/*++ Copyright (c) 2024 Microsoft Corporation Module Name: polynomial_factorization.cpp Abstract: Tests for polynomial factorization functionality in math/polynomial Author: Test Coverage Improvement Revision History: --*/ #include "math/polynomial/upolynomial.h" #include "math/polynomial/upolynomial_factorization.h" #include "util/rlimit.h" #include namespace polynomial { void test_factorization_basic() { std::cout << "test_factorization_basic\n"; reslimit rl; unsynch_mpq_manager nm; upolynomial::manager m(rl, nm); upolynomial::factors fs(m); // Test factorization of x^2 - 1 = (x-1)(x+1) upolynomial::scoped_numeral_vector p(m); // Create polynomial x^2 - 1: coefficients [c_0, c_1, c_2] = [-1, 0, 1] p.push_back(mpz(-1)); // constant term p.push_back(mpz(0)); // x coefficient p.push_back(mpz(1)); // x^2 coefficient m.factor(p, fs); // Should have 2 distinct factors: (x-1) and (x+1) VERIFY(fs.distinct_factors() == 2); // Reconstruct polynomial from factors upolynomial::scoped_numeral_vector result(m); fs.multiply(result); VERIFY(m.eq(p, result)); } void test_factorization_irreducible() { std::cout << "test_factorization_irreducible\n"; reslimit rl; unsynch_mpq_manager nm; upolynomial::manager m(rl, nm); upolynomial::factors fs(m); // Test irreducible polynomial x^2 + 1 (over rationals) upolynomial::scoped_numeral_vector p(m); // Create polynomial x^2 + 1: coefficients [1, 0, 1] p.push_back(mpz(1)); // constant term p.push_back(mpz(0)); // x coefficient p.push_back(mpz(1)); // x^2 coefficient m.factor(p, fs); // Should have 1 distinct factor (irreducible) VERIFY(fs.distinct_factors() == 1); // Reconstruct polynomial from factors upolynomial::scoped_numeral_vector result(m); fs.multiply(result); VERIFY(m.eq(p, result)); } void test_factorization_cubic() { std::cout << "test_factorization_cubic\n"; reslimit rl; unsynch_mpq_manager nm; upolynomial::manager m(rl, nm); upolynomial::factors fs(m); // Test factorization of x^3 - 6x^2 + 11x - 6 = (x-1)(x-2)(x-3) upolynomial::scoped_numeral_vector p(m); // Create polynomial x^3 - 6x^2 + 11x - 6: coefficients [-6, 11, -6, 1] p.push_back(mpz(-6)); // constant term p.push_back(mpz(11)); // x coefficient p.push_back(mpz(-6)); // x^2 coefficient p.push_back(mpz(1)); // x^3 coefficient m.factor(p, fs); // Should have 3 distinct factors: (x-1), (x-2), (x-3) VERIFY(fs.distinct_factors() == 3); // Reconstruct polynomial from factors upolynomial::scoped_numeral_vector result(m); fs.multiply(result); VERIFY(m.eq(p, result)); } void test_factorization_repeated_factors() { std::cout << "test_factorization_repeated_factors\n"; reslimit rl; unsynch_mpq_manager nm; upolynomial::manager m(rl, nm); upolynomial::factors fs(m); // Test factorization of (x-1)^3 = x^3 - 3x^2 + 3x - 1 upolynomial::scoped_numeral_vector p(m); // Create polynomial x^3 - 3x^2 + 3x - 1: coefficients [-1, 3, -3, 1] p.push_back(mpz(-1)); // constant term p.push_back(mpz(3)); // x coefficient p.push_back(mpz(-3)); // x^2 coefficient p.push_back(mpz(1)); // x^3 coefficient m.factor(p, fs); // Should have 1 distinct factor with multiplicity 3 VERIFY(fs.distinct_factors() == 1); // Check that factor has degree 3 (meaning (x-1)^3) unsigned total_degree = 0; for (unsigned i = 0; i < fs.distinct_factors(); i++) { total_degree += m.degree(fs[i]) * fs.get_degree(i); } VERIFY(total_degree == 3); } void test_factorization_constant() { std::cout << "test_factorization_constant\n"; reslimit rl; unsynch_mpq_manager nm; upolynomial::manager m(rl, nm); upolynomial::factors fs(m); // Test constant polynomial 5 upolynomial::scoped_numeral_vector p(m); p.push_back(mpz(5)); // constant term m.factor(p, fs); // Should have 0 distinct factors (constant) VERIFY(fs.distinct_factors() == 0); // The constant should be 5 VERIFY(nm.eq(fs.get_constant(), mpz(5))); } void test_factorization_zero() { std::cout << "test_factorization_zero\n"; reslimit rl; unsynch_mpq_manager nm; upolynomial::manager m(rl, nm); upolynomial::factors fs(m); // Test zero polynomial upolynomial::scoped_numeral_vector p(m); p.push_back(mpz(0)); // just zero m.factor(p, fs); // Zero polynomial should have 0 factors or be detected as zero VERIFY(fs.distinct_factors() == 0 || m.is_zero(const_cast(fs[0]))); } void test_factorization_gcd() { std::cout << "test_factorization_gcd\n"; reslimit rl; unsynch_mpq_manager nm; upolynomial::manager m(rl, nm); // Test GCD computation with polynomials upolynomial::scoped_numeral_vector p1(m), p2(m), gcd_result(m); // p1 = x^2 - 1 = (x-1)(x+1) p1.push_back(mpz(-1)); // constant p1.push_back(mpz(0)); // x p1.push_back(mpz(1)); // x^2 // p2 = x^3 - 1 = (x-1)(x^2+x+1) p2.push_back(mpz(-1)); // constant p2.push_back(mpz(0)); // x p2.push_back(mpz(0)); // x^2 p2.push_back(mpz(1)); // x^3 m.gcd(p1, p2, gcd_result); // GCD should be (x-1), which is [-1, 1] in coefficient form VERIFY(m.degree(gcd_result) == 1); VERIFY(nm.eq(gcd_result[0], mpz(-1))); VERIFY(nm.eq(gcd_result[1], mpz(1))); } void test_polynomial_factorization() { test_factorization_basic(); test_factorization_irreducible(); test_factorization_cubic(); test_factorization_repeated_factors(); test_factorization_constant(); test_factorization_zero(); test_factorization_gcd(); } } // namespace polynomial void tst_polynomial_factorization() { polynomial::test_polynomial_factorization(); }