3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 18:31:49 +00:00

getting rid of DOS line endings

This commit is contained in:
Ken McMillan 2014-04-03 17:09:11 -07:00
parent 9a2fe83697
commit fc62be37b6
8 changed files with 4023 additions and 4023 deletions

View file

@ -1,134 +1,134 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
duality_profiling.cpp
Abstract:
collection performance information for duality
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#include <map>
#include <iostream>
#include <string>
#include <string.h>
#include <stdlib.h>
#ifdef _WINDOWS
#pragma warning(disable:4996)
#pragma warning(disable:4800)
#pragma warning(disable:4267)
#endif
#include "duality_wrapper.h"
#include "iz3profiling.h"
namespace Duality {
void show_time(){
output_time(std::cout,current_time());
std::cout << "\n";
}
typedef std::map<const char*, struct node> nmap;
struct node {
std::string name;
clock_t time;
clock_t start_time;
nmap sub;
struct node *parent;
node();
} top;
node::node(){
time = 0;
parent = 0;
}
struct node *current;
struct init {
init(){
top.name = "TOTAL";
current = &top;
}
} initializer;
struct time_entry {
clock_t t;
time_entry(){t = 0;};
void add(clock_t incr){t += incr;}
};
struct ltstr
{
bool operator()(const char* s1, const char* s2) const
{
return strcmp(s1, s2) < 0;
}
};
typedef std::map<const char*, time_entry, ltstr> tmap;
static std::ostream *pfs;
void print_node(node &top, int indent, tmap &totals){
for(int i = 0; i < indent; i++) (*pfs) << " ";
(*pfs) << top.name;
int dots = 70 - 2 * indent - top.name.size();
for(int i = 0; i <dots; i++) (*pfs) << ".";
output_time(*pfs, top.time);
(*pfs) << std::endl;
if(indent != 0)totals[top.name.c_str()].add(top.time);
for(nmap::iterator it = top.sub.begin(); it != top.sub.end(); it++)
print_node(it->second,indent+1,totals);
}
void print_profile(std::ostream &os) {
pfs = &os;
top.time = 0;
for(nmap::iterator it = top.sub.begin(); it != top.sub.end(); it++)
top.time += it->second.time;
tmap totals;
print_node(top,0,totals);
(*pfs) << "TOTALS:" << std::endl;
for(tmap::iterator it = totals.begin(); it != totals.end(); it++){
(*pfs) << (it->first) << " ";
output_time(*pfs, it->second.t);
(*pfs) << std::endl;
}
profiling::print(os); // print the interpolation stats
}
void timer_start(const char *name){
node &child = current->sub[name];
if(child.name.empty()){ // a new node
child.parent = current;
child.name = name;
}
child.start_time = current_time();
current = &child;
}
void timer_stop(const char *name){
if(current->name != name || !current->parent){
std::cerr << "imbalanced timer_start and timer_stop";
exit(1);
}
current->time += (current_time() - current->start_time);
current = current->parent;
}
}
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
duality_profiling.cpp
Abstract:
collection performance information for duality
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#include <map>
#include <iostream>
#include <string>
#include <string.h>
#include <stdlib.h>
#ifdef _WINDOWS
#pragma warning(disable:4996)
#pragma warning(disable:4800)
#pragma warning(disable:4267)
#endif
#include "duality_wrapper.h"
#include "iz3profiling.h"
namespace Duality {
void show_time(){
output_time(std::cout,current_time());
std::cout << "\n";
}
typedef std::map<const char*, struct node> nmap;
struct node {
std::string name;
clock_t time;
clock_t start_time;
nmap sub;
struct node *parent;
node();
} top;
node::node(){
time = 0;
parent = 0;
}
struct node *current;
struct init {
init(){
top.name = "TOTAL";
current = &top;
}
} initializer;
struct time_entry {
clock_t t;
time_entry(){t = 0;};
void add(clock_t incr){t += incr;}
};
struct ltstr
{
bool operator()(const char* s1, const char* s2) const
{
return strcmp(s1, s2) < 0;
}
};
typedef std::map<const char*, time_entry, ltstr> tmap;
static std::ostream *pfs;
void print_node(node &top, int indent, tmap &totals){
for(int i = 0; i < indent; i++) (*pfs) << " ";
(*pfs) << top.name;
int dots = 70 - 2 * indent - top.name.size();
for(int i = 0; i <dots; i++) (*pfs) << ".";
output_time(*pfs, top.time);
(*pfs) << std::endl;
if(indent != 0)totals[top.name.c_str()].add(top.time);
for(nmap::iterator it = top.sub.begin(); it != top.sub.end(); it++)
print_node(it->second,indent+1,totals);
}
void print_profile(std::ostream &os) {
pfs = &os;
top.time = 0;
for(nmap::iterator it = top.sub.begin(); it != top.sub.end(); it++)
top.time += it->second.time;
tmap totals;
print_node(top,0,totals);
(*pfs) << "TOTALS:" << std::endl;
for(tmap::iterator it = totals.begin(); it != totals.end(); it++){
(*pfs) << (it->first) << " ";
output_time(*pfs, it->second.t);
(*pfs) << std::endl;
}
profiling::print(os); // print the interpolation stats
}
void timer_start(const char *name){
node &child = current->sub[name];
if(child.name.empty()){ // a new node
child.parent = current;
child.name = name;
}
child.start_time = current_time();
current = &child;
}
void timer_stop(const char *name){
if(current->name != name || !current->parent){
std::cerr << "imbalanced timer_start and timer_stop";
exit(1);
}
current->time += (current_time() - current->start_time);
current = current->parent;
}
}

View file

@ -1,38 +1,38 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
duality_profiling.h
Abstract:
collection performance information for duality
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#ifndef DUALITYPROFILING_H
#define DUALITYPROFILING_H
#include <ostream>
namespace Duality {
/** Start a timer with given name */
void timer_start(const char *);
/** Stop a timer with given name */
void timer_stop(const char *);
/** Print out timings */
void print_profile(std::ostream &s);
/** Show the current time. */
void show_time();
}
#endif
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
duality_profiling.h
Abstract:
collection performance information for duality
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#ifndef DUALITYPROFILING_H
#define DUALITYPROFILING_H
#include <ostream>
namespace Duality {
/** Start a timer with given name */
void timer_start(const char *);
/** Stop a timer with given name */
void timer_stop(const char *);
/** Print out timings */
void print_profile(std::ostream &s);
/** Show the current time. */
void show_time();
}
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,195 +1,195 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
iz3base.h
Abstract:
Base class for interpolators. Includes an AST manager and a scoping
object as bases.
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#ifndef IZ3BASE_H
#define IZ3BASE_H
#include "iz3mgr.h"
#include "iz3scopes.h"
namespace hash_space {
template <>
class hash<func_decl *> {
public:
size_t operator()(func_decl * const &s) const {
return (size_t) s;
}
};
}
/* Base class for interpolators. Includes an AST manager and a scoping
object as bases. */
class iz3base : public iz3mgr, public scopes {
public:
/** Get the range in which an expression occurs. This is the
smallest subtree containing all occurrences of the
expression. */
range &ast_range(ast);
/** Get the scope of an expression. This is the set of tree nodes in
which all of the expression's symbols are in scope. */
range &ast_scope(ast);
/** Get the range of a symbol. This is the smallest subtree containing
all occurrences of the symbol. */
range &sym_range(symb);
/** Is an expression local (in scope in some frame)? */
bool is_local(ast node){
return !range_is_empty(ast_scope(node));
}
/** Simplify an expression */
ast simplify(ast);
/** Constructor */
iz3base(ast_manager &_m_manager,
const std::vector<ast> &_cnsts,
const std::vector<int> &_parents,
const std::vector<ast> &_theory)
: iz3mgr(_m_manager), scopes(_parents) {
initialize(_cnsts,_parents,_theory);
weak = false;
}
iz3base(const iz3mgr& other,
const std::vector<ast> &_cnsts,
const std::vector<int> &_parents,
const std::vector<ast> &_theory)
: iz3mgr(other), scopes(_parents) {
initialize(_cnsts,_parents,_theory);
weak = false;
}
iz3base(const iz3mgr& other,
const std::vector<std::vector<ast> > &_cnsts,
const std::vector<int> &_parents,
const std::vector<ast> &_theory)
: iz3mgr(other), scopes(_parents) {
initialize(_cnsts,_parents,_theory);
weak = false;
}
iz3base(const iz3mgr& other)
: iz3mgr(other), scopes() {
weak = false;
}
/* Set our options */
void set_option(const std::string &name, const std::string &value){
if(name == "weak" && value == "1") weak = true;
}
/* Are we doing weak interpolants? */
bool weak_mode(){return weak;}
/** Print interpolation problem to an SMTLIB format file */
void print(const std::string &filename);
/** Check correctness of a solutino to this problem. */
void check_interp(const std::vector<ast> &itps, std::vector<ast> &theory);
/** For convenience -- is this formula SAT? */
bool is_sat(const std::vector<ast> &consts, ast &_proof);
/** Interpolator for clauses, to be implemented */
virtual void interpolate_clause(std::vector<ast> &lits, std::vector<ast> &itps){
throw "no interpolator";
}
ast get_proof_check_assump(range &rng){
std::vector<ast> cs(theory);
cs.push_back(cnsts[rng.hi]);
return make(And,cs);
}
int frame_of_assertion(const ast &ass){
stl_ext::hash_map<ast,int>::iterator it = frame_map.find(ass);
if(it == frame_map.end())
throw "unknown assertion";
return it->second;
}
void to_parents_vec_representation(const std::vector<ast> &_cnsts,
const ast &tree,
std::vector<ast> &cnsts,
std::vector<int> &parents,
std::vector<ast> &theory,
std::vector<int> &pos_map,
bool merge = false
);
protected:
std::vector<ast> cnsts;
std::vector<ast> theory;
private:
struct ranges {
range rng;
range scp;
bool scope_computed;
ranges(){scope_computed = false;}
};
stl_ext::hash_map<symb,range> sym_range_hash;
stl_ext::hash_map<ast,ranges> ast_ranges_hash;
stl_ext::hash_map<ast,ast> simplify_memo;
stl_ext::hash_map<ast,int> frame_map; // map assertions to frames
int frames; // number of frames
protected:
void add_frame_range(int frame, ast t);
private:
void initialize(const std::vector<ast> &_parts, const std::vector<int> &_parents, const std::vector<ast> &_theory);
void initialize(const std::vector<std::vector<ast> > &_parts, const std::vector<int> &_parents, const std::vector<ast> &_theory);
bool is_literal(ast n);
void gather_conjuncts_rec(ast n, std::vector<ast> &conjuncts, stl_ext::hash_set<ast> &memo);
void gather_conjuncts(ast n, std::vector<ast> &conjuncts);
ast simplify_and(std::vector<ast> &conjuncts);
ast simplify_with_lit_rec(ast n, ast lit, stl_ext::hash_map<ast,ast> &memo, int depth);
ast simplify_with_lit(ast n, ast lit);
void find_children(const stl_ext::hash_set<ast> &cnsts_set,
const ast &tree,
std::vector<ast> &cnsts,
std::vector<int> &parents,
std::vector<ast> &conjuncts,
std::vector<int> &children,
std::vector<int> &pos_map,
bool merge
);
bool weak;
};
#endif
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
iz3base.h
Abstract:
Base class for interpolators. Includes an AST manager and a scoping
object as bases.
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#ifndef IZ3BASE_H
#define IZ3BASE_H
#include "iz3mgr.h"
#include "iz3scopes.h"
namespace hash_space {
template <>
class hash<func_decl *> {
public:
size_t operator()(func_decl * const &s) const {
return (size_t) s;
}
};
}
/* Base class for interpolators. Includes an AST manager and a scoping
object as bases. */
class iz3base : public iz3mgr, public scopes {
public:
/** Get the range in which an expression occurs. This is the
smallest subtree containing all occurrences of the
expression. */
range &ast_range(ast);
/** Get the scope of an expression. This is the set of tree nodes in
which all of the expression's symbols are in scope. */
range &ast_scope(ast);
/** Get the range of a symbol. This is the smallest subtree containing
all occurrences of the symbol. */
range &sym_range(symb);
/** Is an expression local (in scope in some frame)? */
bool is_local(ast node){
return !range_is_empty(ast_scope(node));
}
/** Simplify an expression */
ast simplify(ast);
/** Constructor */
iz3base(ast_manager &_m_manager,
const std::vector<ast> &_cnsts,
const std::vector<int> &_parents,
const std::vector<ast> &_theory)
: iz3mgr(_m_manager), scopes(_parents) {
initialize(_cnsts,_parents,_theory);
weak = false;
}
iz3base(const iz3mgr& other,
const std::vector<ast> &_cnsts,
const std::vector<int> &_parents,
const std::vector<ast> &_theory)
: iz3mgr(other), scopes(_parents) {
initialize(_cnsts,_parents,_theory);
weak = false;
}
iz3base(const iz3mgr& other,
const std::vector<std::vector<ast> > &_cnsts,
const std::vector<int> &_parents,
const std::vector<ast> &_theory)
: iz3mgr(other), scopes(_parents) {
initialize(_cnsts,_parents,_theory);
weak = false;
}
iz3base(const iz3mgr& other)
: iz3mgr(other), scopes() {
weak = false;
}
/* Set our options */
void set_option(const std::string &name, const std::string &value){
if(name == "weak" && value == "1") weak = true;
}
/* Are we doing weak interpolants? */
bool weak_mode(){return weak;}
/** Print interpolation problem to an SMTLIB format file */
void print(const std::string &filename);
/** Check correctness of a solutino to this problem. */
void check_interp(const std::vector<ast> &itps, std::vector<ast> &theory);
/** For convenience -- is this formula SAT? */
bool is_sat(const std::vector<ast> &consts, ast &_proof);
/** Interpolator for clauses, to be implemented */
virtual void interpolate_clause(std::vector<ast> &lits, std::vector<ast> &itps){
throw "no interpolator";
}
ast get_proof_check_assump(range &rng){
std::vector<ast> cs(theory);
cs.push_back(cnsts[rng.hi]);
return make(And,cs);
}
int frame_of_assertion(const ast &ass){
stl_ext::hash_map<ast,int>::iterator it = frame_map.find(ass);
if(it == frame_map.end())
throw "unknown assertion";
return it->second;
}
void to_parents_vec_representation(const std::vector<ast> &_cnsts,
const ast &tree,
std::vector<ast> &cnsts,
std::vector<int> &parents,
std::vector<ast> &theory,
std::vector<int> &pos_map,
bool merge = false
);
protected:
std::vector<ast> cnsts;
std::vector<ast> theory;
private:
struct ranges {
range rng;
range scp;
bool scope_computed;
ranges(){scope_computed = false;}
};
stl_ext::hash_map<symb,range> sym_range_hash;
stl_ext::hash_map<ast,ranges> ast_ranges_hash;
stl_ext::hash_map<ast,ast> simplify_memo;
stl_ext::hash_map<ast,int> frame_map; // map assertions to frames
int frames; // number of frames
protected:
void add_frame_range(int frame, ast t);
private:
void initialize(const std::vector<ast> &_parts, const std::vector<int> &_parents, const std::vector<ast> &_theory);
void initialize(const std::vector<std::vector<ast> > &_parts, const std::vector<int> &_parents, const std::vector<ast> &_theory);
bool is_literal(ast n);
void gather_conjuncts_rec(ast n, std::vector<ast> &conjuncts, stl_ext::hash_set<ast> &memo);
void gather_conjuncts(ast n, std::vector<ast> &conjuncts);
ast simplify_and(std::vector<ast> &conjuncts);
ast simplify_with_lit_rec(ast n, ast lit, stl_ext::hash_map<ast,ast> &memo, int depth);
ast simplify_with_lit(ast n, ast lit);
void find_children(const stl_ext::hash_set<ast> &cnsts_set,
const ast &tree,
std::vector<ast> &cnsts,
std::vector<int> &parents,
std::vector<ast> &conjuncts,
std::vector<int> &children,
std::vector<int> &pos_map,
bool merge
);
bool weak;
};
#endif

View file

@ -1,321 +1,321 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
iz3scopes.cpp
Abstract:
Calculations with scopes, for both sequence and tree interpolation.
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#include <assert.h>
#include <algorithm>
#include "iz3scopes.h"
/** computes the least common ancestor of two nodes in the tree, or SHRT_MAX if none */
int scopes::tree_lca(int n1, int n2){
if(!tree_mode())
return std::max(n1,n2);
if(n1 == SHRT_MIN) return n2;
if(n2 == SHRT_MIN) return n1;
if(n1 == SHRT_MAX || n2 == SHRT_MAX) return SHRT_MAX;
while(n1 != n2){
if(n1 == SHRT_MAX || n2 == SHRT_MAX) return SHRT_MAX;
assert(n1 >= 0 && n2 >= 0 && n1 < (int)parents.size() && n2 < (int)parents.size());
if(n1 < n2) n1 = parents[n1];
else n2 = parents[n2];
}
return n1;
}
/** computes the greatest common descendant two nodes in the tree, or SHRT_MIN if none */
int scopes::tree_gcd(int n1, int n2){
if(!tree_mode())
return std::min(n1,n2);
int foo = tree_lca(n1,n2);
if(foo == n1) return n2;
if(foo == n2) return n1;
return SHRT_MIN;
}
#ifndef FULL_TREE
/** test whether a tree node is contained in a range */
bool scopes::in_range(int n, const range &rng){
return tree_lca(rng.lo,n) == n && tree_gcd(rng.hi,n) == n;
}
/** test whether two ranges of tree nodes intersect */
bool scopes::ranges_intersect(const range &rng1, const range &rng2){
return tree_lca(rng1.lo,rng2.hi) == rng2.hi && tree_lca(rng1.hi,rng2.lo) == rng1.hi;
}
bool scopes::range_contained(const range &rng1, const range &rng2){
return tree_lca(rng2.lo,rng1.lo) == rng1.lo
&& tree_lca(rng1.hi,rng2.hi) == rng2.hi;
}
scopes::range scopes::range_lub(const range &rng1, const range &rng2){
range res;
res.lo = tree_gcd(rng1.lo,rng2.lo);
res.hi = tree_lca(rng1.hi,rng2.hi);
return res;
}
scopes::range scopes::range_glb(const range &rng1, const range &rng2){
range res;
res.lo = tree_lca(rng1.lo,rng2.lo);
res.hi = tree_gcd(rng1.hi,rng2.hi);
return res;
}
#else
namespace std {
template <>
class hash<scopes::range_lo > {
public:
size_t operator()(const scopes::range_lo &p) const {
return p.lo + (size_t)p.next;
}
};
}
template <> inline
size_t stdext::hash_value<scopes::range_lo >(const scopes::range_lo& p)
{
std::hash<scopes::range_lo> h;
return h(p);
}
namespace std {
template <>
class less<scopes::range_lo > {
public:
bool operator()(const scopes::range_lo &x, const scopes::range_lo &y) const {
return x.lo < y.lo || x.lo == y.lo && (size_t)x.next < (size_t)y.next;
}
};
}
struct range_op {
scopes::range_lo *x, *y;
int hi;
range_op(scopes::range_lo *_x, scopes::range_lo *_y, int _hi){
x = _x; y = _y; hi = _hi;
}
};
namespace std {
template <>
class hash<range_op > {
public:
size_t operator()(const range_op &p) const {
return (size_t) p.x + (size_t)p.y + p.hi;
}
};
}
template <> inline
size_t stdext::hash_value<range_op >(const range_op& p)
{
std::hash<range_op> h;
return h(p);
}
namespace std {
template <>
class less<range_op > {
public:
bool operator()(const range_op &x, const range_op &y) const {
return (size_t)x.x < (size_t)y.x || x.x == y.x &&
((size_t)x.y < (size_t)y.y || x.y == y.y && x.hi < y.hi);
}
};
}
struct range_tables {
hash_map<scopes::range_lo, scopes::range_lo *> unique;
hash_map<range_op,scopes::range_lo *> lub;
hash_map<range_op,scopes::range_lo *> glb;
};
scopes::range_lo *scopes::find_range_lo(int lo, range_lo *next){
range_lo foo(lo,next);
std::pair<range_lo,range_lo *> baz(foo,(range_lo *)0);
std::pair<hash_map<range_lo,scopes::range_lo *>::iterator,bool> bar = rt->unique.insert(baz);
if(bar.second)
bar.first->second = new range_lo(lo,next);
return bar.first->second;
//std::pair<hash_set<scopes::range_lo>::iterator,bool> bar = rt->unique.insert(foo);
// const range_lo *baz = &*(bar.first);
// return (range_lo *)baz; // exit const hell
}
scopes::range_lo *scopes::range_lub_lo(range_lo *rng1, range_lo *rng2){
if(!rng1) return rng2;
if(!rng2) return rng1;
if(rng1->lo > rng2->lo)
std::swap(rng1,rng2);
std::pair<range_op,range_lo *> foo(range_op(rng1,rng2,0),(range_lo *)0);
std::pair<hash_map<range_op,scopes::range_lo *>::iterator,bool> bar = rt->lub.insert(foo);
range_lo *&res = bar.first->second;
if(!bar.second) return res;
if(!(rng1->next && rng1->next->lo <= rng2->lo)){
for(int lo = rng1->lo; lo <= rng2->lo; lo = parents[lo])
if(lo == rng2->lo)
{rng2 = rng2->next; break;}
}
range_lo *baz = range_lub_lo(rng1->next,rng2);
res = find_range_lo(rng1->lo,baz);
return res;
}
scopes::range_lo *scopes::range_glb_lo(range_lo *rng1, range_lo *rng2, int hi){
if(!rng1) return rng1;
if(!rng2) return rng2;
if(rng1->lo > rng2->lo)
std::swap(rng1,rng2);
std::pair<range_op,range_lo *> cand(range_op(rng1,rng2,hi),(range_lo *)0);
std::pair<hash_map<range_op,scopes::range_lo *>::iterator,bool> bar = rt->glb.insert(cand);
range_lo *&res = bar.first->second;
if(!bar.second) return res;
range_lo *foo;
if(!(rng1->next && rng1->next->lo <= rng2->lo)){
int lim = hi;
if(rng1->next) lim = std::min(lim,rng1->next->lo);
int a = rng1->lo, b = rng2->lo;
while(a != b && b <= lim){
a = parents[a];
if(a > b)std::swap(a,b);
}
if(a == b && b <= lim){
foo = range_glb_lo(rng1->next,rng2->next,hi);
foo = find_range_lo(b,foo);
}
else
foo = range_glb_lo(rng2,rng1->next,hi);
}
else foo = range_glb_lo(rng1->next,rng2,hi);
res = foo;
return res;
}
/** computes the lub (smallest containing subtree) of two ranges */
scopes::range scopes::range_lub(const range &rng1, const range &rng2){
int hi = tree_lca(rng1.hi,rng2.hi);
if(hi == SHRT_MAX) return range_full();
range_lo *lo = range_lub_lo(rng1.lo,rng2.lo);
return range(hi,lo);
}
/** computes the glb (intersection) of two ranges */
scopes::range scopes::range_glb(const range &rng1, const range &rng2){
if(rng1.hi == SHRT_MAX) return rng2;
if(rng2.hi == SHRT_MAX) return rng1;
int hi = tree_gcd(rng1.hi,rng2.hi);
range_lo *lo = hi == SHRT_MIN ? 0 : range_glb_lo(rng1.lo,rng2.lo,hi);
if(!lo) hi = SHRT_MIN;
return range(hi,lo);
}
/** is this range empty? */
bool scopes::range_is_empty(const range &rng){
return rng.hi == SHRT_MIN;
}
/** return an empty range */
scopes::range scopes::range_empty(){
return range(SHRT_MIN,0);
}
/** return a full range */
scopes::range scopes::range_full(){
return range(SHRT_MAX,0);
}
/** return the maximal element of a range */
int scopes::range_max(const range &rng){
return rng.hi;
}
/** return a minimal (not necessarily unique) element of a range */
int scopes::range_min(const range &rng){
if(rng.hi == SHRT_MAX) return SHRT_MIN;
return rng.lo ? rng.lo->lo : SHRT_MAX;
}
/** return range consisting of downward closure of a point */
scopes::range scopes::range_downward(int _hi){
std::vector<bool> descendants(parents.size());
for(int i = descendants.size() - 1; i >= 0 ; i--)
descendants[i] = i == _hi || parents[i] < parents.size() && descendants[parents[i]];
for(unsigned i = 0; i < descendants.size() - 1; i++)
if(parents[i] < parents.size())
descendants[parents[i]] = false;
range_lo *foo = 0;
for(int i = descendants.size() - 1; i >= 0; --i)
if(descendants[i]) foo = find_range_lo(i,foo);
return range(_hi,foo);
}
/** add an element to a range */
void scopes::range_add(int i, range &n){
range foo = range(i, find_range_lo(i,0));
n = range_lub(foo,n);
}
/** Choose an element of rng1 that is near to rng2 */
int scopes::range_near(const range &rng1, const range &rng2){
int frame;
int thing = tree_lca(rng1.hi,rng2.hi);
if(thing != rng1.hi) return rng1.hi;
range line = range(rng1.hi,find_range_lo(rng2.hi,(range_lo *)0));
line = range_glb(line,rng1);
return range_min(line);
}
/** test whether a tree node is contained in a range */
bool scopes::in_range(int n, const range &rng){
range r = range_empty();
range_add(n,r);
r = range_glb(rng,r);
return !range_is_empty(r);
}
/** test whether two ranges of tree nodes intersect */
bool scopes::ranges_intersect(const range &rng1, const range &rng2){
range r = range_glb(rng1,rng2);
return !range_is_empty(r);
}
bool scopes::range_contained(const range &rng1, const range &rng2){
range r = range_glb(rng1,rng2);
return r.hi == rng1.hi && r.lo == rng1.lo;
}
#endif
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
iz3scopes.cpp
Abstract:
Calculations with scopes, for both sequence and tree interpolation.
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#include <assert.h>
#include <algorithm>
#include "iz3scopes.h"
/** computes the least common ancestor of two nodes in the tree, or SHRT_MAX if none */
int scopes::tree_lca(int n1, int n2){
if(!tree_mode())
return std::max(n1,n2);
if(n1 == SHRT_MIN) return n2;
if(n2 == SHRT_MIN) return n1;
if(n1 == SHRT_MAX || n2 == SHRT_MAX) return SHRT_MAX;
while(n1 != n2){
if(n1 == SHRT_MAX || n2 == SHRT_MAX) return SHRT_MAX;
assert(n1 >= 0 && n2 >= 0 && n1 < (int)parents.size() && n2 < (int)parents.size());
if(n1 < n2) n1 = parents[n1];
else n2 = parents[n2];
}
return n1;
}
/** computes the greatest common descendant two nodes in the tree, or SHRT_MIN if none */
int scopes::tree_gcd(int n1, int n2){
if(!tree_mode())
return std::min(n1,n2);
int foo = tree_lca(n1,n2);
if(foo == n1) return n2;
if(foo == n2) return n1;
return SHRT_MIN;
}
#ifndef FULL_TREE
/** test whether a tree node is contained in a range */
bool scopes::in_range(int n, const range &rng){
return tree_lca(rng.lo,n) == n && tree_gcd(rng.hi,n) == n;
}
/** test whether two ranges of tree nodes intersect */
bool scopes::ranges_intersect(const range &rng1, const range &rng2){
return tree_lca(rng1.lo,rng2.hi) == rng2.hi && tree_lca(rng1.hi,rng2.lo) == rng1.hi;
}
bool scopes::range_contained(const range &rng1, const range &rng2){
return tree_lca(rng2.lo,rng1.lo) == rng1.lo
&& tree_lca(rng1.hi,rng2.hi) == rng2.hi;
}
scopes::range scopes::range_lub(const range &rng1, const range &rng2){
range res;
res.lo = tree_gcd(rng1.lo,rng2.lo);
res.hi = tree_lca(rng1.hi,rng2.hi);
return res;
}
scopes::range scopes::range_glb(const range &rng1, const range &rng2){
range res;
res.lo = tree_lca(rng1.lo,rng2.lo);
res.hi = tree_gcd(rng1.hi,rng2.hi);
return res;
}
#else
namespace std {
template <>
class hash<scopes::range_lo > {
public:
size_t operator()(const scopes::range_lo &p) const {
return p.lo + (size_t)p.next;
}
};
}
template <> inline
size_t stdext::hash_value<scopes::range_lo >(const scopes::range_lo& p)
{
std::hash<scopes::range_lo> h;
return h(p);
}
namespace std {
template <>
class less<scopes::range_lo > {
public:
bool operator()(const scopes::range_lo &x, const scopes::range_lo &y) const {
return x.lo < y.lo || x.lo == y.lo && (size_t)x.next < (size_t)y.next;
}
};
}
struct range_op {
scopes::range_lo *x, *y;
int hi;
range_op(scopes::range_lo *_x, scopes::range_lo *_y, int _hi){
x = _x; y = _y; hi = _hi;
}
};
namespace std {
template <>
class hash<range_op > {
public:
size_t operator()(const range_op &p) const {
return (size_t) p.x + (size_t)p.y + p.hi;
}
};
}
template <> inline
size_t stdext::hash_value<range_op >(const range_op& p)
{
std::hash<range_op> h;
return h(p);
}
namespace std {
template <>
class less<range_op > {
public:
bool operator()(const range_op &x, const range_op &y) const {
return (size_t)x.x < (size_t)y.x || x.x == y.x &&
((size_t)x.y < (size_t)y.y || x.y == y.y && x.hi < y.hi);
}
};
}
struct range_tables {
hash_map<scopes::range_lo, scopes::range_lo *> unique;
hash_map<range_op,scopes::range_lo *> lub;
hash_map<range_op,scopes::range_lo *> glb;
};
scopes::range_lo *scopes::find_range_lo(int lo, range_lo *next){
range_lo foo(lo,next);
std::pair<range_lo,range_lo *> baz(foo,(range_lo *)0);
std::pair<hash_map<range_lo,scopes::range_lo *>::iterator,bool> bar = rt->unique.insert(baz);
if(bar.second)
bar.first->second = new range_lo(lo,next);
return bar.first->second;
//std::pair<hash_set<scopes::range_lo>::iterator,bool> bar = rt->unique.insert(foo);
// const range_lo *baz = &*(bar.first);
// return (range_lo *)baz; // exit const hell
}
scopes::range_lo *scopes::range_lub_lo(range_lo *rng1, range_lo *rng2){
if(!rng1) return rng2;
if(!rng2) return rng1;
if(rng1->lo > rng2->lo)
std::swap(rng1,rng2);
std::pair<range_op,range_lo *> foo(range_op(rng1,rng2,0),(range_lo *)0);
std::pair<hash_map<range_op,scopes::range_lo *>::iterator,bool> bar = rt->lub.insert(foo);
range_lo *&res = bar.first->second;
if(!bar.second) return res;
if(!(rng1->next && rng1->next->lo <= rng2->lo)){
for(int lo = rng1->lo; lo <= rng2->lo; lo = parents[lo])
if(lo == rng2->lo)
{rng2 = rng2->next; break;}
}
range_lo *baz = range_lub_lo(rng1->next,rng2);
res = find_range_lo(rng1->lo,baz);
return res;
}
scopes::range_lo *scopes::range_glb_lo(range_lo *rng1, range_lo *rng2, int hi){
if(!rng1) return rng1;
if(!rng2) return rng2;
if(rng1->lo > rng2->lo)
std::swap(rng1,rng2);
std::pair<range_op,range_lo *> cand(range_op(rng1,rng2,hi),(range_lo *)0);
std::pair<hash_map<range_op,scopes::range_lo *>::iterator,bool> bar = rt->glb.insert(cand);
range_lo *&res = bar.first->second;
if(!bar.second) return res;
range_lo *foo;
if(!(rng1->next && rng1->next->lo <= rng2->lo)){
int lim = hi;
if(rng1->next) lim = std::min(lim,rng1->next->lo);
int a = rng1->lo, b = rng2->lo;
while(a != b && b <= lim){
a = parents[a];
if(a > b)std::swap(a,b);
}
if(a == b && b <= lim){
foo = range_glb_lo(rng1->next,rng2->next,hi);
foo = find_range_lo(b,foo);
}
else
foo = range_glb_lo(rng2,rng1->next,hi);
}
else foo = range_glb_lo(rng1->next,rng2,hi);
res = foo;
return res;
}
/** computes the lub (smallest containing subtree) of two ranges */
scopes::range scopes::range_lub(const range &rng1, const range &rng2){
int hi = tree_lca(rng1.hi,rng2.hi);
if(hi == SHRT_MAX) return range_full();
range_lo *lo = range_lub_lo(rng1.lo,rng2.lo);
return range(hi,lo);
}
/** computes the glb (intersection) of two ranges */
scopes::range scopes::range_glb(const range &rng1, const range &rng2){
if(rng1.hi == SHRT_MAX) return rng2;
if(rng2.hi == SHRT_MAX) return rng1;
int hi = tree_gcd(rng1.hi,rng2.hi);
range_lo *lo = hi == SHRT_MIN ? 0 : range_glb_lo(rng1.lo,rng2.lo,hi);
if(!lo) hi = SHRT_MIN;
return range(hi,lo);
}
/** is this range empty? */
bool scopes::range_is_empty(const range &rng){
return rng.hi == SHRT_MIN;
}
/** return an empty range */
scopes::range scopes::range_empty(){
return range(SHRT_MIN,0);
}
/** return a full range */
scopes::range scopes::range_full(){
return range(SHRT_MAX,0);
}
/** return the maximal element of a range */
int scopes::range_max(const range &rng){
return rng.hi;
}
/** return a minimal (not necessarily unique) element of a range */
int scopes::range_min(const range &rng){
if(rng.hi == SHRT_MAX) return SHRT_MIN;
return rng.lo ? rng.lo->lo : SHRT_MAX;
}
/** return range consisting of downward closure of a point */
scopes::range scopes::range_downward(int _hi){
std::vector<bool> descendants(parents.size());
for(int i = descendants.size() - 1; i >= 0 ; i--)
descendants[i] = i == _hi || parents[i] < parents.size() && descendants[parents[i]];
for(unsigned i = 0; i < descendants.size() - 1; i++)
if(parents[i] < parents.size())
descendants[parents[i]] = false;
range_lo *foo = 0;
for(int i = descendants.size() - 1; i >= 0; --i)
if(descendants[i]) foo = find_range_lo(i,foo);
return range(_hi,foo);
}
/** add an element to a range */
void scopes::range_add(int i, range &n){
range foo = range(i, find_range_lo(i,0));
n = range_lub(foo,n);
}
/** Choose an element of rng1 that is near to rng2 */
int scopes::range_near(const range &rng1, const range &rng2){
int frame;
int thing = tree_lca(rng1.hi,rng2.hi);
if(thing != rng1.hi) return rng1.hi;
range line = range(rng1.hi,find_range_lo(rng2.hi,(range_lo *)0));
line = range_glb(line,rng1);
return range_min(line);
}
/** test whether a tree node is contained in a range */
bool scopes::in_range(int n, const range &rng){
range r = range_empty();
range_add(n,r);
r = range_glb(rng,r);
return !range_is_empty(r);
}
/** test whether two ranges of tree nodes intersect */
bool scopes::ranges_intersect(const range &rng1, const range &rng2){
range r = range_glb(rng1,rng2);
return !range_is_empty(r);
}
bool scopes::range_contained(const range &rng1, const range &rng2){
range r = range_glb(rng1,rng2);
return r.hi == rng1.hi && r.lo == rng1.lo;
}
#endif

View file

@ -1,197 +1,197 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
iz3scopes.h
Abstract:
Calculations with scopes, for both sequence and tree interpolation.
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#ifndef IZ3SOPES_H
#define IZ3SOPES_H
#include <vector>
#include <limits.h>
class scopes {
public:
/** Construct from parents vector. */
scopes(const std::vector<int> &_parents){
parents = _parents;
}
scopes(){
}
void initialize(const std::vector<int> &_parents){
parents = _parents;
}
/** The parents vector defining the tree structure */
std::vector<int> parents;
// #define FULL_TREE
#ifndef FULL_TREE
struct range {
range(){
lo = SHRT_MAX;
hi = SHRT_MIN;
}
short lo, hi;
};
/** computes the lub (smallest containing subtree) of two ranges */
range range_lub(const range &rng1, const range &rng2);
/** computes the glb (intersection) of two ranges */
range range_glb(const range &rng1, const range &rng2);
/** is this range empty? */
bool range_is_empty(const range &rng){
return rng.hi < rng.lo;
}
/** return an empty range */
range range_empty(){
range res;
res.lo = SHRT_MAX;
res.hi = SHRT_MIN;
return res;
}
/** return an empty range */
range range_full(){
range res;
res.lo = SHRT_MIN;
res.hi = SHRT_MAX;
return res;
}
/** return the maximal element of a range */
int range_max(const range &rng){
return rng.hi;
}
/** return a minimal (not necessarily unique) element of a range */
int range_min(const range &rng){
return rng.lo;
}
/** return range consisting of downward closure of a point */
range range_downward(int _hi){
range foo;
foo.lo = SHRT_MIN;
foo.hi = _hi;
return foo;
}
void range_add(int i, range &n){
#if 0
if(i < n.lo) n.lo = i;
if(i > n.hi) n.hi = i;
#else
range rng; rng.lo = i; rng.hi = i;
n = range_lub(rng,n);
#endif
}
/** Choose an element of rng1 that is near to rng2 */
int range_near(const range &rng1, const range &rng2){
int frame;
int thing = tree_lca(rng1.lo,rng2.hi);
if(thing == rng1.lo) frame = rng1.lo;
else frame = tree_gcd(thing,rng1.hi);
return frame;
}
#else
struct range_lo {
int lo;
range_lo *next;
range_lo(int _lo, range_lo *_next){
lo = _lo;
next = _next;
}
};
struct range {
int hi;
range_lo *lo;
range(int _hi, range_lo *_lo){
hi = _hi;
lo = _lo;
}
range(){
hi = SHRT_MIN;
lo = 0;
}
};
range_tables *rt;
/** computes the lub (smallest containing subtree) of two ranges */
range range_lub(const range &rng1, const range &rng2);
/** computes the glb (intersection) of two ranges */
range range_glb(const range &rng1, const range &rng2);
/** is this range empty? */
bool range_is_empty(const range &rng);
/** return an empty range */
range range_empty();
/** return a full range */
range range_full();
/** return the maximal element of a range */
int range_max(const range &rng);
/** return a minimal (not necessarily unique) element of a range */
int range_min(const range &rng);
/** return range consisting of downward closure of a point */
range range_downward(int _hi);
/** add an element to a range */
void range_add(int i, range &n);
/** Choose an element of rng1 that is near to rng2 */
int range_near(const range &rng1, const range &rng2);
range_lo *find_range_lo(int lo, range_lo *next);
range_lo *range_lub_lo(range_lo *rng1, range_lo *rng2);
range_lo *range_glb_lo(range_lo *rng1, range_lo *rng2, int lim);
#endif
/** test whether a tree node is contained in a range */
bool in_range(int n, const range &rng);
/** test whether two ranges of tree nodes intersect */
bool ranges_intersect(const range &rng1, const range &rng2);
/** test whether range rng1 contained in range rng2 */
bool range_contained(const range &rng1, const range &rng2);
private:
int tree_lca(int n1, int n2);
int tree_gcd(int n1, int n2);
bool tree_mode(){return parents.size() != 0;}
};
#endif
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
iz3scopes.h
Abstract:
Calculations with scopes, for both sequence and tree interpolation.
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#ifndef IZ3SOPES_H
#define IZ3SOPES_H
#include <vector>
#include <limits.h>
class scopes {
public:
/** Construct from parents vector. */
scopes(const std::vector<int> &_parents){
parents = _parents;
}
scopes(){
}
void initialize(const std::vector<int> &_parents){
parents = _parents;
}
/** The parents vector defining the tree structure */
std::vector<int> parents;
// #define FULL_TREE
#ifndef FULL_TREE
struct range {
range(){
lo = SHRT_MAX;
hi = SHRT_MIN;
}
short lo, hi;
};
/** computes the lub (smallest containing subtree) of two ranges */
range range_lub(const range &rng1, const range &rng2);
/** computes the glb (intersection) of two ranges */
range range_glb(const range &rng1, const range &rng2);
/** is this range empty? */
bool range_is_empty(const range &rng){
return rng.hi < rng.lo;
}
/** return an empty range */
range range_empty(){
range res;
res.lo = SHRT_MAX;
res.hi = SHRT_MIN;
return res;
}
/** return an empty range */
range range_full(){
range res;
res.lo = SHRT_MIN;
res.hi = SHRT_MAX;
return res;
}
/** return the maximal element of a range */
int range_max(const range &rng){
return rng.hi;
}
/** return a minimal (not necessarily unique) element of a range */
int range_min(const range &rng){
return rng.lo;
}
/** return range consisting of downward closure of a point */
range range_downward(int _hi){
range foo;
foo.lo = SHRT_MIN;
foo.hi = _hi;
return foo;
}
void range_add(int i, range &n){
#if 0
if(i < n.lo) n.lo = i;
if(i > n.hi) n.hi = i;
#else
range rng; rng.lo = i; rng.hi = i;
n = range_lub(rng,n);
#endif
}
/** Choose an element of rng1 that is near to rng2 */
int range_near(const range &rng1, const range &rng2){
int frame;
int thing = tree_lca(rng1.lo,rng2.hi);
if(thing == rng1.lo) frame = rng1.lo;
else frame = tree_gcd(thing,rng1.hi);
return frame;
}
#else
struct range_lo {
int lo;
range_lo *next;
range_lo(int _lo, range_lo *_next){
lo = _lo;
next = _next;
}
};
struct range {
int hi;
range_lo *lo;
range(int _hi, range_lo *_lo){
hi = _hi;
lo = _lo;
}
range(){
hi = SHRT_MIN;
lo = 0;
}
};
range_tables *rt;
/** computes the lub (smallest containing subtree) of two ranges */
range range_lub(const range &rng1, const range &rng2);
/** computes the glb (intersection) of two ranges */
range range_glb(const range &rng1, const range &rng2);
/** is this range empty? */
bool range_is_empty(const range &rng);
/** return an empty range */
range range_empty();
/** return a full range */
range range_full();
/** return the maximal element of a range */
int range_max(const range &rng);
/** return a minimal (not necessarily unique) element of a range */
int range_min(const range &rng);
/** return range consisting of downward closure of a point */
range range_downward(int _hi);
/** add an element to a range */
void range_add(int i, range &n);
/** Choose an element of rng1 that is near to rng2 */
int range_near(const range &rng1, const range &rng2);
range_lo *find_range_lo(int lo, range_lo *next);
range_lo *range_lub_lo(range_lo *rng1, range_lo *rng2);
range_lo *range_glb_lo(range_lo *rng1, range_lo *rng2, int lim);
#endif
/** test whether a tree node is contained in a range */
bool in_range(int n, const range &rng);
/** test whether two ranges of tree nodes intersect */
bool ranges_intersect(const range &rng1, const range &rng2);
/** test whether range rng1 contained in range rng2 */
bool range_contained(const range &rng1, const range &rng2);
private:
int tree_lca(int n1, int n2);
int tree_gcd(int n1, int n2);
bool tree_mode(){return parents.size() != 0;}
};
#endif

View file

@ -464,7 +464,7 @@ public:
for(int i = 0; i < 2; i++){ // try the second equality both ways
if(match_op(eq_ops_r[0],Select,sel_ops,2))
if(match_op(sel_ops[0],Store,sto_ops,3))
if(match_op(eq_ops_r[1],Select,sel_ops2,2))
if(match_op(eq_ops_r[1],Select,sel_ops2,2))
for(int j = 0; j < 2; j++){ // try the first equality both ways
if(eq_ops_l[0] == sto_ops[1]
&& eq_ops_l[1] == sel_ops[1]
@ -482,8 +482,8 @@ public:
// int frame = range_min(ast_scope(res)); TODO
// antes.push_back(std::pair<ast,int>(res,frame));
return;
}
std::swap(eq_ops_l[0],eq_ops_l[1]);
}
std::swap(eq_ops_l[0],eq_ops_l[1]);
}
std::swap(eq_ops_r[0],eq_ops_r[1]);
}

View file

@ -484,7 +484,7 @@ public:
for(int i = 0; i < 2; i++){ // try the second equality both ways
if(match_op(eq_ops_r[0],Select,sel_ops,2))
if(match_op(sel_ops[0],Store,sto_ops,3))
if(match_op(eq_ops_r[1],Select,sel_ops2,2))
if(match_op(eq_ops_r[1],Select,sel_ops2,2))
for(int j = 0; j < 2; j++){ // try the first equality both ways
if(eq_ops_l[0] == sto_ops[1]
&& eq_ops_l[1] == sel_ops[1]
@ -502,8 +502,8 @@ public:
int frame = range_min(ast_scope(res));
antes.push_back(std::pair<ast,int>(res,frame));
return;
}
std::swap(eq_ops_l[0],eq_ops_l[1]);
}
std::swap(eq_ops_l[0],eq_ops_l[1]);
}
std::swap(eq_ops_r[0],eq_ops_r[1]);
}