3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 03:45:51 +00:00

Polysat: check test results, forbidden intervals for coefficient -1 (#5241)

* Use scoped_ptr for condition

* Check solver result in unit tests

* Add test for unusual cjust

* Add solver::get_value

* Broken assertion

* Support forbidden interval for coefficient -1
This commit is contained in:
Jakob Rath 2021-05-04 18:33:55 +02:00 committed by GitHub
parent 5791b41133
commit fd1758ffab
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 164 additions and 58 deletions

View file

@ -68,8 +68,13 @@ namespace polysat {
bool is_negative() const { return m_status == l_false; }
bool is_undef() const { return m_status == l_undef; }
/** Precondition: all variables other than v are assigned. */
virtual bool forbidden_interval(solver& s, pvar v, eval_interval& i, constraint*& neg_condition) { return false; }
/** Precondition: all variables other than v are assigned.
*
* \param[out] out_interval The forbidden interval for this constraint
* \param[out] out_neg_cond Negation of the side condition (the side condition is true when the forbidden interval is trivial). May be NULL if the condition is constant.
* \returns True iff a forbidden interval exists and the output parameters were set.
*/
virtual bool forbidden_interval(solver& s, pvar v, eval_interval& out_interval, scoped_ptr<constraint>& out_neg_cond) { return false; }
};
inline std::ostream& operator<<(std::ostream& out, constraint const& c) { return c.display(out); }

View file

@ -113,11 +113,17 @@ namespace polysat {
*/
constraint* eq_constraint::eq_resolve(solver& s, pvar v) {
SASSERT(is_currently_true(s));
LOG("Resolve " << *this << " upon v" << v);
if (s.m_conflict.size() != 1)
return nullptr;
constraint* c = s.m_conflict[0];
SASSERT(c->is_currently_false(s));
// 'c == this' can happen if propagation was from decide() with only one value left
// (e.g., if there's an unsatisfiable clause and we try all values).
// Resolution would give us '0 == 0' in this case, which is useless.
if (c == this)
return nullptr;
SASSERT(is_currently_true(s)); // TODO: might not always hold (due to similar case as in comment above?)
if (c->is_eq()) {
pdd a = c->to_eq().p();
pdd b = p();
@ -146,7 +152,7 @@ namespace polysat {
/// Compute forbidden interval for equality constraint by considering it as p <=u 0 (or p >u 0 for disequality)
bool eq_constraint::forbidden_interval(solver& s, pvar v, eval_interval& i, constraint*& neg_condition)
bool eq_constraint::forbidden_interval(solver& s, pvar v, eval_interval& out_interval, scoped_ptr<constraint>& out_neg_cond)
{
SASSERT(!is_undef());
@ -201,8 +207,8 @@ namespace polysat {
swap(lo, hi);
lo_val.swap(hi_val);
}
i = eval_interval::proper(lo, lo_val, hi, hi_val);
neg_condition = nullptr;
out_interval = eval_interval::proper(lo, lo_val, hi, hi_val);
out_neg_cond = nullptr;
return true;
}

View file

@ -32,7 +32,7 @@ namespace polysat {
bool is_currently_false(solver& s) override;
bool is_currently_true(solver& s) override;
void narrow(solver& s) override;
bool forbidden_interval(solver& s, pvar v, eval_interval& i, constraint*& neg_condition) override;
bool forbidden_interval(solver& s, pvar v, eval_interval& out_interval, scoped_ptr<constraint>& out_neg_cond) override;
private:
constraint* eq_resolve(solver& s, pvar v);

View file

@ -70,16 +70,14 @@ namespace polysat {
rational longest_len;
unsigned longest_i = UINT_MAX;
for (constraint* c : conflict) {
LOG("constraint: " << *c);
LOG_H3("Computing forbidden interval for: " << *c);
eval_interval interval = eval_interval::full();
constraint* neg_cond = nullptr; // TODO: change to scoped_ptr
scoped_ptr<constraint> neg_cond;
if (c->forbidden_interval(s, v, interval, neg_cond)) {
LOG("~> interval: " << interval);
LOG(" neg_cond: " << show_deref(neg_cond));
if (interval.is_currently_empty()) {
dealloc(neg_cond);
LOG("interval: " << interval);
LOG("neg_cond: " << show_deref(neg_cond));
if (interval.is_currently_empty())
continue;
}
if (interval.is_full())
has_full = true;
else {
@ -89,7 +87,7 @@ namespace polysat {
longest_i = records.size();
}
}
records.push_back({std::move(interval), neg_cond, c});
records.push_back({std::move(interval), std::move(neg_cond), c});
if (has_full)
break;
}
@ -119,6 +117,7 @@ namespace polysat {
return false;
}
LOG("seq: " << seq);
SASSERT(seq.size() >= 2); // otherwise has_full should have been true
p_dependency* d = nullptr;
unsigned lemma_lvl = 0;

View file

@ -272,6 +272,11 @@ namespace polysat {
*/
pdd var(pvar v) { return m_vars[v]; }
/**
* Return value of v in the current model (only meaningful if check_sat() returned l_true).
*/
rational get_value(pvar v) const { SASSERT(!m_justification[v].is_unassigned()); return m_value[v]; }
/**
* Create polynomial constraints (but do not activate them).
* Each constraint is tracked by a dependency.

View file

@ -118,7 +118,7 @@ namespace polysat {
return p.is_val() && q.is_val() && p.val() > q.val();
}
bool ule_constraint::forbidden_interval(solver& s, pvar v, eval_interval& i, constraint*& neg_condition)
bool ule_constraint::forbidden_interval(solver& s, pvar v, eval_interval& out_interval, scoped_ptr<constraint>& out_neg_cond)
{
SASSERT(!is_undef());
@ -136,6 +136,8 @@ namespace polysat {
unsigned const sz = s.size(v);
dd::pdd_manager& m = s.sz2pdd(sz);
rational const pow2 = rational::power_of_two(sz);
rational const minus_one = pow2 - 1;
pdd p1 = m.zero();
pdd e1 = m.zero();
@ -163,10 +165,10 @@ namespace polysat {
rational a1 = p1.val();
rational a2 = p2.val();
// TODO: to express the interval for coefficient 2^i symbolically, we need right-shift/upper-bits-extract in the language.
// So currently we can only do it if the coefficient is 1.
if (!a1.is_zero() && !a1.is_one())
// So currently we can only do it if the coefficient is 1 or -1.
if (!a1.is_zero() && !a1.is_one() && a1 != minus_one)
return false;
if (!a2.is_zero() && !a2.is_one())
if (!a2.is_zero() && !a2.is_one() && a2 != minus_one)
return false;
/*
unsigned j1 = 0;
@ -177,6 +179,9 @@ namespace polysat {
return false;
*/
rational const y_coeff = a1.is_zero() ? a2 : a1;
SASSERT(!y_coeff.is_zero());
// Concrete values of evaluable terms
auto e1s = e1.subst_val(s.m_search);
auto e2s = e2.subst_val(s.m_search);
@ -219,6 +224,7 @@ namespace polysat {
else {
SASSERT(!a1.is_zero());
SASSERT(!a2.is_zero());
SASSERT_EQ(a1, a2);
// e1 + t <= e2 + t, with t = 2^j1*y = 2^j2*y
// condition for empty/full: e1 == e2
is_trivial = e1s.val() == e2s.val();
@ -234,22 +240,44 @@ namespace polysat {
if (condition_body.is_val()) {
// Condition is trivial; no need to create a constraint for that.
SASSERT(is_trivial == condition_body.is_zero());
neg_condition = nullptr;
out_neg_cond = nullptr;
}
else
neg_condition = constraint::eq(level(), s.m_next_bvar++, is_trivial ? neg_t : pos_t, condition_body, m_dep);
out_neg_cond = constraint::eq(level(), s.m_next_bvar++, is_trivial ? neg_t : pos_t, condition_body, m_dep);
if (is_trivial) {
if (is_positive())
i = eval_interval::empty(m);
// TODO: we cannot use empty intervals for interpolation. So we
// can remove the empty case (make it represent 'full' instead),
// and return 'false' here. Then we do not need the proper/full
// tag on intervals.
out_interval = eval_interval::empty(m);
else
i = eval_interval::full();
out_interval = eval_interval::full();
} else {
if (y_coeff == minus_one) {
// Transform according to: y \in [l;u[ <=> -y \in [1-u;1-l[
// -y \in [1-u;1-l[
// <=> -y - (1 - u) < (1 - l) - (1 - u) { by: y \in [l;u[ <=> y - l < u - l }
// <=> u - y - 1 < u - l { simplified }
// <=> (u-l) - (u-y-1) - 1 < u-l { by: a < b <=> b - a - 1 < b }
// <=> y - l < u - l { simplified }
// <=> y \in [l;u[.
lo = 1 - lo;
hi = 1 - hi;
swap(lo, hi);
lo_val = mod(1 - lo_val, pow2);
hi_val = mod(1 - hi_val, pow2);
lo_val.swap(hi_val);
}
else
SASSERT(y_coeff.is_one());
if (is_negative()) {
swap(lo, hi);
lo_val.swap(hi_val);
}
i = eval_interval::proper(lo, lo_val, hi, hi_val);
out_interval = eval_interval::proper(lo, lo_val, hi, hi_val);
}
return true;

View file

@ -38,8 +38,7 @@ namespace polysat {
bool is_currently_false(solver& s) override;
bool is_currently_true(solver& s) override;
void narrow(solver& s) override;
bool forbidden_interval(solver& s, pvar v, eval_interval& i, constraint*& neg_condition) override;
bool forbidden_interval(solver& s, pvar v, eval_interval& out_interval, scoped_ptr<constraint>& out_neg_cond) override;
};
}