offset < len(t) => t = xy // 0 <= offset & offset < len(t) => len(x) = offset // 0 <= offset & offset < len(t) & ~contains(s, y) => indexof(t, s, offset) = -1 // 0 <= offset & offset < len(t) & contains(s, y) => index(t, s, offset) = indexof(y, s, 0) + len(t) expr_ref x = mk_skolem(m_indexof_left, t, s, offset); expr_ref y = mk_skolem(m_indexof_right, t, s, offset); expr_ref indexof(m_util.str.mk_index(y, s, zero), m); // TBD: //literal offset_ge_0 = mk_literal(m_autil.mk_ge(offset, zero)); //add_axiom(~offset_ge_0, offset_ge_len, mk_eq(indexof, i, false)); //add_axiom(~offset_ge_0, offset_ge_len, mk_eq(m_util.str.mk_length(x), offset, false)); //add_axiom(~offset_ge_0, offset_ge_len, mk_eq(t, m_util.str.mk_concat(x, y), false)); } /* let r = replace(a, s, t) (contains(a, s) -> tightest_prefix(s,xs)) (contains(a, s) -> r = xty & a = xsy) & (!contains(a, s) -> r = a) */ void theory_seq::add_replace_axiom(expr* r) { expr* a, *s, *t; VERIFY(m_util.str.is_replace(r, a, s, t)); expr_ref x = mk_skolem(m_contains_left, a, s); expr_ref y = mk_skolem(m_contains_right, a, s); expr_ref xty(m_util.str.mk_concat(x, t, y), m); expr_ref xsy(m_util.str.mk_concat(x, s, y), m); literal cnt = mk_literal(m_util.str.mk_contains(a ,s)); add_axiom(cnt, mk_eq(r, a, false)); add_axiom(~cnt, mk_eq(a, xsy, false)); add_axiom(~cnt, mk_eq(r, xty, false)); tightest_prefix(s, x, ~cnt); } void theory_seq::add_elim_string_axiom(expr* n) { zstring s; VERIFY(m_util.str.is_string(n, s)); if (s.length() == 0) { return; } expr_ref result(m_util.str.mk_unit(m_util.str.mk_char(s, s.length()-1)), m); for (unsigned i = s.length()-1; i > 0; ) { --i; result = m_util.str.mk_concat(m_util.str.mk_unit(m_util.str.mk_char(s, i)), result); } add_axiom(mk_eq(n, result, false)); m_rep.update(n, result, 0); } void theory_seq::add_length_coherence_axiom(expr* n) { expr_ref len(n, m); m_rewrite(len); if (n != len) { TRACE("seq", tout << "Add length coherence for " << mk_pp(n, m) << "\n";); add_axiom(mk_eq(n, len, false)); } } /* let n = len(x) len(x) >= 0 len(x) = 0 => x = "" x = "" => len(x) = 0 */ void theory_seq::add_length_axiom(expr* n) { expr* x; VERIFY(m_util.str.is_length(n, x)); if (!m_util.str.is_unit(x) && !m_util.str.is_empty(x) && !m_util.str.is_string(x)) { expr_ref zero(m_autil.mk_int(0), m); expr_ref emp(m_util.str.mk_empty(m.get_sort(x)), m); literal eq1(mk_eq(zero, n, false)); literal eq2(mk_eq(x, emp, false)); add_axiom(mk_literal(m_autil.mk_ge(n, zero))); add_axiom(~eq1, eq2); add_axiom(~eq2, eq1); } if (m_util.str.is_concat(x) || m_util.str.is_unit(x) || m_util.str.is_empty(x) || m_util.str.is_string(x)) { add_length_coherence_axiom(x); } } void theory_seq::propagate_in_re(expr* n, bool is_true) { TRACE("seq", tout << mk_pp(n, m) << " <- " << (is_true?"true":"false") << "\n";); expr* e1, *e2; VERIFY(m_util.str.is_in_re(n, e1, e2)); expr_ref tmp(n, m); m_rewrite(tmp); if (m.is_true(tmp)) { if (!is_true) { literal_vector lits; lits.push_back(mk_literal(n)); set_conflict(0, lits); } return; } else if (m.is_false(tmp)) { if (is_true) { literal_vector lits; lits.push_back(~mk_literal(n)); set_conflict(0, lits); } return; } eautomaton* a = get_automaton(e2); if (!a) return; if (m_util.str.is_empty(e1)) return; context& ctx = get_context(); expr_ref emp(m_util.str.mk_empty(m.get_sort(e1)), m); for (unsigned i = 0; i < a->num_states(); ++i) { literal acc = mk_accept(emp, e2, i); literal rej = mk_reject(emp, e2, i); add_axiom(a->is_final_state(i)?acc:~acc); add_axiom(a->is_final_state(i)?~rej:rej); } unsigned_vector states; a->get_epsilon_closure(a->init(), states); literal_vector lits; literal lit = ctx.get_literal(n); if (is_true) { lits.push_back(~lit); } for (unsigned i = 0; i < states.size(); ++i) { if (is_true) { lits.push_back(mk_accept(e1, e2, states[i])); } else { literal nlit = ~lit; propagate_lit(0, 1, &nlit, mk_reject(e1, e2, states[i])); } } if (is_true) { if (lits.size() == 2) { propagate_lit(0, 1, &lit, lits[1]); } else { TRACE("seq", ctx.display_literals_verbose(tout, lits.size(), lits.c_ptr());); ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr()); } } } expr_ref theory_seq::mk_sub(expr* a, expr* b) { expr_ref result(m_autil.mk_sub(a, b), m); m_rewrite(result); return result; } enode* theory_seq::ensure_enode(expr* e) { context& ctx = get_context(); if (!ctx.e_internalized(e)) { ctx.internalize(e, false); ctx.mark_as_relevant(ctx.get_enode(e)); } return ctx.get_enode(e); } static theory_mi_arith* get_th_arith(context& ctx, theory_id afid, expr* e) { ast_manager& m = ctx.get_manager(); theory* th = ctx.get_theory(afid); if (th && ctx.e_internalized(e)) { return dynamic_cast(th); } else { return 0; } } bool theory_seq::lower_bound(expr* _e, rational& lo) { context& ctx = get_context(); expr_ref e(m_util.str.mk_length(_e), m); theory_mi_arith* tha = get_th_arith(ctx, m_autil.get_family_id(), e); expr_ref _lo(m); if (!tha || !tha->get_lower(ctx.get_enode(e), _lo)) return false; return m_autil.is_numeral(_lo, lo) && lo.is_int(); } bool theory_seq::upper_bound(expr* _e, rational& hi) { context& ctx = get_context(); expr_ref e(m_util.str.mk_length(_e), m); theory_mi_arith* tha = get_th_arith(ctx, m_autil.get_family_id(), e); expr_ref _hi(m); if (!tha || !tha->get_upper(ctx.get_enode(e), _hi)) return false; return m_autil.is_numeral(_hi, hi) && hi.is_int(); } bool theory_seq::get_length(expr* e, rational& val) { context& ctx = get_context(); theory* th = ctx.get_theory(m_autil.get_family_id()); if (!th) return false; theory_mi_arith* tha = dynamic_cast(th); if (!tha) return false; rational val1; expr_ref len(m), len_val(m); expr* e1, *e2; ptr_vector todo; todo.push_back(e); val.reset(); zstring s; while (!todo.empty()) { expr* c = todo.back(); todo.pop_back(); if (m_util.str.is_concat(c, e1, e2)) { todo.push_back(e1); todo.push_back(e2); } else if (m_util.str.is_unit(c)) { val += rational(1); } else if (m_util.str.is_empty(c)) { continue; } else if (m_util.str.is_string(c, s)) { val += rational(s.length()); } else { len = m_util.str.mk_length(c); if (ctx.e_internalized(len) && tha->get_value(ctx.get_enode(len), len_val) && m_autil.is_numeral(len_val, val1)) { val += val1; } else { TRACE("seq", tout << "No length provided for " << len << "\n";); return false; } } } return val.is_int(); } /* TBD: check semantics of extract. let e = extract(s, i, l) 0 <= i < len(s) -> prefix(xe,s) & len(x) = i 0 <= i < len(s) & l >= len(s) - i -> len(e) = len(s) - i 0 <= i < len(s) & 0 <= l < len(s) - i -> len(e) = l 0 <= i < len(s) & l < 0 -> len(e) = 0 * i < 0 -> e = s * i >= len(s) -> e = empty */ void theory_seq::add_extract_axiom(expr* e) { expr* s, *i, *l; VERIFY(m_util.str.is_extract(e, s, i, l)); expr_ref x(mk_skolem(m_extract_prefix, s, e), m); expr_ref ls(m_util.str.mk_length(s), m); expr_ref lx(m_util.str.mk_length(x), m); expr_ref le(m_util.str.mk_length(e), m); expr_ref ls_minus_i(mk_sub(ls, i), m); expr_ref xe(m_util.str.mk_concat(x, e), m); expr_ref zero(m_autil.mk_int(0), m); literal i_ge_0 = mk_literal(m_autil.mk_ge(i, zero)); literal i_ge_ls = mk_literal(m_autil.mk_ge(mk_sub(i, ls), zero)); literal l_ge_ls = mk_literal(m_autil.mk_ge(mk_sub(l, ls), zero)); literal l_ge_zero = mk_literal(m_autil.mk_ge(l, zero)); add_axiom(~i_ge_0, i_ge_ls, mk_literal(m_util.str.mk_prefix(xe, s))); add_axiom(~i_ge_0, i_ge_ls, mk_eq(lx, i, false)); add_axiom(~i_ge_0, i_ge_ls, ~l_ge_ls, mk_eq(le, ls_minus_i, false)); add_axiom(~i_ge_0, i_ge_ls, l_ge_zero, mk_eq(le, zero, false)); } /* let e = at(s, i) 0 <= i < len(s) -> s = xey & len(x) = i & len(e) = 1 */ void theory_seq::add_at_axiom(expr* e) { expr* s, *i; VERIFY(m_util.str.is_at(e, s, i)); expr_ref x(m), y(m), lx(m), le(m), xey(m), zero(m), one(m), len_e(m), len_x(m); x = mk_skolem(m_at_left, s); y = mk_skolem(m_at_right, s); xey = m_util.str.mk_concat(x, e, y); zero = m_autil.mk_int(0); one = m_autil.mk_int(1); len_e = m_util.str.mk_length(e); len_x = m_util.str.mk_length(x); literal i_ge_0 = mk_literal(m_autil.mk_ge(i, zero)); literal i_ge_len_s = mk_literal(m_autil.mk_ge(mk_sub(i, m_util.str.mk_length(s)), zero)); add_axiom(~i_ge_0, i_ge_len_s, mk_eq(s, xey, false)); add_axiom(~i_ge_0, i_ge_len_s, mk_eq(one, len_e, false)); add_axiom(~i_ge_0, i_ge_len_s, mk_eq(i, len_x, false)); } /** step(s, tail, re, i, j, t) -> s = t ++ tail */ void theory_seq::propagate_step(bool_var v, expr* step) { context& ctx = get_context(); expr* re, *t, *s, *tail, *i, *j; VERIFY(is_step(step, s, tail, re, i, j, t)); expr_ref conc(m_util.str.mk_concat(m_util.str.mk_unit(t), tail), m); expr_ref sr(s, m); propagate_eq(v, s, conc); enode* n1 = ensure_enode(step); enode* n2 = ctx.get_enode(m.mk_true()); m_eqs.push_back(eq(sr, conc, m_dm.mk_leaf(enode_pair(n1, n2)))); } literal theory_seq::mk_literal(expr* _e) { expr_ref e(_e, m); context& ctx = get_context(); ensure_enode(e); return ctx.get_literal(e); } void theory_seq::add_axiom(literal l1, literal l2, literal l3, literal l4) { context& ctx = get_context(); literal_vector lits; if (l1 != null_literal) { ctx.mark_as_relevant(l1); lits.push_back(l1); } if (l2 != null_literal) { ctx.mark_as_relevant(l2); lits.push_back(l2); } if (l3 != null_literal) { ctx.mark_as_relevant(l3); lits.push_back(l3); } if (l4 != null_literal) { ctx.mark_as_relevant(l4); lits.push_back(l4); } TRACE("seq", ctx.display_literals_verbose(tout, lits.size(), lits.c_ptr()); tout << "\n";); ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr()); } expr_ref theory_seq::mk_skolem(symbol const& name, expr* e1, expr* e2, expr* e3, sort* range) { expr* es[3] = { e1, e2, e3 }; unsigned len = e3?3:(e2?2:1); if (!range) { range = m.get_sort(e1); } return expr_ref(m_util.mk_skolem(name, len, es, range), m); } bool theory_seq::is_skolem(symbol const& s, expr* e) const { return m_util.is_skolem(e) && to_app(e)->get_decl()->get_parameter(0).get_symbol() == s; } void theory_seq::propagate_eq(bool_var v, expr* e1, expr* e2) { context& ctx = get_context(); enode* n1 = ensure_enode(e1); enode* n2 = ensure_enode(e2); if (n1->get_root() == n2->get_root()) { return; } ctx.mark_as_relevant(n1); ctx.mark_as_relevant(n2); TRACE("seq", tout << mk_pp(ctx.bool_var2expr(v), m) << " => " << mk_pp(e1, m) << " = " << mk_pp(e2, m) << "\n";); literal lit(v); justification* js = ctx.mk_justification( ext_theory_eq_propagation_justification( get_id(), ctx.get_region(), 1, &lit, 0, 0, n1, n2)); ctx.assign_eq(n1, n2, eq_justification(js)); } void theory_seq::assign_eh(bool_var v, bool is_true) { context & ctx = get_context(); expr* e = ctx.bool_var2expr(v); expr* e1, *e2; expr_ref f(m); if (is_true && m_util.str.is_prefix(e, e1, e2)) { f = mk_skolem(m_prefix, e1, e2); f = m_util.str.mk_concat(e1, f); propagate_eq(v, f, e2); } else if (is_true && m_util.str.is_suffix(e, e1, e2)) { f = mk_skolem(m_suffix, e1, e2); f = m_util.str.mk_concat(f, e1); propagate_eq(v, f, e2); } else if (is_true && m_util.str.is_contains(e, e1, e2)) { expr_ref f1 = mk_skolem(m_contains_left, e1, e2); expr_ref f2 = mk_skolem(m_contains_right, e1, e2); f = m_util.str.mk_concat(f1, m_util.str.mk_concat(e2, f2)); propagate_eq(v, f, e1); } else if (is_accept(e)) { if (is_true) { m_trail_stack.push(push_back_vector >(m_accepts)); m_accepts.push_back(e); } } else if (is_reject(e)) { if (is_true) { m_trail_stack.push(push_back_vector >(m_rejects)); m_rejects.push_back(e); } } else if (is_step(e)) { if (is_true) { propagate_step(v, e); m_trail_stack.push(push_back_vector >(m_steps)); m_steps.push_back(e); } } else if (m_util.str.is_in_re(e)) { propagate_in_re(e, is_true); } else { SASSERT(!is_true); //if (m_util.str.is_prefix(e, e1, e2)) { // could add negative prefix axioms: // len(e1) <= len(e2) => e2 = seq.prefix.left(e2)*seq.prefix.right(e2) // & len(seq.prefix.left(e2)) = len(e1) // & seq.prefix.left(e2) != e1 // or could solve prefix/suffix disunification constraints. //} m_trail_stack.push(push_back_vector(m_ineqs)); m_ineqs.push_back(e); } } void theory_seq::new_eq_eh(theory_var v1, theory_var v2) { enode* n1 = get_enode(v1); enode* n2 = get_enode(v2); if (n1 != n2) { expr_ref o1(n1->get_owner(), m); expr_ref o2(n2->get_owner(), m); TRACE("seq", tout << o1 << " = " << o2 << "\n";); enode_pair_dependency* deps = m_dm.mk_leaf(enode_pair(n1, n2)); bool propagated = false; if (!simplify_eq(o1, o2, deps, propagated)) { m_eqs.push_back(eq(o1, o2, deps)); } if (has_length(o1) && !has_length(o2)) { enforce_length(n2); } else if (has_length(o2) && !has_length(o1)) { enforce_length(n1); } } } void theory_seq::new_diseq_eh(theory_var v1, theory_var v2) { enode* n1 = get_enode(v1); enode* n2 = get_enode(v2); expr_ref e1(n1->get_owner(), m); expr_ref e2(n2->get_owner(), m); m_exclude.update(e1, e2); expr_ref eq(m.mk_eq(e1, e2), m); m_rewrite(eq); if (!m.is_false(eq)) { m_nqs.push_back(ne(e1, e2)); } } void theory_seq::push_scope_eh() { theory::push_scope_eh(); m_rep.push_scope(); m_exclude.push_scope(); m_dm.push_scope(); m_trail_stack.push_scope(); m_trail_stack.push(value_trail(m_axioms_head)); m_eqs.push_scope(); m_nqs.push_scope(); } void theory_seq::pop_scope_eh(unsigned num_scopes) { m_trail_stack.pop_scope(num_scopes); theory::pop_scope_eh(num_scopes); m_dm.pop_scope(num_scopes); m_rep.pop_scope(num_scopes); m_exclude.pop_scope(num_scopes); m_eqs.pop_scope(num_scopes); m_nqs.pop_scope(num_scopes); } void theory_seq::restart_eh() { } void theory_seq::relevant_eh(app* n) { if (m_util.str.is_length(n) || m_util.str.is_index(n) || m_util.str.is_replace(n) || m_util.str.is_extract(n) || m_util.str.is_at(n) || m_util.str.is_string(n) || is_step(n)) { enque_axiom(n); } } eautomaton* theory_seq::get_automaton(expr* re) { eautomaton* result = 0; if (m_re2aut.find(re, result)) { return result; } result = re2automaton(m)(re); if (result) { display_expr disp(m); TRACE("seq", result->display(tout, disp);); } if (result) { m_automata.push_back(result); m_trail_stack.push(push_back_vector >(m_automata)); } m_re2aut.insert(re, result); m_trail_stack.push(insert_obj_map(m_re2aut, re)); return result; } literal theory_seq::mk_accept(expr* s, expr* re, expr* state) { return mk_literal(mk_skolem(m_accept, s, re, state, m.mk_bool_sort())); } literal theory_seq::mk_reject(expr* s, expr* re, expr* state) { return mk_literal(mk_skolem(m_reject, s, re, state, m.mk_bool_sort())); } bool theory_seq::is_acc_rej(symbol const& ar, expr* e, expr*& s, expr*& re, unsigned& i, eautomaton*& aut) { if (is_skolem(ar, e)) { rational r; s = to_app(e)->get_arg(0); re = to_app(e)->get_arg(1); VERIFY(m_autil.is_numeral(to_app(e)->get_arg(2), r)); SASSERT(r.is_unsigned()); i = r.get_unsigned(); aut = m_re2aut[re]; return true; } else { return false; } } bool theory_seq::is_step(expr* e) const { return is_skolem(m_aut_step, e); } bool theory_seq::is_step(expr* e, expr*& s, expr*& tail, expr*& re, expr*& i, expr*& j, expr*& t) const { if (is_step(e)) { s = to_app(e)->get_arg(0); tail = to_app(e)->get_arg(1); re = to_app(e)->get_arg(2); i = to_app(e)->get_arg(3); j = to_app(e)->get_arg(4); t = to_app(e)->get_arg(5); return true; } else { return false; } } expr_ref theory_seq::mk_step(expr* s, expr* tail, expr* re, unsigned i, unsigned j, expr* t) { expr_ref_vector args(m); args.push_back(s); args.push_back(tail); args.push_back(re); args.push_back(m_autil.mk_int(i)); args.push_back(m_autil.mk_int(j)); args.push_back(t); return expr_ref(m_util.mk_skolem(m_aut_step, args.size(), args.c_ptr(), m.mk_bool_sort()), m); } /** acc & s != emp -> \/ step_i_t_j */ void theory_seq::add_accept2step(expr* acc) { context& ctx = get_context(); SASSERT(ctx.get_assignment(acc) == l_true); expr* s, *re; unsigned src; eautomaton* aut = 0; VERIFY(is_accept(acc, s, re, src, aut)); if (!aut) return; if (m_util.str.is_empty(s)) return; eautomaton::moves mvs; aut->get_moves_from(src, mvs); expr_ref head(m), tail(m), emp(m), step(m); mk_decompose(s, emp, head, tail); literal_vector lits; lits.push_back(~ctx.get_literal(acc)); if (aut->is_final_state(src)) { lits.push_back(mk_eq(emp, s, false)); } for (unsigned i = 0; i < mvs.size(); ++i) { eautomaton::move mv = mvs[i]; step = mk_step(s, tail, re, src, mv.dst(), mv.t()); lits.push_back(mk_literal(step)); } TRACE("seq", ctx.display_literals_verbose(tout, lits.size(), lits.c_ptr()); tout << "\n";); for (unsigned i = 0; i < lits.size(); ++i) { // TBD ctx.mark_as_relevant(lits[i]); } ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr()); } /** acc(s, re, i) & step(head, tail, re, i, j, t) => acc(tail, re, j) */ void theory_seq::add_step2accept(expr* step) { context& ctx = get_context(); SASSERT(ctx.get_assignment(step) == l_true); expr* re, *t, *s, *tail, *i, *j; VERIFY(is_step(step, s, tail, re, i, j, t)); literal acc1 = mk_accept(s, re, i); literal acc2 = mk_accept(tail, re, j); add_axiom(~acc1, ~ctx.get_literal(step), acc2); } /* rej(s, re, i) & s = t ++ tail => rej(tail, re, j) */ void theory_seq::add_reject2reject(expr* rej) { context& ctx = get_context(); SASSERT(ctx.get_assignment(rej) == l_true); expr* s, *re; unsigned src; eautomaton* aut = 0; VERIFY(is_reject(rej, s, re, src, aut)); if (!aut) return; if (m_util.str.is_empty(s)) return; eautomaton::moves mvs; aut->get_moves_from(src, mvs); expr_ref head(m), tail(m), emp(m), conc(m); mk_decompose(s, emp, head, tail); literal rej1 = ctx.get_literal(rej); for (unsigned i = 0; i < mvs.size(); ++i) { eautomaton::move const& mv = mvs[i]; conc = m_util.str.mk_concat(m_util.str.mk_unit(mv.t()), tail); literal rej2 = mk_reject(tail, re, m_autil.mk_int(mv.dst())); add_axiom(~rej1, ~mk_eq(s, conc, false), rej2); } } bool theory_seq::propagate_automata() { context& ctx = get_context(); bool change = false; if (m_accepts_qhead < m_accepts.size()) m_trail_stack.push(value_trail(m_accepts_qhead)), change = true; if (m_rejects_qhead < m_rejects.size()) m_trail_stack.push(value_trail(m_rejects_qhead)), change = true; if (m_steps_qhead < m_steps.size()) m_trail_stack.push(value_trail(m_steps_qhead)), change = true; while (m_accepts_qhead < m_accepts.size() && !ctx.inconsistent()) { add_accept2step(m_accepts[m_accepts_qhead]); ++m_accepts_qhead; } while (m_rejects_qhead < m_rejects.size() && !ctx.inconsistent()) { add_reject2reject(m_rejects[m_rejects_qhead]); ++m_rejects_qhead; } while (m_steps_qhead < m_steps.size() && !ctx.inconsistent()) { add_step2accept(m_steps[m_steps_qhead]); ++m_steps_qhead; } return change || ctx.inconsistent(); }