3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 18:31:49 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2015-12-09 14:48:50 -08:00
parent 0e701138e1
commit fe1039d12f
3 changed files with 248 additions and 84 deletions

View file

@ -821,7 +821,7 @@ namespace smt {
theory_var v2 = m_fparams.m_new_core2th_eq ? get_closest_var(n2, t2) : r2->m_th_var_list.get_th_var();
theory_var v1 = m_fparams.m_new_core2th_eq ? get_closest_var(n1, t1) : r1->m_th_var_list.get_th_var();
TRACE("merge_theory_vars",
tout << "v2: " << v2 << " #" << r1->get_owner_id() << ", v1: " << v1 << " #" << r2->get_owner_id()
tout << "v2: " << v2 << " #" << r2->get_owner_id() << ", v1: " << v1 << " #" << r1->get_owner_id()
<< ", t2: " << t2 << ", t1: " << t1 << "\n";);
if (v2 != null_theory_var && v1 != null_theory_var) {
if (t1 == t2) {

View file

@ -28,18 +28,19 @@ using namespace smt;
void theory_seq::solution_map::update(expr* e, expr* r, enode_pair_dependency* d) {
std::pair<expr*, enode_pair_dependency*> value;
if (m_map.find(e, value)) {
m_updates.push_back(DEL);
m_lhs.push_back(e);
m_rhs.push_back(value.first);
m_deps.push_back(value.second);
add_trail(DEL, e, value.first, value.second);
}
value.first = r;
value.second = d;
m_map.insert(e, value);
m_updates.push_back(INS);
m_lhs.push_back(e);
m_rhs.push_back(value.first);
m_deps.push_back(value.second);
add_trail(INS, e, r, d);
}
void theory_seq::solution_map::add_trail(map_update op, expr* l, expr* r, enode_pair_dependency* d) {
m_updates.push_back(op);
m_lhs.push_back(l);
m_rhs.push_back(r);
m_deps.push_back(d);
}
expr* theory_seq::solution_map::find(expr* e, enode_pair_dependency*& d) {
@ -84,6 +85,34 @@ void theory_seq::solution_map::display(std::ostream& out) const {
}
}
void theory_seq::exclusion_table::update(expr* e, expr* r) {
if (e->get_id() > r->get_id()) {
std::swap(e, r);
}
if (e != r && !m_table.contains(std::make_pair(e, r))) {
m_lhs.push_back(e);
m_rhs.push_back(r);
m_table.insert(std::make_pair(e, r));
}
}
void theory_seq::exclusion_table::pop_scope(unsigned num_scopes) {
if (num_scopes == 0) return;
unsigned start = m_limit[m_limit.size() - num_scopes];
for (unsigned i = start; i < m_lhs.size(); ++i) {
m_table.erase(std::make_pair(m_lhs[i].get(), m_rhs[i].get()));
}
m_lhs.resize(start);
m_rhs.resize(start);
m_limit.resize(m_limit.size() - num_scopes);
}
void theory_seq::exclusion_table::display(std::ostream& out) const {
table_t::iterator it = m_table.begin(), end = m_table.end();
for (; it != end; ++it) {
out << mk_pp(it->first, m) << " != " << mk_pp(it->second, m) << "\n";
}
}
theory_seq::theory_seq(ast_manager& m):
theory(m.mk_family_id("seq")),
@ -91,9 +120,12 @@ theory_seq::theory_seq(ast_manager& m):
m_dam(m_dep_array_value_manager, m_alloc),
m_rep(m, m_dm),
m_ineqs(m),
m_exclude(m),
m_axioms(m),
m_axioms_head(0),
m_branch_variable_head(0),
m_incomplete(false),
m_model_completion(false),
m_rewrite(m),
m_util(m),
m_autil(m),
@ -130,6 +162,15 @@ final_check_status theory_seq::final_check_eh() {
if (ctx.inconsistent()) {
return FC_CONTINUE;
}
if (branch_variable()) {
return FC_CONTINUE;
}
if (split_variable()) {
return FC_CONTINUE;
}
if (ctx.inconsistent()) {
return FC_CONTINUE;
}
if (m.size(m_lhs.back()) > 0 || m_incomplete) {
return FC_GIVEUP;
}
@ -152,19 +193,98 @@ bool theory_seq::check_ineqs() {
return true;
}
bool theory_seq::branch_variable() {
context& ctx = get_context();
TRACE("seq", ctx.display(tout););
expr_array& lhs = m_lhs.back();
expr_array& rhs = m_rhs.back();
unsigned sz = m.size(lhs);
ptr_vector<expr> ls, rs;
for (unsigned i = 0; i < sz; ++i) {
unsigned k = (i + m_branch_variable_head) % sz;
expr* l = m.get(lhs, k);
expr* r = m.get(rhs, k);
TRACE("seq", tout << mk_pp(l, m) << " = " << mk_pp(r, m) << "\n";);
ls.reset(); rs.reset();
m_util.str.get_concat(l, ls);
m_util.str.get_concat(r, rs);
if (!ls.empty() && find_branch_candidate(ls[0], rs)) {
m_branch_variable_head = k;
return true;
}
if (!rs.empty() && find_branch_candidate(rs[0], ls)) {
m_branch_variable_head = k;
return true;
}
}
return false;
}
bool theory_seq::find_branch_candidate(expr* l, ptr_vector<expr> const& rs) {
TRACE("seq", tout << mk_pp(l, m) << " "
<< (is_var(l)?"var":"not var") << "\n";);
if (!is_var(l)) {
return false;
}
expr_ref v0(m), v(m);
v0 = m_util.str.mk_empty(m.get_sort(l));
if (assume_equality(l, v0)) {
return true;
}
for (unsigned j = 0; j < rs.size(); ++j) {
if (occurs(l, rs[j])) {
return false;
}
std::string s;
if (m_util.str.is_string(rs[j], s)) {
for (size_t k = 1; k < s.length(); ++k) {
v = m_util.str.mk_string(std::string(s.c_str(), k));
if (v0) v = m_util.str.mk_concat(v0, v);
if (assume_equality(l, v)) {
return true;
}
}
}
v0 = (j == 0)? rs[0] : m_util.str.mk_concat(v0, rs[j]);
if (assume_equality(l, v0)) {
return true;
}
}
return false;
}
bool theory_seq::assume_equality(expr* l, expr* r) {
TRACE("seq", tout << mk_pp(l, m) << " = " << mk_pp(r, m) << "\n";);
context& ctx = get_context();
if (m_exclude.contains(l, r)) {
return false;
}
else {
SASSERT(ctx.e_internalized(l));
if (!ctx.e_internalized(r)) ctx.internalize(r, false);
enode* n1 = ctx.get_enode(l);
enode* n2 = ctx.get_enode(r);
ctx.assume_eq(n1, n2);
}
return true;
}
bool theory_seq::split_variable() {
return false;
}
void theory_seq::propagate_lit(enode_pair_dependency* dep, literal lit) {
context& ctx = get_context();
ctx.mark_as_relevant(lit);
vector<enode_pair, false> _eqs;
m_dm.linearize(dep, _eqs);
TRACE("seq",
ctx.display_detailed_literal(tout, lit);
tout << " <- ";
for (unsigned i = 0; i < _eqs.size(); ++i) {
tout << mk_pp(_eqs[i].first->get_owner(), m) << " = "
<< mk_pp(_eqs[i].second->get_owner(), m) << "\n";
}
);
TRACE("seq", ctx.display_detailed_literal(tout, lit);
tout << " <-\n"; display_deps(tout, dep););
justification* js =
ctx.mk_justification(
ext_theory_propagation_justification(
@ -177,12 +297,7 @@ void theory_seq::set_conflict(enode_pair_dependency* dep) {
context& ctx = get_context();
vector<enode_pair, false> _eqs;
m_dm.linearize(dep, _eqs);
TRACE("seq",
for (unsigned i = 0; i < _eqs.size(); ++i) {
tout << mk_pp(_eqs[i].first->get_owner(), m) << " = "
<< mk_pp(_eqs[i].second->get_owner(), m) << "\n";
}
);
TRACE("seq", display_deps(tout, dep););
ctx.set_conflict(
ctx.mk_justification(
ext_theory_conflict_justification(
@ -195,10 +310,7 @@ void theory_seq::propagate_eq(enode_pair_dependency* dep, enode* n1, enode* n2)
m_dm.linearize(dep, _eqs);
TRACE("seq",
tout << mk_pp(n1->get_owner(), m) << " " << mk_pp(n2->get_owner(), m) << " <- ";
for (unsigned i = 0; i < _eqs.size(); ++i) {
tout << mk_pp(_eqs[i].first->get_owner(), m) << " = "
<< mk_pp(_eqs[i].second->get_owner(), m) << "\n";
}
display_deps(tout, dep);
);
justification* js = ctx.mk_justification(
@ -366,13 +478,19 @@ bool theory_seq::internalize_atom(app* a, bool) {
}
bool theory_seq::internalize_term(app* term) {
TRACE("seq", tout << mk_pp(term, m) << "\n";);
context & ctx = get_context();
unsigned num_args = term->get_num_args();
for (unsigned i = 0; i < num_args; i++) {
ctx.internalize(term->get_arg(i), false);
expr* arg = term->get_arg(i);
ctx.internalize(arg, false);
if (ctx.e_internalized(arg)) {
mk_var(ctx.get_enode(arg));
}
}
enode* e = 0;
if (ctx.e_internalized(term)) {
return true;
e = ctx.get_enode(term);
}
if (m.is_bool(term)) {
bool_var bv = ctx.mk_bool_var(term);
@ -380,9 +498,10 @@ bool theory_seq::internalize_term(app* term) {
ctx.set_enode_flag(bv, true);
}
else {
enode * e = ctx.mk_enode(term, false, m.is_bool(term), true);
theory_var v = mk_var(e);
ctx.attach_th_var(e, this, v);
if (!e) {
e = ctx.mk_enode(term, false, m.is_bool(term), true);
}
mk_var(e);
}
if (!m_util.str.is_concat(term) &&
!m_util.str.is_string(term) &&
@ -400,33 +519,43 @@ bool theory_seq::internalize_term(app* term) {
}
void theory_seq::apply_sort_cnstr(enode* n, sort* s) {
if (!is_attached_to_var(n)) {
mk_var(n);
}
mk_var(n);
}
void theory_seq::display(std::ostream & out) const {
expr_array const& lhs = m_lhs.back();
expr_array const& rhs = m_rhs.back();
enode_pair_dependency_array const& deps = m_deps.back();
out << "Equations:\n";
for (unsigned i = 0; i < m.size(lhs); ++i) {
out << mk_pp(m.get(lhs, i), m) << " = " << mk_pp(m.get(rhs, i), m) << " <-\n";
enode_pair_dependency* dep = m_dam.get(deps, i);
if (dep) {
vector<enode_pair, false> _eqs;
const_cast<enode_pair_dependency_manager&>(m_dm).linearize(dep, _eqs);
for (unsigned i = 0; i < _eqs.size(); ++i) {
out << " " << mk_pp(_eqs[i].first->get_owner(), m) << " = " << mk_pp(_eqs[i].second->get_owner(), m) << "\n";
}
display_equations(out);
if (!m_ineqs.empty()) {
out << "Negative constraints:\n";
for (unsigned i = 0; i < m_ineqs.size(); ++i) {
out << mk_pp(m_ineqs[i], m) << "\n";
}
}
out << "Negative constraints:\n";
for (unsigned i = 0; i < m_ineqs.size(); ++i) {
out << mk_pp(m_ineqs[i], m) << "\n";
}
out << "Solved equations:\n";
m_rep.display(out);
m_exclude.display(out);
}
void theory_seq::display_equations(std::ostream& out) const {
expr_array const& lhs = m_lhs.back();
expr_array const& rhs = m_rhs.back();
enode_pair_dependency_array const& deps = m_deps.back();
if (m.size(lhs) == 0) {
return;
}
out << "Equations:\n";
for (unsigned i = 0; i < m.size(lhs); ++i) {
out << mk_pp(m.get(lhs, i), m) << " = " << mk_pp(m.get(rhs, i), m) << " <-\n";
display_deps(out, m_dam.get(deps, i));
}
}
void theory_seq::display_deps(std::ostream& out, enode_pair_dependency* dep) const {
if (!dep) return;
vector<enode_pair, false> _eqs;
const_cast<enode_pair_dependency_manager&>(m_dm).linearize(dep, _eqs);
for (unsigned i = 0; i < _eqs.size(); ++i) {
out << " " << mk_pp(_eqs[i].first->get_owner(), m) << " = " << mk_pp(_eqs[i].second->get_owner(), m) << "\n";
}
}
void theory_seq::collect_statistics(::statistics & st) const {
@ -438,31 +567,13 @@ void theory_seq::init_model(model_generator & mg) {
m_factory = alloc(seq_factory, get_manager(),
get_family_id(), mg.get_model());
mg.register_factory(m_factory);
// TBD: this is still unsound model generation.
// disequalities are not guaranteed. we need to
// prime the factory with a prefix that cannot be
// constructed using any existing combinations of the
// strings (or units) that are used.
for (unsigned i = 0; i < get_num_vars(); ++i) {
expr* e = get_enode(i)->get_owner();
if (m_util.is_seq(e)) {
enode_pair_dependency* deps = 0;
e = m_rep.find(e, deps);
if (is_var(e)) {
expr* val = m_factory->get_fresh_value(m.get_sort(e));
m_rep.update(e, val, 0);
}
}
else if (m_util.is_re(e)) {
// TBD
}
}
}
model_value_proc * theory_seq::mk_value(enode * n, model_generator & mg) {
enode_pair_dependency* deps = 0;
expr_ref e(n->get_owner(), m);
canonize(e, deps);
flet<bool> _model_completion(m_model_completion, true);
e = canonize(e, deps);
SASSERT(is_app(e));
m_factory->add_trail(e);
return alloc(expr_wrapper_proc, to_app(e));
@ -479,7 +590,14 @@ void theory_seq::set_incomplete(app* term) {
}
theory_var theory_seq::mk_var(enode* n) {
return theory::mk_var(n);
if (is_attached_to_var(n)) {
return n->get_th_var(get_id());
}
else {
theory_var v = theory::mk_var(n);
get_context().attach_th_var(n, this, v);
return v;
}
}
bool theory_seq::can_propagate() {
@ -515,6 +633,15 @@ expr_ref theory_seq::expand(expr* e, enode_pair_dependency*& eqs) {
if (m_util.str.is_contains(e, e1, e2)) {
return expr_ref(m_util.str.mk_contains(expand(e1, eqs), expand(e2, eqs)), m);
}
if (m_model_completion && is_var(e)) {
SASSERT(m_factory);
expr_ref val(m);
val = m_factory->get_fresh_value(m.get_sort(e));
if (val) {
m_rep.update(e, val, 0);
return val;
}
}
return expr_ref(e, m);
}
@ -625,11 +752,14 @@ void theory_seq::new_diseq_eh(theory_var v1, theory_var v2) {
expr* e2 = get_enode(v2)->get_owner();
m_trail_stack.push(push_back_vector<theory_seq, expr_ref_vector>(m_ineqs));
m_ineqs.push_back(mk_eq_atom(e1, e2));
m_exclude.update(e1, e2);
}
void theory_seq::push_scope_eh() {
TRACE("seq", tout << "push " << m_lhs.size() << "\n";);
theory::push_scope_eh();
m_rep.push_scope();
m_exclude.push_scope();
m_dm.push_scope();
m_trail_stack.push_scope();
m_trail_stack.push(value_trail<theory_seq, unsigned>(m_axioms_head));
@ -644,10 +774,12 @@ void theory_seq::push_scope_eh() {
}
void theory_seq::pop_scope_eh(unsigned num_scopes) {
TRACE("seq", tout << "pop " << m_lhs.size() << "\n";);
m_trail_stack.pop_scope(num_scopes);
theory::pop_scope_eh(num_scopes);
m_dm.pop_scope(num_scopes);
m_rep.pop_scope(num_scopes);
m_exclude.pop_scope(num_scopes);
while (num_scopes > 0) {
--num_scopes;
m.del(m_lhs.back());

View file

@ -53,10 +53,12 @@ namespace smt {
ast_manager& m;
enode_pair_dependency_manager& m_dm;
map_t m_map;
expr_ref_vector m_lhs, m_rhs;
expr_ref_vector m_lhs, m_rhs;
ptr_vector<enode_pair_dependency> m_deps;
svector<map_update> m_updates;
unsigned_vector m_limit;
void add_trail(map_update op, expr* l, expr* r, enode_pair_dependency* d);
public:
solution_map(ast_manager& m, enode_pair_dependency_manager& dm): m(m), m_dm(dm), m_lhs(m), m_rhs(m) {}
void update(expr* e, expr* r, enode_pair_dependency* d);
@ -66,6 +68,24 @@ namespace smt {
void display(std::ostream& out) const;
};
class exclusion_table {
typedef obj_pair_hashtable<expr, expr> table_t;
ast_manager& m;
table_t m_table;
expr_ref_vector m_lhs, m_rhs;
unsigned_vector m_limit;
public:
exclusion_table(ast_manager& m): m(m), m_lhs(m), m_rhs(m) {}
~exclusion_table() { }
void update(expr* e, expr* r);
bool contains(expr* e, expr* r) {
return m_table.contains(std::make_pair(e, r));
}
void push_scope() { m_limit.push_back(m_lhs.size()); }
void pop_scope(unsigned num_scopes);
void display(std::ostream& out) const;
};
struct stats {
stats() { reset(); }
void reset() { memset(this, 0, sizeof(stats)); }
@ -81,11 +101,14 @@ namespace smt {
vector<expr_array> m_lhs, m_rhs; // persistent sets of equalities.
vector<enode_pair_dependency_array> m_deps; // persistent sets of dependencies.
seq_factory* m_factory; // value factory
expr_ref_vector m_ineqs; // inequalities to check
expr_ref_vector m_axioms;
unsigned m_axioms_head;
bool m_incomplete;
seq_factory* m_factory; // value factory
expr_ref_vector m_ineqs; // inequalities to check solution against
exclusion_table m_exclude; // set of asserted disequalities.
expr_ref_vector m_axioms; // list of axioms to add.
unsigned m_axioms_head; // index of first axiom to add.
unsigned m_branch_variable_head; // index of first equation to examine.
bool m_incomplete; // is the solver (clearly) incomplete for the fragment.
bool m_model_completion; // during model construction, invent values in canonizer
th_rewriter m_rewrite;
seq_util m_util;
arith_util m_autil;
@ -95,8 +118,8 @@ namespace smt {
symbol m_suffix_sym;
symbol m_contains_left_sym;
symbol m_contains_right_sym;
symbol m_left_sym;
symbol m_right_sym;
symbol m_left_sym; // split variable left part
symbol m_right_sym; // split variable right part
virtual final_check_status final_check_eh();
virtual bool internalize_atom(app*, bool);
@ -114,23 +137,29 @@ namespace smt {
virtual char const * get_name() const { return "seq"; }
virtual theory_var mk_var(enode* n);
virtual void apply_sort_cnstr(enode* n, sort* s);
virtual void display(std::ostream & out) const;
virtual void display(std::ostream & out) const;
virtual void collect_statistics(::statistics & st) const;
virtual model_value_proc * mk_value(enode * n, model_generator & mg);
virtual void init_model(model_generator & mg);
bool check_ineqs();
bool check_ineqs(); // check if inequalities are violated.
bool simplify_and_solve_eqs(); // solve unitary equalities
bool branch_variable(); // branch on a variable
bool split_variable(); // split a variable
bool pre_process_eqs(bool simplify_or_solve);
bool simplify_eqs();
bool simplify_eq(expr* l, expr* r, enode_pair_dependency* dep);
bool solve_unit_eq(expr* l, expr* r, enode_pair_dependency* dep);
bool solve_basic_eqs();
bool simplify_and_solve_eqs();
void propagate_lit(enode_pair_dependency* dep, literal lit);
void propagate_eq(enode_pair_dependency* dep, enode* n1, enode* n2);
void propagate_eq(bool_var v, expr* e1, expr* e2);
void set_conflict(enode_pair_dependency* dep);
bool find_branch_candidate(expr* l, ptr_vector<expr> const& rs);
bool assume_equality(expr* l, expr* r);
bool occurs(expr* a, expr* b);
bool is_var(expr* b);
void add_solution(expr* l, expr* r, enode_pair_dependency* dep);
@ -148,6 +177,9 @@ namespace smt {
expr_ref mk_skolem(symbol const& s, expr* e1, expr* e2);
void set_incomplete(app* term);
void display_equations(std::ostream& out) const;
void display_deps(std::ostream& out, enode_pair_dependency* deps) const;
public:
theory_seq(ast_manager& m);
virtual ~theory_seq();