3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00

Merge branch 'unstable' of https://git01.codeplex.com/z3 into unstable

This commit is contained in:
Nikolaj Bjorner 2013-02-12 15:44:32 -08:00
commit ff03da9e67
15 changed files with 1183 additions and 15 deletions

View file

@ -78,7 +78,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_mk_uninterpreted_sort(c, name);
RESET_ERROR_CODE();
sort* ty = mk_c(c)->m().mk_sort(to_symbol(name));
sort* ty = mk_c(c)->m().mk_uninterpreted_sort(to_symbol(name));
mk_c(c)->save_ast_trail(ty);
RETURN_Z3(of_sort(ty));
Z3_CATCH_RETURN(0);
@ -620,7 +620,7 @@ extern "C" {
CHECK_VALID_AST(t, Z3_UNKNOWN_SORT);
family_id fid = to_sort(t)->get_family_id();
decl_kind k = to_sort(t)->get_decl_kind();
if (fid == null_family_id) {
if (mk_c(c)->m().is_uninterp(to_sort(t))) {
return Z3_UNINTERPRETED_SORT;
}
else if (fid == mk_c(c)->m().get_basic_family_id() && k == BOOL_SORT) {

View file

@ -1816,6 +1816,12 @@ sort * ast_manager::mk_sort(symbol const & name, sort_info * info) {
return register_node(new_node);
}
sort * ast_manager::mk_uninterpreted_sort(symbol const & name, unsigned num_parameters, parameter const * parameters) {
user_sort_plugin * plugin = get_user_sort_plugin();
decl_kind kind = plugin->register_name(name);
return plugin->mk_sort(kind, num_parameters, parameters);
}
func_decl * ast_manager::mk_func_decl(symbol const & name, unsigned arity, sort * const * domain, sort * range,
bool assoc, bool comm, bool inj) {
func_decl_info info(null_family_id, null_decl_kind);
@ -2063,7 +2069,7 @@ sort * ast_manager::mk_fresh_sort(char const * prefix) {
string_buffer<32> buffer;
buffer << prefix << "!" << m_fresh_id;
m_fresh_id++;
return mk_sort(symbol(buffer.c_str()));
return mk_uninterpreted_sort(symbol(buffer.c_str()));
}
symbol ast_manager::mk_fresh_var_name(char const * prefix) {

View file

@ -1622,11 +1622,13 @@ private:
sort * mk_sort(symbol const & name, sort_info * info);
public:
sort * mk_sort(symbol const & name) { return mk_sort(name, 0); }
sort * mk_uninterpreted_sort(symbol const & name, unsigned num_parameters, parameter const * parameters);
sort * mk_uninterpreted_sort(symbol const & name) { return mk_uninterpreted_sort(name, 0, 0); }
sort * mk_sort(symbol const & name, sort_info const & info) {
if (info.get_family_id() == null_family_id) {
return mk_sort(name, 0);
return mk_uninterpreted_sort(name);
}
else {
return mk_sort(name, &const_cast<sort_info &>(info));

View file

@ -111,7 +111,10 @@ void ast_translation::mk_sort(sort * s, frame & fr) {
sort_info * si = s->get_info();
sort * new_s;
if (si == 0) {
new_s = m_to_manager.mk_sort(s->get_name());
// TODO: investigate: this branch is probably unreachable.
// It became unreachable after we started using mk_uninterpreted_sort for creating uninterpreted sorts,
// and mk_uninterpreted_sort actually creates a user_sort.
new_s = m_to_manager.mk_uninterpreted_sort(s->get_name());
SASSERT(m_result_stack.size() == fr.m_rpos);
}
else {

View file

@ -117,8 +117,8 @@ void seq_decl_plugin::init() {
if(m_init) return;
ast_manager& m = *m_manager;
m_init = true;
sort* A = m.mk_sort(symbol((unsigned)0));
sort* B = m.mk_sort(symbol((unsigned)1));
sort* A = m.mk_uninterpreted_sort(symbol((unsigned)0));
sort* B = m.mk_uninterpreted_sort(symbol((unsigned)1));
parameter paramA(A);
sort* seqA = m.mk_sort(m_family_id, SEQ_SORT, 1, &paramA);
sort* reA = m.mk_sort(m_family_id, RE_SORT, 1, &paramA);

View file

@ -303,12 +303,10 @@ sort * psort_user_decl::instantiate(pdecl_manager & m, unsigned n, sort * const
if (r)
return r;
if (m_def == 0) {
user_sort_plugin * plugin = m.m().get_user_sort_plugin();
buffer<parameter> ps;
for (unsigned i = 0; i < n; i++)
ps.push_back(parameter(s[i]));
decl_kind kind = plugin->register_name(m_name);
r = plugin->mk_sort(kind, ps.size(), ps.c_ptr());
r = m.m().mk_uninterpreted_sort(m_name, ps.size(), ps.c_ptr());
}
else {
r = m_def->instantiate(m, s);

View file

@ -0,0 +1,782 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
hilbert_basis.cpp
Abstract:
Basic Hilbert Basis computation.
Author:
Nikolaj Bjorner (nbjorner) 2013-02-09.
Revision History:
--*/
#include "hilbert_basis.h"
#include "heap.h"
#include "map.h"
typedef u_map<unsigned> offset_refs_t;
template<typename Value>
class rational_map : public map<rational, Value, rational::hash_proc, rational::eq_proc> {};
class rational_lt {
vector<rational> & m_values;
public:
rational_lt(vector<rational> & values):
m_values(values) {
}
bool operator()(int v1, int v2) const {
return m_values[v1] < m_values[v2];
}
};
class hilbert_basis::rational_heap {
vector<numeral> m_u2r; // [index |-> weight]
rational_map<unsigned> m_r2u; // [weight |-> index]
rational_lt m_lt; // less_than on indices
heap<rational_lt> m_heap; // binary heap over weights
public:
rational_heap(): m_lt(m_u2r), m_heap(10, m_lt) {}
vector<numeral>& u2r() { return m_u2r; }
void insert(unsigned v) {
m_heap.insert(v);
}
void reset() {
m_u2r.reset();
m_r2u.reset();
m_heap.reset();
}
bool is_declared(numeral const& r, unsigned& val) const {
return m_r2u.find(r, val);
}
unsigned declare(numeral const& r) {
SASSERT(!m_r2u.contains(r));
unsigned val = m_u2r.size();
m_u2r.push_back(r);
m_r2u.insert(r, val);
m_heap.set_bounds(val+1);
return val;
}
void find_le(unsigned val, int_vector & result) {
m_heap.find_le(val, result);
}
void find_le(numeral const& r, int_vector& result) {
find_le(m_r2u.find(r), result);
}
};
class hilbert_basis::weight_map {
rational_heap m_heap;
vector<unsigned_vector> m_offsets; // [index |-> offset-list]
int_vector m_le; // recycled set of indices with lesser weights
unsigned get_value(numeral const& w) {
unsigned val;
if (!m_heap.is_declared(w, val)) {
val = m_heap.declare(w);
SASSERT(val == m_offsets.size());
if (w.is_nonneg()) {
m_heap.insert(val);
}
m_offsets.push_back(unsigned_vector());
}
return val;
}
public:
weight_map() {}
void insert(offset_t idx, numeral const& w) {
unsigned val = get_value(w);
m_offsets[val].push_back(idx.m_offset);
}
void remove(offset_t idx, numeral const& w) {
unsigned val = get_value(w);
m_offsets[val].erase(idx.m_offset);
}
void reset() {
m_offsets.reset();
m_heap.reset();
m_le.reset();
}
bool init_find(offset_refs_t& refs, numeral const& w, offset_t idx, offset_t& found_idx, unsigned& cost) {
//std::cout << "init find: " << w << "\n";
m_le.reset();
unsigned val = get_value(w);
// for positive values, the weights should be less or equal.
// for non-positive values, the weights have to be the same.
if (w.is_pos()) {
m_heap.find_le(val, m_le);
}
else {
m_le.push_back(val);
}
bool found = false;
for (unsigned i = 0; i < m_le.size(); ++i) {
if (m_heap.u2r()[m_le[i]].is_zero() && w.is_pos()) {
continue;
}
//std::cout << "insert init find: " << m_weights[m_le[i]] << "\n";
unsigned_vector const& offsets = m_offsets[m_le[i]];
for (unsigned j = 0; j < offsets.size(); ++j) {
unsigned offs = offsets[j];
++cost;
if (offs != idx.m_offset) {
refs.insert(offs, 0);
found_idx = offset_t(offs);
found = true;
}
}
}
return found;
}
bool update_find(offset_refs_t& refs, unsigned round, numeral const& w,
offset_t idx, offset_t& found_idx, unsigned& cost) {
//std::cout << "update find: " << w << "\n";
m_le.reset();
m_heap.find_le(w, m_le);
bool found = false;
unsigned vl;
for (unsigned i = 0; i < m_le.size(); ++i) {
//std::cout << "insert update find: " << m_weights[m_le[i]] << "\n";
unsigned_vector const& offsets = m_offsets[m_le[i]];
for (unsigned j = 0; j < offsets.size(); ++j) {
unsigned offs = offsets[j];
++cost;
if (offs != idx.m_offset && refs.find(offs, vl) && vl == round) {
refs.insert(offs, round + 1);
found_idx = offset_t(offs);
found = true;
}
}
}
return found;
}
};
class hilbert_basis::index {
// for each index, a heap of weights.
// for each weight a list of offsets
struct stats {
unsigned m_num_comparisons;
unsigned m_num_find;
unsigned m_num_insert;
stats() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
};
ptr_vector<weight_map> m_values;
weight_map m_weight;
offset_refs_t m_refs;
stats m_stats;
public:
~index() {
for (unsigned i = 0; i < m_values.size(); ++i) {
dealloc(m_values[i]);
}
}
void init(unsigned num_vars) {
if (m_values.empty()) {
for (unsigned i = 0; i < num_vars; ++i) {
m_values.push_back(alloc(weight_map));
}
}
SASSERT(m_values.size() == num_vars);
}
void insert(offset_t idx, values vs, numeral const& weight) {
++m_stats.m_num_insert;
for (unsigned i = 0; i < m_values.size(); ++i) {
m_values[i]->insert(idx, vs[i]);
}
m_weight.insert(idx, weight);
}
void remove(offset_t idx, values vs, numeral const& weight) {
for (unsigned i = 0; i < m_values.size(); ++i) {
m_values[i]->remove(idx, vs[i]);
}
m_weight.remove(idx, weight);
}
bool find(values vs, numeral const& weight, offset_t idx, offset_t& found_idx) {
++m_stats.m_num_find;
bool found = m_weight.init_find(m_refs, weight, idx, found_idx, m_stats.m_num_comparisons);
for (unsigned i = 0; found && i < m_values.size(); ++i) {
found = m_values[i]->update_find(m_refs, i, vs[i], idx, found_idx, m_stats.m_num_comparisons);
}
m_refs.reset();
return found;
}
void reset() {
for (unsigned i = 0; i < m_values.size(); ++i) {
m_values[i]->reset();
}
m_weight.reset();
m_refs.reset();
}
void collect_statistics(statistics& st) const {
st.update("hb.index.num_comparisons", m_stats.m_num_comparisons);
st.update("hb.index.num_find", m_stats.m_num_find);
st.update("hb.index.num_insert", m_stats.m_num_insert);
}
void reset_statistics() {
m_stats.reset();
}
#if 0
// remains of a simpler index strucure:
if (eval(idx).is_zero()) {
for (unsigned i = 0; i < m_zero.size(); ++i) {
if (is_subsumed(idx, m_zero[i])) {
++m_stats.m_num_subsumptions;
return true;
}
}
return false;
}
for (unsigned i = 0; i < m_active.size(); ++i) {
if (is_subsumed(idx, m_active[i])) {
++m_stats.m_num_subsumptions;
return true;
}
}
passive::iterator it = m_passive->begin();
passive::iterator end = m_passive->end();
for (; it != end; ++it) {
if (is_subsumed(idx, *it)) {
++m_stats.m_num_subsumptions;
return true;
}
}
#endif
};
/**
\brief priority queue for passive list.
*/
class hilbert_basis::passive {
hilbert_basis& hb;
svector<offset_t> m_passive;
vector<numeral> m_weights;
unsigned_vector m_free_list;
rational_lt m_lt; // less_than on indices
heap<rational_lt> m_heap; // binary heap over weights
numeral get_weight(offset_t idx) {
numeral w(0);
unsigned nv = hb.get_num_vars();
for (unsigned i = 0; i < nv; ++i) {
w += hb.vec(idx)[i];
}
return w;
}
public:
passive(hilbert_basis& hb):
hb(hb) ,
m_lt(m_weights),
m_heap(10, m_lt)
{}
void reset() {
m_heap.reset();
m_free_list.reset();
m_weights.reset();
m_passive.reset();
}
bool empty() const {
return m_heap.empty();
}
offset_t pop() {
SASSERT(!empty());
unsigned val = static_cast<unsigned>(m_heap.erase_min());
offset_t result = m_passive[val];
m_free_list.push_back(val);
m_passive[val] = mk_invalid_offset();
return result;
}
void insert(offset_t idx) {
unsigned v;
if (m_free_list.empty()) {
v = m_passive.size();
m_passive.push_back(idx);
m_weights.push_back(get_weight(idx));
m_heap.set_bounds(v+1);
}
else {
v = m_free_list.back();
m_free_list.pop_back();
m_passive[v] = idx;
m_weights[v] = get_weight(idx);
}
m_heap.insert(v);
}
class iterator {
passive& p;
unsigned m_idx;
void fwd() {
while (m_idx < p.m_passive.size() &&
is_invalid_offset(p.m_passive[m_idx])) {
++m_idx;
}
}
public:
iterator(passive& p, unsigned i): p(p), m_idx(i) { fwd(); }
offset_t operator*() const { return p.m_passive[m_idx]; }
iterator& operator++() { ++m_idx; fwd(); return *this; }
iterator operator++(int) { iterator tmp = *this; ++*this; return tmp; }
bool operator==(iterator const& it) const {return m_idx == it.m_idx; }
bool operator!=(iterator const& it) const {return m_idx != it.m_idx; }
};
iterator begin() {
return iterator(*this, 0);
}
iterator end() {
return iterator(*this, m_passive.size());
}
};
hilbert_basis::hilbert_basis():
m_cancel(false)
{
m_index = alloc(index);
m_passive = alloc(passive, *this);
}
hilbert_basis::~hilbert_basis() {
dealloc(m_index);
dealloc(m_passive);
}
hilbert_basis::offset_t hilbert_basis::mk_invalid_offset() {
return offset_t(UINT_MAX);
}
bool hilbert_basis::is_invalid_offset(offset_t offs) {
return offs.m_offset == UINT_MAX;
}
void hilbert_basis::reset() {
m_ineqs.reset();
m_basis.reset();
m_store.reset();
m_free_list.reset();
m_eval.reset();
m_active.reset();
m_passive->reset();
m_zero.reset();
m_index->reset();
m_cancel = false;
}
void hilbert_basis::collect_statistics(statistics& st) const {
st.update("hb.num_subsumptions", m_stats.m_num_subsumptions);
st.update("hb.num_resolves", m_stats.m_num_resolves);
m_index->collect_statistics(st);
}
void hilbert_basis::reset_statistics() {
m_stats.reset();
m_index->reset_statistics();
}
void hilbert_basis::add_ge(num_vector const& v) {
SASSERT(m_ineqs.empty() || v.size() == get_num_vars());
if (m_ineqs.empty()) {
m_index->init(v.size());
}
m_ineqs.push_back(v);
}
void hilbert_basis::add_le(num_vector const& v) {
num_vector w(v);
for (unsigned i = 0; i < w.size(); ++i) {
w[i].neg();
}
add_ge(w);
}
void hilbert_basis::add_eq(num_vector const& v) {
add_le(v);
add_ge(v);
}
unsigned hilbert_basis::get_num_vars() const {
if (m_ineqs.empty()) {
return 0;
}
else {
return m_ineqs.back().size();
}
}
hilbert_basis::values hilbert_basis::vec(offset_t offs) const {
return m_store.c_ptr() + offs.m_offset;
}
hilbert_basis::values_ref hilbert_basis::vec(offset_t offs) {
return m_store.c_ptr() + offs.m_offset;
}
void hilbert_basis::init_basis() {
m_basis.reset();
m_store.reset();
m_eval.reset();
m_free_list.reset();
unsigned num_vars = get_num_vars();
for (unsigned i = 0; i < num_vars; ++i) {
num_vector w(num_vars, numeral(0));
w[i] = numeral(1);
offset_t idx = alloc_vector();
set_value(idx, w.c_ptr());
m_basis.push_back(idx);
}
}
lbool hilbert_basis::saturate() {
init_basis();
for (unsigned i = 0; !m_cancel && i < m_ineqs.size(); ++i) {
lbool r = saturate(m_ineqs[i]);
if (r != l_true) {
return r;
}
}
if (m_cancel) {
return l_undef;
}
return l_true;
}
lbool hilbert_basis::saturate(num_vector const& ineq) {
m_active.reset();
m_passive->reset();
m_zero.reset();
m_index->reset();
TRACE("hilbert_basis", display_ineq(tout, ineq););
bool has_non_negative = false;
iterator it = begin();
for (; it != end(); ++it) {
numeral n = eval(vec(*it), ineq);
eval(*it) = n;
add_goal(*it);
if (n.is_nonneg()) {
has_non_negative = true;
}
}
TRACE("hilbert_basis", display(tout););
if (!has_non_negative) {
return l_false;
}
// resolve passive into active
while (!m_passive->empty()) {
if (m_cancel) {
return l_undef;
}
offset_t idx = m_passive->pop();
TRACE("hilbert_basis", display(tout););
if (is_subsumed(idx)) {
recycle(idx);
continue;
}
for (unsigned i = 0; !m_cancel && i < m_active.size(); ++i) {
if (get_sign(idx) != get_sign(m_active[i])) {
offset_t j = alloc_vector();
resolve(idx, m_active[i], j);
add_goal(j);
}
}
m_active.push_back(idx);
}
// Move positive from active and zeros to new basis.
m_basis.reset();
m_basis.append(m_zero);
for (unsigned i = 0; i < m_active.size(); ++i) {
offset_t idx = m_active[i];
if (eval(idx).is_pos()) {
m_basis.push_back(idx);
}
else {
m_free_list.push_back(idx);
}
}
m_active.reset();
m_passive->reset();
m_zero.reset();
TRACE("hilbert_basis", display(tout););
return l_true;
}
void hilbert_basis::set_value(offset_t offs, values v) {
unsigned nv = get_num_vars();
for (unsigned i = 0; i < nv; ++i) {
m_store[offs.m_offset+i] = v[i];
}
}
void hilbert_basis::recycle(offset_t idx) {
m_index->remove(idx, vec(idx), eval(idx));
m_free_list.push_back(idx);
}
void hilbert_basis::resolve(offset_t i, offset_t j, offset_t r) {
++m_stats.m_num_resolves;
values v = vec(i);
values w = vec(j);
values_ref u = vec(r);
unsigned nv = get_num_vars();
for (unsigned k = 0; k < nv; ++k) {
u[k] = v[k] + w[k];
}
eval(r) = eval(i) + eval(j);
TRACE("hilbert_basis_verbose",
display(tout, i);
display(tout, j);
display(tout, r);
);
}
hilbert_basis::offset_t hilbert_basis::alloc_vector() {
if (m_free_list.empty()) {
unsigned num_vars = get_num_vars();
unsigned idx = m_store.size();
m_store.resize(idx + get_num_vars());
m_eval.push_back(numeral(0));
return offset_t(idx);
}
else {
offset_t result = m_free_list.back();
m_free_list.pop_back();
return result;
}
}
void hilbert_basis::add_goal(offset_t idx) {
m_index->insert(idx, vec(idx), eval(idx));
if (eval(idx).is_zero()) {
if (!is_subsumed(idx)) {
m_zero.push_back(idx);
}
}
else {
m_passive->insert(idx);
}
}
bool hilbert_basis::is_subsumed(offset_t idx) {
offset_t found_idx;
if (m_index->find(vec(idx), eval(idx), idx, found_idx)) {
TRACE("hilbert_basis",
display(tout, idx);
tout << " <= \n";
display(tout, found_idx);
tout << "\n";);
++m_stats.m_num_subsumptions;
return true;
}
return false;
}
/**
Vector v is subsumed by vector w if
v[i] >= w[i] for each index i.
a*v >= a*w for the evaluation of vectors with respect to a.
a*v < 0 => a*v = a*w
Justification:
let u := v - w, then
u[i] >= 0 for each index i
a*u = a*(v-w) >= 0
So v = u + w, where a*u >= 0, a*w >= 0.
If a*v >= a*w >= 0 then v and w are linear
solutions of e_i, and also v-w is a solution.
If a*v = a*w < 0, then a*(v-w) = 0, so v can be obtained from w + (v - w).
*/
bool hilbert_basis::is_subsumed(offset_t i, offset_t j) const {
values v = vec(i);
values w = vec(j);
numeral const& n = eval(i);
numeral const& m = eval(j);
bool r =
i.m_offset != j.m_offset &&
n >= m && (!m.is_neg() || n == m) &&
is_geq(v, w);
CTRACE("hilbert_basis", r,
display(tout, i);
tout << " <= \n";
display(tout, j);
tout << "\n";);
return r;
}
bool hilbert_basis::is_geq(values v, values w) const {
unsigned nv = get_num_vars();
for (unsigned i = 0; i < nv; ++i) {
if (v[i] < w[i]) {
return false;
}
}
return true;
}
hilbert_basis::sign_t hilbert_basis::get_sign(offset_t idx) const {
if (eval(idx).is_pos()) {
return pos;
}
if (eval(idx).is_neg()) {
return neg;
}
return zero;
}
hilbert_basis::numeral hilbert_basis::eval(values val, num_vector const& ineq) const {
numeral result(0);
unsigned num_vars = get_num_vars();
for (unsigned i = 0; i < num_vars; ++i) {
result += val[i]*ineq[i];
}
return result;
}
void hilbert_basis::display(std::ostream& out) const {
unsigned nv = get_num_vars();
out << "inequalities:\n";
for (unsigned i = 0; i < m_ineqs.size(); ++i) {
display_ineq(out, m_ineqs[i]);
}
if (!m_basis.empty()) {
out << "basis:\n";
for (iterator it = begin(); it != end(); ++it) {
display(out, *it);
}
}
if (!m_active.empty()) {
out << "active:\n";
for (unsigned i = 0; i < m_active.size(); ++i) {
display(out, m_active[i]);
}
}
if (!m_passive->empty()) {
passive::iterator it = m_passive->begin();
passive::iterator end = m_passive->end();
out << "passive:\n";
for (; it != end; ++it) {
display(out, *it);
}
}
if (!m_zero.empty()) {
out << "zero:\n";
for (unsigned i = 0; i < m_zero.size(); ++i) {
display(out, m_zero[i]);
}
}
}
void hilbert_basis::display(std::ostream& out, offset_t o) const {
display(out, vec(o));
out << " -> " << eval(o) << "\n";
}
void hilbert_basis::display(std::ostream& out, values v) const {
unsigned nv = get_num_vars();
for (unsigned j = 0; j < nv; ++j) {
out << v[j] << " ";
}
}
void hilbert_basis::display_ineq(std::ostream& out, num_vector const& v) const {
unsigned nv = get_num_vars();
for (unsigned j = 0; j < nv; ++j) {
if (!v[j].is_zero()) {
if (j > 0) {
if (v[j].is_pos()) {
out << " + ";
}
else {
out << " - ";
}
}
else if (j == 0 && v[0].is_neg()) {
out << "-";
}
if (!v[j].is_one() && !v[j].is_minus_one()) {
out << abs(v[j]) << "*";
}
out << "x" << j;
}
}
out << " >= 0\n";
}
void hilbert_sl_basis::add_le(num_vector const& v, numeral bound) {
num_vector w;
w.push_back(-bound);
w.append(v);
m_basis.add_le(w);
}
void hilbert_isl_basis::add_le(num_vector const& v, numeral bound) {
unsigned sz = v.size();
num_vector w;
for (unsigned i = 0; i < sz; ++i) {
w.push_back(v[i]);
w.push_back(-v[i]);
}
w.push_back(-bound);
w.push_back(bound);
m_basis.add_le(w);
}

177
src/muz_qe/hilbert_basis.h Normal file
View file

@ -0,0 +1,177 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
hilbert_basis.h
Abstract:
Basic Hilbert Basis computation.
hilbert_basis computes a Hilbert basis for linear
homogeneous inequalities over naturals.
hilbert_sl_basis computes a semi-linear set over naturals.
hilbert_isl_basis computes semi-linear sets over integers.
Author:
Nikolaj Bjorner (nbjorner) 2013-02-09.
Revision History:
--*/
#ifndef _HILBERT_BASIS_H_
#define _HILBERT_BASIS_H_
#include "rational.h"
#include "lbool.h"
#include "statistics.h"
class hilbert_basis {
public:
typedef rational numeral;
typedef vector<numeral> num_vector;
private:
class rational_heap;
class index;
class passive;
class weight_map;
struct offset_t {
unsigned m_offset;
offset_t(unsigned o) : m_offset(o) {}
offset_t(): m_offset(0) {}
bool operator<(offset_t const& other) const {
return m_offset < other.m_offset;
}
};
enum sign_t { pos, neg, zero };
struct stats {
unsigned m_num_subsumptions;
unsigned m_num_resolves;
stats() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
};
typedef numeral const* values;
typedef numeral* values_ref;
vector<num_vector> m_ineqs;
num_vector m_store;
num_vector m_eval;
svector<offset_t> m_basis;
svector<offset_t> m_free_list;
svector<offset_t> m_active;
svector<offset_t> m_zero;
volatile bool m_cancel;
stats m_stats;
index* m_index;
passive* m_passive;
class iterator {
hilbert_basis const& hb;
unsigned m_idx;
public:
iterator(hilbert_basis const& hb, unsigned idx): hb(hb), m_idx(idx) {}
offset_t operator*() const { return hb.m_basis[m_idx]; }
iterator& operator++() { ++m_idx; return *this; }
iterator operator++(int) { iterator tmp = *this; ++*this; return tmp; }
bool operator==(iterator const& it) const {return m_idx == it.m_idx; }
bool operator!=(iterator const& it) const {return m_idx != it.m_idx; }
};
static offset_t mk_invalid_offset();
static bool is_invalid_offset(offset_t offs);
lbool saturate(num_vector const& ineq);
void init_basis();
unsigned get_num_vars() const;
numeral eval(values val, num_vector const& ineq) const;
bool is_subsumed(offset_t idx);
bool is_subsumed(offset_t i, offset_t j) const;
bool is_geq(values v, values w) const;
void recycle(offset_t idx);
sign_t hilbert_basis::get_sign(offset_t idx) const;
void add_goal(offset_t idx);
offset_t alloc_vector();
void resolve(offset_t i, offset_t j, offset_t r);
iterator begin() const { return iterator(*this,0); }
iterator end() const { return iterator(*this, m_basis.size()); }
values vec(offset_t offs) const;
values_ref vec(offset_t offs);
numeral const& eval(offset_t o) const {
return m_eval[o.m_offset/get_num_vars()];
}
numeral& eval(offset_t o) {
return m_eval[o.m_offset/get_num_vars()];
}
void set_value(offset_t offs, values v);
void display(std::ostream& out, offset_t o) const;
void display(std::ostream& out, values v) const;
void display_ineq(std::ostream& out, num_vector const& v) const;
public:
hilbert_basis();
~hilbert_basis();
void reset();
// add inequality v*x <= 0
// add inequality v*x >= 0
// add equality v*x = 0
void add_le(num_vector const& v);
void add_ge(num_vector const& v);
void add_eq(num_vector const& v);
lbool saturate();
void set_cancel(bool f) { m_cancel = f; }
void display(std::ostream& out) const;
void collect_statistics(statistics& st) const;
void reset_statistics();
};
class hilbert_sl_basis {
public:
typedef rational numeral;
typedef vector<numeral> num_vector;
private:
hilbert_basis m_basis;
public:
hilbert_sl_basis() {}
void reset() { m_basis.reset(); }
// add inequality v*x >= bound, x ranges over naturals
void add_le(num_vector const& v, numeral bound);
lbool saturate() { return m_basis.saturate(); }
void set_cancel(bool f) { m_basis.set_cancel(f); }
void display(std::ostream& out) const { m_basis.display(out); }
void collect_statistics(statistics& st) const { m_basis.collect_statistics(st); }
void reset_statistics() { m_basis.reset_statistics(); }
};
class hilbert_isl_basis {
public:
typedef rational numeral;
typedef vector<numeral> num_vector;
private:
hilbert_basis m_basis;
public:
hilbert_isl_basis() {}
void reset() { m_basis.reset(); }
// add inequality v*x >= bound, x ranges over integers
void add_le(num_vector const& v, numeral bound);
lbool saturate() { return m_basis.saturate(); }
void set_cancel(bool f) { m_basis.set_cancel(f); }
void display(std::ostream& out) const { m_basis.display(out); }
};
#endif

View file

@ -193,7 +193,7 @@ func_decl * theory::declare_func(symbol const & id, sort_ref_buffer & domain, so
sort * theory::declare_sort(symbol const & id) {
sort * decl = m_ast_manager.mk_sort(id);
sort * decl = m_ast_manager.mk_uninterpreted_sort(id);
m_symtable.insert(id, decl);
m_asts.push_back(decl);
return decl;

View file

@ -880,8 +880,8 @@ private:
if (name == symbol("QF_AX")) {
// Hack for supporting new QF_AX theory...
sort * index = m_manager.mk_sort(symbol("Index"));
sort * element = m_manager.mk_sort(symbol("Element"));
sort * index = m_manager.mk_uninterpreted_sort(symbol("Index"));
sort * element = m_manager.mk_uninterpreted_sort(symbol("Element"));
parameter params[2] = { parameter(index), parameter(element) };
sort * array = m_manager.mk_sort(m_array_fid, ARRAY_SORT, 2, params);
smtlib::symtable* table = m_benchmark.get_symtable();

View file

@ -62,7 +62,7 @@ static void tst1() {
// SASSERT(foo_foo_x2 == foo_foo_x);
}
void tst2() {
static void tst2() {
// ast_manager m;
// ast_vector<ast> m_nodes(m);

178
src/test/hilbert_basis.cpp Normal file
View file

@ -0,0 +1,178 @@
#include "hilbert_basis.h"
static vector<rational> vec(int i, int j, int k) {
vector<rational> nv;
nv.resize(3);
nv[0] = rational(i);
nv[1] = rational(j);
nv[2] = rational(k);
return nv;
}
static vector<rational> vec(int i, int j, int k, int l) {
vector<rational> nv;
nv.resize(4);
nv[0] = rational(i);
nv[1] = rational(j);
nv[2] = rational(k);
nv[3] = rational(l);
return nv;
}
static vector<rational> vec(int i, int j, int k, int l, int x, int y, int z) {
vector<rational> nv;
nv.resize(7);
nv[0] = rational(i);
nv[1] = rational(j);
nv[2] = rational(k);
nv[3] = rational(l);
nv[4] = rational(x);
nv[5] = rational(y);
nv[6] = rational(z);
return nv;
}
static void saturate_basis(hilbert_sl_basis& hb) {
lbool is_sat = hb.saturate();
switch(is_sat) {
case l_true:
std::cout << "sat\n";
hb.display(std::cout);
break;
case l_false:
std::cout << "unsat\n";
break;
case l_undef:
std::cout << "undef\n";
break;
}
statistics st;
hb.collect_statistics(st);
st.display(std::cout);
}
static void saturate_basis(hilbert_basis& hb) {
lbool is_sat = hb.saturate();
switch(is_sat) {
case l_true:
std::cout << "sat\n";
hb.display(std::cout);
break;
case l_false:
std::cout << "unsat\n";
break;
case l_undef:
std::cout << "undef\n";
break;
}
statistics st;
hb.collect_statistics(st);
st.display(std::cout);
}
// example 9, Ajili, Contenjean
// x + y - 2z = 0
// x - z = 0
// -y + z <= 0
static void tst1() {
hilbert_basis hb;
hb.add_eq(vec(1,1,-2));
hb.add_eq(vec(1,0,-1));
hb.add_le(vec(0,1,-1));
saturate_basis(hb);
}
// example 10, Ajili, Contenjean
// 23x - 12y - 9z <= 0
// x - 8y - 8z <= 0
void tst2() {
hilbert_basis hb;
hb.add_eq(vec(-23,12,9));
hb.add_eq(vec(-1,8,8));
saturate_basis(hb);
}
// example 6, Ajili, Contenjean
// 3x + 2y - z - 2u <= 0
static void tst3() {
hilbert_basis hb;
hb.add_le(vec(3,2,-1,-2));
saturate_basis(hb);
}
#define R rational
// Sigma_1, table 1, Ajili, Contejean
static void tst4() {
hilbert_sl_basis hb;
hb.add_le(vec( 0,-2, 1, 3, 2,-2, 3), R(3));
hb.add_le(vec(-1, 7, 0, 1, 3, 5,-4), R(2));
hb.add_le(vec( 0,-1, 1,-1,-1, 0, 0), R(2));
hb.add_le(vec(-2, 0, 1, 4, 0, 0,-2), R(1));
hb.add_le(vec(-3, 2,-2, 2,-4,-1, 0), R(8));
hb.add_le(vec( 3,-2, 2,-2, 4, 1, 0), R(3));
hb.add_le(vec( 1, 0, 0,-1, 0, 1, 0), R(4));
hb.add_le(vec( 1,-2, 0, 0, 0, 0, 0), R(2));
hb.add_le(vec( 1, 1, 0, 0,-1, 0, 1), R(4));
hb.add_le(vec( 1, 0, 0, 0,-1, 0, 0), R(9));
saturate_basis(hb);
}
// Sigma_2 table 1, Ajili, Contejean
static void tst5() {
hilbert_sl_basis hb;
hb.add_le(vec( 1, 2,-1, 1), R(3));
hb.add_le(vec( 2, 4, 1, 2), R(12));
hb.add_le(vec( 1, 4, 2, 1), R(9));
hb.add_le(vec( 1, 1, 0,-1), R(10));
hb.add_le(vec( 1, 1,-1, 0), R(6));
hb.add_le(vec( 1,-1, 0, 0), R(0));
hb.add_le(vec( 0, 0, 1,-1), R(2));
saturate_basis(hb);
}
// Sigma_3 table 1, Ajili, Contejean
static void tst6() {
hilbert_sl_basis hb;
hb.add_le(vec( 4, 3, 0), R(6));
hb.add_le(vec(-3,-4, 0), R(-1));
hb.add_le(vec( 4, 0,-3), R(3));
hb.add_le(vec(-3, 0, 4), R(7));
hb.add_le(vec( 4, 0,-3), R(23));
hb.add_le(vec( 0,-3, 4), R(11));
saturate_basis(hb);
}
// Sigma_4 table 1, Ajili, Contejean
static void tst7() {
hilbert_sl_basis hb;
hb.add_le(vec( 2, 1, 0, 1), R(6));
hb.add_le(vec( 1, 2, 1, 1), R(7));
hb.add_le(vec( 1, 3,-1, 2), R(8));
hb.add_le(vec( 1, 2,-9,-12), R(-11));
hb.add_le(vec( 0, 0,-1, 3), R(10));
saturate_basis(hb);
}
void tst_hilbert_basis() {
std::cout << "hilbert basis test\n";
tst1();
tst2();
tst3();
#if 0
tst4();
tst5();
tst6();
tst7();
#endif
}

View file

@ -207,6 +207,7 @@ int main(int argc, char ** argv) {
TST(horn_subsume_model_converter);
TST(model2expr);
TST(rcf);
TST(hilbert_basis);
}
void initialize_mam() {}

View file

@ -238,6 +238,24 @@ public:
m_values.swap(other.m_values);
m_value2indices.swap(other.m_value2indices);
}
/**
\brief return set of values in heap that are less or equal to val.
*/
void find_le(int val, int_vector& result) {
int_vector todo;
todo.push_back(1);
while (!todo.empty()) {
int index = todo.back();
todo.pop_back();
if (index < static_cast<int>(m_values.size()) &&
!less_than(val, m_values[index])) {
result.push_back(m_values[index]);
todo.push_back(left(index));
todo.push_back(right(index));
}
}
}
};

View file

@ -179,6 +179,9 @@ public:
}
vector & operator=(vector const & source) {
if (this == &source) {
return *this;
}
destroy();
if (source.m_data) {
copy_core(source);