/*++ Copyright (c) 2021 Microsoft Corporation Module Name: polysat unsigned <= constraints Author: Nikolaj Bjorner (nbjorner) 2021-03-19 Jakob Rath 2021-04-6 Notes: Canonical representation of equation p == 0 is the constraint p <= 0. The alternatives p < 1, -1 <= q, q > -2 are eliminated. Rewrite rules to simplify expressions. In the following let k, k1, k2 be values. - k1 <= k2 ==> 0 <= 0 if k1 <= k2 - k1 <= k2 ==> 1 <= 0 if k1 > k2 - 0 <= p ==> 0 <= 0 - p <= 0 ==> 1 <= 0 if p is never zero due to parity - p <= -1 ==> 0 <= 0 - k <= p ==> p - k <= - k - 1 - k*2^n*p <= 0 ==> 2^n*p <= 0 if k is odd, leading coeffient is always a power of 2. Note: the rules will rewrite alternative formulations of equations: - -1 <= p ==> p + 1 <= 0 - 1 <= p ==> p - 1 <= -2 Rewrite rules on signed constraints: - p > -2 ==> p + 1 <= 0 - p <= -2 ==> p + 1 > 0 At this point, all equations are in canonical form. TODO: clause simplifications: - p + k <= p ==> p + k <= k & p != 0 for k != 0 - p*q = 0 ==> p = 0 or q = 0 applies to any factoring - 2*p <= 2*q ==> (p >= 2^n-1 & q < 2^n-1) or (p >= 2^n-1 = q >= 2^n-1 & p <= q) ==> (p >= 2^n-1 => q < 2^n-1 or p <= q) & (p < 2^n-1 => p <= q) & (p < 2^n-1 => q < 2^n-1) - 3*p <= 3*q ==> ? Note: case p <= p + k is already covered because we test (lhs - rhs).is_val() It can be seen as an instance of lemma 5.2 of Supratik and John. --*/ #include "math/polysat/constraint.h" #include "math/polysat/solver.h" #include "math/polysat/log.h" namespace { using namespace polysat; // Simplify lhs <= rhs void simplify_impl(bool& is_positive, pdd& lhs, pdd& rhs) { // 0 <= p --> 0 <= 0 if (lhs.is_zero()) { rhs = 0; return; } // p <= -1 --> 0 <= 0 if (rhs.is_max()) { lhs = 0, rhs = 0; return; } // p <= p --> 0 <= 0 if (lhs == rhs) { lhs = 0, rhs = 0; return; } // Evaluate constants if (lhs.is_val() && rhs.is_val()) { if (lhs.val() <= rhs.val()) lhs = 0, rhs = 0; else lhs = 1, rhs = 0; return; } // k <= p --> p - k <= - k - 1 if (lhs.is_val()) { pdd k = lhs; lhs = rhs - k; rhs = - k - 1; } // p > -2 --> p + 1 <= 0 // p <= -2 --> p + 1 > 0 if (rhs.is_val() && (rhs + 2).is_zero()) { lhs = lhs + 1; rhs = 0; is_positive = !is_positive; } // 2p + 1 <= 0 --> 1 <= 0 if (rhs.is_zero() && lhs.is_never_zero()) { lhs = 1; return; } // a*p + q <= 0 --> p + a^-1*q <= 0 for a odd if (rhs.is_zero() && !lhs.leading_coefficient().is_power_of_two()) { rational lc = lhs.leading_coefficient(); rational x, y; gcd(lc, lhs.manager().two_to_N(), x, y); if (x.is_neg()) x = mod(x, lhs.manager().two_to_N()); lhs *= x; SASSERT(lhs.leading_coefficient().is_power_of_two()); } } // simplify_impl } namespace polysat { ule_constraint::ule_constraint(constraint_manager& m, pdd const& l, pdd const& r) : constraint(m, ckind_t::ule_t), m_lhs(l), m_rhs(r) { m_vars.append(m_lhs.free_vars()); for (auto v : m_rhs.free_vars()) if (!m_vars.contains(v)) m_vars.push_back(v); } void ule_constraint::simplify(bool& is_positive, pdd& lhs, pdd& rhs) { #ifndef NDEBUG bool const old_is_positive = is_positive; pdd const old_lhs = lhs; pdd const old_rhs = rhs; #endif simplify_impl(is_positive, lhs, rhs); #ifndef NDEBUG if (old_is_positive != is_positive || old_lhs != lhs || old_rhs != rhs) { ule_pp const old_ule(to_lbool(old_is_positive), old_lhs, old_rhs); ule_pp const new_ule(to_lbool(is_positive), lhs, rhs); LOG("Simplify: " << old_ule << " --> " << new_ule); } #endif } std::ostream& ule_constraint::display(std::ostream& out, lbool status, pdd const& lhs, pdd const& rhs) { out << lhs; if (rhs.is_zero() && status == l_true) out << " == "; else if (rhs.is_zero() && status == l_false) out << " != "; else if (status == l_true) out << " <= "; else if (status == l_false) out << " > "; else out << " <=/> "; return out << rhs; } std::ostream& ule_constraint::display(std::ostream& out, lbool status) const { return display(out, status, m_lhs, m_rhs); } std::ostream& ule_constraint::display(std::ostream& out) const { return out << m_lhs << (is_eq() ? " == " : " <= ") << m_rhs; } void ule_constraint::narrow(solver& s, bool is_positive, bool first) { auto p = s.subst(lhs()); auto q = s.subst(rhs()); signed_constraint sc(this, is_positive); LOG_H3("Narrowing " << sc); LOG_V("Assignment: " << assignments_pp(s)); LOG_V("Substituted LHS: " << lhs() << " := " << p); LOG_V("Substituted RHS: " << rhs() << " := " << q); if (is_always_false(is_positive, p, q)) { s.set_conflict(sc); return; } if (p.is_val() && q.is_val()) { SASSERT(!is_positive || p.val() <= q.val()); SASSERT(is_positive || p.val() > q.val()); return; } s.m_viable.intersect(p, q, sc); } bool ule_constraint::is_always_false(bool is_positive, pdd const& lhs, pdd const& rhs) { // NOTE: don't assume simplifications here because we also call this on partially substituted constraints if (is_positive) { // lhs <= rhs if (rhs.is_zero()) return lhs.is_never_zero(); // p <= 0 implies p == 0 return lhs.is_val() && rhs.is_val() && lhs.val() > rhs.val(); } else { // lhs > rhs if (lhs.is_zero()) return true; // 0 > ... is always false if (lhs == rhs) return true; // p > p if (rhs.is_max()) return true; // p > -1 if (lhs.is_one() && rhs.is_never_zero()) return true; // 1 > p implies p == 0 return lhs.is_val() && rhs.is_val() && lhs.val() <= rhs.val(); } } bool ule_constraint::is_always_false(bool is_positive) const { return is_always_false(is_positive, lhs(), rhs()); } bool ule_constraint::is_currently_false(solver& s, bool is_positive) const { auto p = s.subst(lhs()); auto q = s.subst(rhs()); return is_always_false(is_positive, p, q); } bool ule_constraint::is_currently_false(solver& s, assignment_t const& sub, bool is_positive) const { auto p = s.subst(sub, lhs()); auto q = s.subst(sub, rhs()); return is_always_false(is_positive, p, q); } inequality ule_constraint::as_inequality(bool is_positive) const { if (is_positive) return inequality(lhs(), rhs(), false, this); else return inequality(rhs(), lhs(), true, this); } unsigned ule_constraint::hash() const { return mk_mix(lhs().hash(), rhs().hash(), kind()); } bool ule_constraint::operator==(constraint const& other) const { return other.is_ule() && lhs() == other.to_ule().lhs() && rhs() == other.to_ule().rhs(); } void ule_constraint::add_to_univariate_solver(solver& s, univariate_solver& us, unsigned dep, bool is_positive) const { auto p_coeff = s.subst(lhs()).get_univariate_coefficients(); auto q_coeff = s.subst(rhs()).get_univariate_coefficients(); us.add_ule(p_coeff, q_coeff, !is_positive, dep); } }