3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

integrating duality

This commit is contained in:
Ken McMillan 2013-04-28 16:29:55 -07:00
parent 8488ca24d2
commit feb5360999
9 changed files with 473 additions and 5 deletions

View file

@ -171,6 +171,7 @@ namespace Duality {
const std::vector<expr> &assumptions,
const std::vector<expr> &theory
){}
virtual ~LogicSolver(){}
};
/** This solver uses iZ3. */
@ -205,8 +206,8 @@ namespace Duality {
}
#endif
iZ3LogicSolver(context c){
ctx = ictx = new interpolating_context(c);
iZ3LogicSolver(context &c){
ctx = ictx = &c;
slvr = islvr = new interpolating_solver(*ictx);
need_goals = false;
islvr->SetWeakInterpolants(true);
@ -221,7 +222,7 @@ namespace Duality {
#endif
}
~iZ3LogicSolver(){
delete ictx;
// delete ictx;
delete islvr;
}
};

View file

@ -590,7 +590,12 @@ namespace Duality {
if (res == l_false)
{
DecodeTree(root, interpolant->getChildren()[0], persist);
delete interpolant;
}
delete tree;
if(goals)
delete goals;
timer_stop("Solve");
return res;
@ -828,6 +833,7 @@ namespace Duality {
return res;
}
#ifdef Z3OPS
static Z3_subterm_truth *stt;
#endif

View file

@ -267,6 +267,8 @@ namespace Duality {
// print_profile(std::cout);
delete indset;
delete heuristic;
delete unwinding;
delete reporter;
return res;
}
@ -1284,6 +1286,8 @@ namespace Duality {
DerivationTree dt(this,unwinding,reporter,heuristic,FullExpand);
bool res = dt.Derive(unwinding,node,UseUnderapprox,true); // build full tree
if(!res) throw "Duality internal error in BuildFullCex";
if(cex.tree)
delete cex.tree;
cex.tree = dt.tree;
cex.root = dt.top;
}

View file

@ -161,6 +161,33 @@ expr context::make_quant(decl_kind op, const std::vector<expr> &bvs, const expr
return cook(result.get());
}
expr context::make_quant(decl_kind op, const std::vector<sort> &_sorts, const std::vector<symbol> &_names, const expr &body){
if(_sorts.size() == 0) return body;
std::vector< ::symbol> names;
std::vector< ::sort *> types;
std::vector< ::expr *> bound_asts;
unsigned num_bound = _sorts.size();
for (unsigned i = 0; i < num_bound; ++i) {
names.push_back(_names[i]);
types.push_back(to_sort(_sorts[i].raw()));
}
expr_ref result(m());
result = m().mk_quantifier(
op == Forall,
names.size(), &types[0], &names[0], to_expr(body.raw()),
0,
::symbol(),
::symbol(),
0, 0,
0, 0
);
return cook(result.get());
}
decl_kind func_decl::get_decl_kind() const {
return ctx().get_decl_kind(*this);
}
@ -453,6 +480,10 @@ expr context::make_quant(decl_kind op, const std::vector<expr> &bvs, const expr
for(unsigned i = 0; i < _interpolants.size(); i++)
linearized_interpolants[i] = expr(ctx(),_interpolants[i]);
// since iz3interpolant returns interpolants with one ref count, we decrement here
for(unsigned i = 0; i < _interpolants.size(); i++)
m().dec_ref(_interpolants[i]);
unlinearize_interpolants(0,assumptions,linearized_interpolants,interpolant);
interpolant->setTerm(ctx().bool_val(false));
}

View file

@ -234,6 +234,7 @@ namespace Duality {
expr make(decl_kind op, const expr &arg0, const expr &arg1, const expr &arg2);
expr make_quant(decl_kind op, const std::vector<expr> &bvs, const expr &body);
expr make_quant(decl_kind op, const std::vector<sort> &_sorts, const std::vector<symbol> &_names, const expr &body);
decl_kind get_decl_kind(const func_decl &t);
@ -771,7 +772,10 @@ namespace Duality {
solver(context & c);
solver(context & c, ::solver *s):object(c),the_model(c) { m_solver = s; }
solver(solver const & s):object(s), the_model(s.the_model) { m_solver = s.m_solver;}
~solver() { }
~solver() {
if(m_solver)
dealloc(m_solver);
}
operator ::solver*() const { return m_solver; }
solver & operator=(solver const & s) {
m_ctx = s.m_ctx;
@ -1202,6 +1206,11 @@ namespace Duality {
num = _num;
}
~TermTree(){
for(unsigned i = 0; i < children.size(); i++)
delete children[i];
}
private:
expr term;
std::vector<TermTree *> children;

View file

@ -1186,7 +1186,9 @@ namespace datalog {
m_tab->display_certificate(out);
return true;
case DUALITY_ENGINE:
return false;
ensure_duality();
m_duality->display_certificate(out);
return true;
default:
return false;
}

View file

@ -0,0 +1,333 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
duality_dl_interface.cpp
Abstract:
SMT2 interface for Duality
Author:
Krystof Hoder (t-khoder) 2011-9-22.
Modified by Ken McMIllan (kenmcmil) 2013-4-18.
Revision History:
--*/
#include "dl_cmds.h"
#include "dl_context.h"
#include "dl_mk_coi_filter.h"
#include "dl_mk_interp_tail_simplifier.h"
#include "dl_mk_subsumption_checker.h"
#include "dl_mk_rule_inliner.h"
#include "dl_rule.h"
#include "dl_rule_transformer.h"
#include "dl_mk_extract_quantifiers.h"
#include "smt2parser.h"
#include "duality_dl_interface.h"
#include "dl_rule_set.h"
#include "dl_mk_slice.h"
#include "dl_mk_unfold.h"
#include "dl_mk_coalesce.h"
#include "expr_abstract.h"
#include "model_smt2_pp.h"
#include "duality.h"
using namespace Duality;
namespace Duality {
enum DualityStatus {StatusModel, StatusRefutation, StatusUnknown, StatusNull};
class duality_data {
public:
context ctx;
RPFP::LogicSolver *ls;
RPFP *rpfp;
DualityStatus status;
std::vector<expr> clauses;
hash_map<RPFP::Edge *,int> map; // edges to clauses
Solver::Counterexample cex;
duality_data(ast_manager &_m) : ctx(_m,config(params_ref())) {
ls = 0;
rpfp = 0;
status = StatusNull;
}
~duality_data(){
if(rpfp)
dealloc(rpfp);
if(ls)
dealloc(ls);
if(cex.tree)
delete cex.tree;
}
};
dl_interface::dl_interface(datalog::context& dl_ctx) : m_ctx(dl_ctx)
{
_d = alloc(duality_data,dl_ctx.get_manager());
_d->ls = alloc(RPFP::iZ3LogicSolver,_d->ctx);
_d->rpfp = alloc(RPFP,_d->ls);
}
dl_interface::~dl_interface() {
dealloc(_d);
}
//
// Check if the new rules are weaker so that we can
// re-use existing context.
//
#if 0
void dl_interface::check_reset() {
// TODO
datalog::rule_ref_vector const& new_rules = m_ctx.get_rules().get_rules();
datalog::rule_ref_vector const& old_rules = m_old_rules.get_rules();
bool is_subsumed = !old_rules.empty();
for (unsigned i = 0; is_subsumed && i < new_rules.size(); ++i) {
is_subsumed = false;
for (unsigned j = 0; !is_subsumed && j < old_rules.size(); ++j) {
if (m_ctx.check_subsumes(*old_rules[j], *new_rules[i])) {
is_subsumed = true;
}
}
if (!is_subsumed) {
TRACE("pdr", new_rules[i]->display(m_ctx, tout << "Fresh rule "););
m_context->reset();
}
}
m_old_rules.reset();
m_old_rules.add_rules(new_rules.size(), new_rules.c_ptr());
}
#endif
lbool dl_interface::query(::expr * query) {
// TODO: you can only call this once!
// we restore the initial state in the datalog context
m_ctx.ensure_opened();
expr_ref_vector rules(m_ctx.get_manager());
svector< ::symbol> names;
m_ctx.get_rules_as_formulas(rules, names);
// get all the rules as clauses
std::vector<expr> &clauses = _d->clauses;
clauses.clear();
for (unsigned i = 0; i < rules.size(); ++i) {
expr e(_d->ctx,rules[i].get());
clauses.push_back(e);
}
// turn the query into a clause
expr q(_d->ctx,query);
std::vector<sort> b_sorts;
std::vector<symbol> b_names;
if (q.is_quantifier() && !q.is_quantifier_forall()) {
int bound = q.get_quantifier_num_bound();
for(int j = 0; j < bound; j++){
b_sorts.push_back(q.get_quantifier_bound_sort(j));
b_names.push_back(q.get_quantifier_bound_name(j));
}
q = q.arg(0);
}
expr qc = implies(q,_d->ctx.bool_val(false));
qc = _d->ctx.make_quant(Exists,b_sorts,b_names,qc);
clauses.push_back(qc);
// get the background axioms
unsigned num_asserts = m_ctx.get_num_assertions();
for (unsigned i = 0; i < num_asserts; ++i) {
expr e(_d->ctx,m_ctx.get_assertion(i));
_d->rpfp->AssertAxiom(e);
}
// creates 1-1 map between clauses and rpfp edges
_d->rpfp->FromClauses(clauses);
// populate the edge-to-clause map
for(unsigned i = 0; i < _d->rpfp->edges.size(); ++i)
_d->map[_d->rpfp->edges[i]] = i;
// create a solver object
Solver *rs = Solver::Create("duality", _d->rpfp);
// set its options
IF_VERBOSE(1, rs->SetOption("report","1"););
rs->SetOption("full_expand",m_ctx.get_params().full_expand() ? "1" : "0");
rs->SetOption("no_conj",m_ctx.get_params().no_conj() ? "1" : "0");
rs->SetOption("feasible_edges",m_ctx.get_params().feasible_edges() ? "1" : "0");
rs->SetOption("use_underapprox",m_ctx.get_params().use_underapprox() ? "1" : "0");
rs->SetOption("stratified_inlining",m_ctx.get_params().stratified_inlining() ? "1" : "0");
unsigned rb = m_ctx.get_params().recursion_bound();
if(rb != UINT_MAX){
std::ostringstream os; os << rb;
rs->SetOption("recursion_bound", os.str());
}
// Solve!
bool ans = rs->Solve();
// save the result and counterexample if there is one
_d->status = ans ? StatusModel : StatusRefutation;
_d->cex = rs->GetCounterexample();
dealloc(rs);
// true means the RPFP problem is SAT, so the query is UNSAT
return ans ? l_false : l_true;
}
expr_ref dl_interface::get_cover_delta(int level, ::func_decl* pred_orig) {
SASSERT(false);
return expr_ref(m_ctx.get_manager());
}
void dl_interface::add_cover(int level, ::func_decl* pred, ::expr* property) {
SASSERT(false);
}
unsigned dl_interface::get_num_levels(::func_decl* pred) {
SASSERT(false);
return 0;
}
void dl_interface::collect_statistics(::statistics& st) const {
}
void dl_interface::reset_statistics() {
}
static void print_proof(dl_interface *d, std::ostream& out, Solver::Counterexample &cex) {
context &ctx = d->dd()->ctx;
RPFP::Node &node = *cex.root;
RPFP::Edge &edge = *node.Outgoing;
// first, prove the children (that are actually used)
for(unsigned i = 0; i < edge.Children.size(); i++){
if(!cex.tree->Empty(edge.Children[i])){
Solver::Counterexample foo = cex;
foo.root = edge.Children[i];
print_proof(d,out,foo);
}
}
// print the label and the proved fact
out << "(" << node.number;
out << " (" << node.Name.name();
for(unsigned i = 0; i < edge.F.IndParams.size(); i++)
out << " " << cex.tree->Eval(&edge,edge.F.IndParams[i]);
out << ")\n";
// print the substitution
out << " (\n";
RPFP::Edge *orig_edge = edge.map;
int orig_clause = d->dd()->map[orig_edge];
expr &t = d->dd()->clauses[orig_clause];
if (t.is_quantifier() && t.is_quantifier_forall()) {
int bound = t.get_quantifier_num_bound();
std::vector<sort> sorts;
std::vector<symbol> names;
hash_map<int,expr> subst;
for(int j = 0; j < bound; j++){
sort the_sort = t.get_quantifier_bound_sort(j);
symbol name = t.get_quantifier_bound_name(j);
expr skolem = ctx.constant(symbol(ctx,name),sort(ctx,the_sort));
out << " (= " << skolem << " " << cex.tree->Eval(&edge,skolem) << ")\n";
}
}
out << " )\n";
// reference the proofs of all the children, in syntactic order
// "true" means the child is not needed
out << " (";
for(unsigned i = 0; i < edge.Children.size(); i++){
if(!cex.tree->Empty(edge.Children[i]))
out << " " << edge.Children[i]->number;
else
out << " true";
}
out << " )";
out << ")\n";
}
void dl_interface::display_certificate(std::ostream& out) {
if(_d->status == StatusModel){
ast_manager &m = m_ctx.get_manager();
model_ref md = get_model();
model_smt2_pp(out, m, *md.get(), 0);
}
else if(_d->status == StatusRefutation){
out << "(\n";
// negation of the query is the last clause -- prove it
print_proof(this,out,_d->cex);
out << ")\n";
}
}
expr_ref dl_interface::get_answer() {
SASSERT(false);
return expr_ref(m_ctx.get_manager());
}
void dl_interface::cancel() {
}
void dl_interface::cleanup() {
}
void dl_interface::updt_params() {
}
model_ref dl_interface::get_model() {
ast_manager &m = m_ctx.get_manager();
model_ref md(alloc(::model, m));
std::vector<RPFP::Node *> &nodes = _d->rpfp->nodes;
expr_ref_vector conjs(m);
for (unsigned i = 0; i < nodes.size(); ++i) {
RPFP::Node *node = nodes[i];
func_decl &pred = node->Name;
expr_ref prop(m);
prop = to_expr(node->Annotation.Formula);
std::vector<expr> &params = node->Annotation.IndParams;
expr_ref q(m);
expr_ref_vector sig_vars(m);
for (unsigned j = 0; j < params.size(); ++j)
sig_vars.push_back(params[params.size()-j-1]); // TODO: why backwards?
expr_abstract(m, 0, sig_vars.size(), sig_vars.c_ptr(), prop, q);
if (params.empty()) {
md->register_decl(pred, q);
}
else {
::func_interp* fi = alloc(::func_interp, m, params.size());
fi->set_else(q);
md->register_decl(pred, fi);
}
}
return md;
}
proof_ref dl_interface::get_proof() {
return proof_ref(m_ctx.get_manager());
}
}

View file

@ -0,0 +1,76 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
duality_dl_interface.h
Abstract:
SMT2 interface for Duality
Author:
Krystof Hoder (t-khoder) 2011-9-22.
Modified by Ken McMIllan (kenmcmil) 2013-4-18.
Revision History:
--*/
#ifndef _DUALITY_DL_INTERFACE_H_
#define _DUALITY_DL_INTERFACE_H_
#include "lbool.h"
#include "dl_rule.h"
#include "dl_rule_set.h"
#include "statistics.h"
namespace datalog {
class context;
}
namespace Duality {
class duality_data;
class dl_interface {
duality_data *_d;
datalog::context &m_ctx;
public:
dl_interface(datalog::context& ctx);
~dl_interface();
lbool query(expr* query);
void cancel();
void cleanup();
void display_certificate(std::ostream& out);
void collect_statistics(statistics& st) const;
void reset_statistics();
expr_ref get_answer();
unsigned get_num_levels(func_decl* pred);
expr_ref get_cover_delta(int level, func_decl* pred);
void add_cover(int level, func_decl* pred, expr* property);
void updt_params();
model_ref get_model();
proof_ref get_proof();
duality_data *dd(){return _d;}
};
}
#endif

View file

@ -58,6 +58,12 @@ def_module_params('fixedpoint',
('print_certificate', BOOL, False, 'print certificate for reachability or non-reachability'),
('print_statistics', BOOL, False, 'print statistics'),
('tab_selection', SYMBOL, 'weight', 'selection method for tabular strategy: weight (default), first, var-use'),
('full_expand', BOOL, False, 'DUALITY: Fully expand derivation trees'),
('no_conj', BOOL, False, 'DUALITY: No forced covering (conjectures)'),
('feasible_edges', BOOL, True, 'DUALITY: Don\'t expand definitley infeasible edges'),
('use_underapprox', BOOL, False, 'DUALITY: Use underapproximations'),
('stratified_inlining', BOOL, False, 'DUALITY: Use stratified inlining'),
('recursion_bound', UINT, UINT_MAX, 'DUALITY: Recursion bound for stratified inlining'),
))