3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 09:05:31 +00:00

FPA refactoring in preparation for FPA support in the kernel.

Signed-off-by: Christoph M. Wintersteiger <cwinter@microsoft.com>
This commit is contained in:
Christoph M. Wintersteiger 2014-04-23 18:36:38 +01:00
parent 4d2d334999
commit fb4c07a2ea
9 changed files with 434 additions and 300 deletions

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,173 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
fpa2bv_converter.h
Abstract:
Conversion routines for Floating Point -> Bit-Vector
Author:
Christoph (cwinter) 2012-02-09
Notes:
--*/
#ifndef _FPA2BV_CONVERTER_
#define _FPA2BV_CONVERTER_
#include"ast.h"
#include"obj_hashtable.h"
#include"ref_util.h"
#include"float_decl_plugin.h"
#include"bv_decl_plugin.h"
#include"basic_simplifier_plugin.h"
typedef enum { BV_RM_TIES_TO_AWAY=0, BV_RM_TIES_TO_EVEN=1, BV_RM_TO_NEGATIVE=2, BV_RM_TO_POSITIVE=3, BV_RM_TO_ZERO=4 } BV_RM_VAL;
struct func_decl_triple {
func_decl_triple () { f_sgn = 0; f_sig = 0; f_exp = 0; }
func_decl_triple (func_decl * sgn, func_decl * sig, func_decl * exp)
{
f_sgn = sgn;
f_sig = sig;
f_exp = exp;
}
func_decl * f_sgn;
func_decl * f_sig;
func_decl * f_exp;
};
class fpa2bv_converter {
ast_manager & m;
basic_simplifier_plugin m_simp;
float_util m_util;
mpf_manager & m_mpf_manager;
unsynch_mpz_manager & m_mpz_manager;
bv_util m_bv_util;
float_decl_plugin * m_plugin;
obj_map<func_decl, expr*> m_const2bv;
obj_map<func_decl, expr*> m_rm_const2bv;
obj_map<func_decl, func_decl*> m_uf2bvuf;
obj_map<func_decl, func_decl_triple> m_uf23bvuf;
public:
fpa2bv_converter(ast_manager & m);
~fpa2bv_converter();
float_util & fu() { return m_util; }
bv_util & bu() { return m_bv_util; }
bool is_float(sort * s) { return m_util.is_float(s); }
bool is_float(expr * e) { return is_app(e) && m_util.is_float(to_app(e)->get_decl()->get_range()); }
bool is_float_family(func_decl * f) { return f->get_family_id() == m_util.get_family_id(); }
bool is_rm_sort(sort * s) { return m_util.is_rm(s); }
void mk_triple(expr * sign, expr * significand, expr * exponent, expr_ref & result) {
SASSERT(m_bv_util.is_bv(sign) && m_bv_util.get_bv_size(sign) == 1);
SASSERT(m_bv_util.is_bv(significand));
SASSERT(m_bv_util.is_bv(exponent));
result = m.mk_app(m_util.get_family_id(), OP_TO_FLOAT, sign, significand, exponent);
}
void mk_eq(expr * a, expr * b, expr_ref & result);
void mk_ite(expr * c, expr * t, expr * f, expr_ref & result);
void mk_rounding_mode(func_decl * f, expr_ref & result);
void mk_value(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_const(func_decl * f, expr_ref & result);
void mk_rm_const(func_decl * f, expr_ref & result);
void mk_uninterpreted_function(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_var(unsigned base_inx, sort * srt, expr_ref & result);
void mk_plus_inf(func_decl * f, expr_ref & result);
void mk_minus_inf(func_decl * f, expr_ref & result);
void mk_nan(func_decl * f, expr_ref & result);
void mk_nzero(func_decl *f, expr_ref & result);
void mk_pzero(func_decl *f, expr_ref & result);
void mk_add(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_sub(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_uminus(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_mul(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_div(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_remainder(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_abs(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_min(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_max(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_fusedma(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_sqrt(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_round_to_integral(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_float_eq(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_float_lt(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_float_gt(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_float_le(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_float_ge(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_is_zero(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_is_nzero(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_is_pzero(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_is_sign_minus(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_is_nan(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_is_inf(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_is_normal(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_is_subnormal(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_to_float(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_to_ieee_bv(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_fp(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_to_fp_unsigned(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_to_ubv(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_to_sbv(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_to_real(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
obj_map<func_decl, expr*> const & const2bv() const { return m_const2bv; }
obj_map<func_decl, expr*> const & rm_const2bv() const { return m_rm_const2bv; }
obj_map<func_decl, func_decl*> const & uf2bvuf() const { return m_uf2bvuf; }
obj_map<func_decl, func_decl_triple> const & uf23bvuf() const { return m_uf23bvuf; }
void dbg_decouple(const char * prefix, expr_ref & e);
expr_ref_vector extra_assertions;
protected:
void split(expr * e, expr * & sgn, expr * & sig, expr * & exp) const;
void mk_is_nan(expr * e, expr_ref & result);
void mk_is_inf(expr * e, expr_ref & result);
void mk_is_pinf(expr * e, expr_ref & result);
void mk_is_ninf(expr * e, expr_ref & result);
void mk_is_pos(expr * e, expr_ref & result);
void mk_is_neg(expr * e, expr_ref & result);
void mk_is_zero(expr * e, expr_ref & result);
void mk_is_nzero(expr * e, expr_ref & result);
void mk_is_pzero(expr * e, expr_ref & result);
void mk_is_denormal(expr * e, expr_ref & result);
void mk_is_normal(expr * e, expr_ref & result);
void mk_is_rm(expr * e, BV_RM_VAL rm, expr_ref & result);
void mk_top_exp(unsigned sz, expr_ref & result);
void mk_bot_exp(unsigned sz, expr_ref & result);
void mk_min_exp(unsigned ebits, expr_ref & result);
void mk_max_exp(unsigned ebits, expr_ref & result);
void mk_leading_zeros(expr * e, unsigned max_bits, expr_ref & result);
void mk_bias(expr * e, expr_ref & result);
void mk_unbias(expr * e, expr_ref & result);
void unpack(expr * e, expr_ref & sgn, expr_ref & sig, expr_ref & exp, expr_ref & lz, bool normalize);
void round(sort * s, expr_ref & rm, expr_ref & sgn, expr_ref & sig, expr_ref & exp, expr_ref & result);
void add_core(unsigned sbits, unsigned ebits, expr_ref & rm,
expr_ref & c_sgn, expr_ref & c_sig, expr_ref & c_exp, expr_ref & d_sgn, expr_ref & d_sig, expr_ref & d_exp,
expr_ref & res_sgn, expr_ref & res_sig, expr_ref & res_exp);
};
#endif

View file

@ -0,0 +1,269 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
fpa2bv_rewriter.h
Abstract:
Rewriter for converting FPA to BV
Author:
Christoph (cwinter) 2012-02-09
Notes:
--*/
#ifndef _FPA2BV_REWRITER_H_
#define _FPA2BV_REWRITER_H_
#include"cooperate.h"
#include"rewriter_def.h"
#include"bv_decl_plugin.h"
#include"fpa2bv_converter.h"
struct fpa2bv_rewriter_cfg : public default_rewriter_cfg {
ast_manager & m_manager;
expr_ref_vector m_out;
fpa2bv_converter & m_conv;
sort_ref_vector m_bindings;
unsigned long long m_max_memory;
unsigned m_max_steps;
ast_manager & m() const { return m_manager; }
fpa2bv_rewriter_cfg(ast_manager & m, fpa2bv_converter & c, params_ref const & p):
m_manager(m),
m_out(m),
m_conv(c),
m_bindings(m) {
updt_params(p);
// We need to make sure that the mananger has the BV plugin loaded.
symbol s_bv("bv");
if (!m_manager.has_plugin(s_bv))
m_manager.register_plugin(s_bv, alloc(bv_decl_plugin));
}
~fpa2bv_rewriter_cfg() {
}
void cleanup_buffers() {
m_out.finalize();
}
void reset() {
}
void updt_params(params_ref const & p) {
m_max_memory = megabytes_to_bytes(p.get_uint("max_memory", UINT_MAX));
m_max_steps = p.get_uint("max_steps", UINT_MAX);
}
bool max_steps_exceeded(unsigned num_steps) const {
cooperate("fpa2bv");
if (memory::get_allocation_size() > m_max_memory)
throw tactic_exception(TACTIC_MAX_MEMORY_MSG);
return num_steps > m_max_steps;
}
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
TRACE("fpa2bv_rw", tout << "APP: " << f->get_name() << std::endl; );
if (num == 0 && f->get_family_id() == null_family_id && m_conv.is_float(f->get_range())) {
m_conv.mk_const(f, result);
return BR_DONE;
}
if (num == 0 && f->get_family_id() == null_family_id && m_conv.is_rm_sort(f->get_range())) {
m_conv.mk_rm_const(f, result);
return BR_DONE;
}
if (m().is_eq(f)) {
SASSERT(num == 2);
if (m_conv.is_float(args[0])) {
m_conv.mk_eq(args[0], args[1], result);
return BR_DONE;
}
return BR_FAILED;
}
if (m().is_ite(f)) {
SASSERT(num == 3);
if (m_conv.is_float(args[1])) {
m_conv.mk_ite(args[0], args[1], args[2], result);
return BR_DONE;
}
return BR_FAILED;
}
if (m_conv.is_float_family(f)) {
switch (f->get_decl_kind()) {
case OP_RM_NEAREST_TIES_TO_AWAY:
case OP_RM_NEAREST_TIES_TO_EVEN:
case OP_RM_TOWARD_NEGATIVE:
case OP_RM_TOWARD_POSITIVE:
case OP_RM_TOWARD_ZERO: m_conv.mk_rounding_mode(f, result); return BR_DONE;
case OP_FLOAT_VALUE: m_conv.mk_value(f, num, args, result); return BR_DONE;
case OP_FLOAT_PLUS_INF: m_conv.mk_plus_inf(f, result); return BR_DONE;
case OP_FLOAT_MINUS_INF: m_conv.mk_minus_inf(f, result); return BR_DONE;
case OP_FLOAT_NAN: m_conv.mk_nan(f, result); return BR_DONE;
case OP_FLOAT_ADD: m_conv.mk_add(f, num, args, result); return BR_DONE;
case OP_FLOAT_SUB: m_conv.mk_sub(f, num, args, result); return BR_DONE;
case OP_FLOAT_UMINUS: m_conv.mk_uminus(f, num, args, result); return BR_DONE;
case OP_FLOAT_MUL: m_conv.mk_mul(f, num, args, result); return BR_DONE;
case OP_FLOAT_DIV: m_conv.mk_div(f, num, args, result); return BR_DONE;
case OP_FLOAT_REM: m_conv.mk_remainder(f, num, args, result); return BR_DONE;
case OP_FLOAT_ABS: m_conv.mk_abs(f, num, args, result); return BR_DONE;
case OP_FLOAT_MIN: m_conv.mk_min(f, num, args, result); return BR_DONE;
case OP_FLOAT_MAX: m_conv.mk_max(f, num, args, result); return BR_DONE;
case OP_FLOAT_FUSED_MA: m_conv.mk_fusedma(f, num, args, result); return BR_DONE;
case OP_FLOAT_SQRT: m_conv.mk_sqrt(f, num, args, result); return BR_DONE;
case OP_FLOAT_ROUND_TO_INTEGRAL: m_conv.mk_round_to_integral(f, num, args, result); return BR_DONE;
case OP_FLOAT_EQ: m_conv.mk_float_eq(f, num, args, result); return BR_DONE;
case OP_FLOAT_LT: m_conv.mk_float_lt(f, num, args, result); return BR_DONE;
case OP_FLOAT_GT: m_conv.mk_float_gt(f, num, args, result); return BR_DONE;
case OP_FLOAT_LE: m_conv.mk_float_le(f, num, args, result); return BR_DONE;
case OP_FLOAT_GE: m_conv.mk_float_ge(f, num, args, result); return BR_DONE;
case OP_FLOAT_IS_ZERO: m_conv.mk_is_zero(f, num, args, result); return BR_DONE;
case OP_FLOAT_IS_NZERO: m_conv.mk_is_nzero(f, num, args, result); return BR_DONE;
case OP_FLOAT_IS_PZERO: m_conv.mk_is_pzero(f, num, args, result); return BR_DONE;
case OP_FLOAT_IS_NAN: m_conv.mk_is_nan(f, num, args, result); return BR_DONE;
case OP_FLOAT_IS_INF: m_conv.mk_is_inf(f, num, args, result); return BR_DONE;
case OP_FLOAT_IS_NORMAL: m_conv.mk_is_normal(f, num, args, result); return BR_DONE;
case OP_FLOAT_IS_SUBNORMAL: m_conv.mk_is_subnormal(f, num, args, result); return BR_DONE;
case OP_FLOAT_IS_SIGN_MINUS: m_conv.mk_is_sign_minus(f, num, args, result); return BR_DONE;
case OP_TO_FLOAT: m_conv.mk_to_float(f, num, args, result); return BR_DONE;
case OP_TO_IEEE_BV: m_conv.mk_to_ieee_bv(f, num, args, result); return BR_DONE;
case OP_FLOAT_FP: m_conv.mk_fp(f, num, args, result); return BR_DONE;
case OP_FLOAT_TO_FP_UNSIGNED: m_conv.mk_to_fp_unsigned(f, num, args, result); return BR_DONE;
case OP_FLOAT_TO_UBV: m_conv.mk_to_ubv(f, num, args, result); return BR_DONE;
case OP_FLOAT_TO_SBV: m_conv.mk_to_sbv(f, num, args, result); return BR_DONE;
case OP_FLOAT_TO_REAL: m_conv.mk_to_real(f, num, args, result); return BR_DONE;
default:
TRACE("fpa2bv", tout << "unsupported operator: " << f->get_name() << "\n";
for (unsigned i = 0; i < num; i++) tout << mk_ismt2_pp(args[i], m()) << std::endl;);
throw tactic_exception("NYI");
}
}
if (f->get_family_id() == null_family_id)
{
bool is_float_uf = m_conv.is_float(f->get_range());
unsigned i = 0;
while (!is_float_uf && i < num)
{
is_float_uf = m_conv.is_float(f->get_domain()[i]);
i++;
}
if (is_float_uf)
{
m_conv.mk_uninterpreted_function(f, num, args, result);
return BR_DONE;
}
}
return BR_FAILED;
}
bool pre_visit(expr * t)
{
TRACE("fpa2bv", tout << "pre_visit: " << mk_ismt2_pp(t, m()) << std::endl;);
if (is_quantifier(t)) {
quantifier * q = to_quantifier(t);
TRACE("fpa2bv", tout << "pre_visit quantifier [" << q->get_id() << "]: " << mk_ismt2_pp(q->get_expr(), m()) << std::endl;);
sort_ref_vector new_bindings(m_manager);
for (unsigned i = 0 ; i < q->get_num_decls(); i++)
new_bindings.push_back(q->get_decl_sort(i));
SASSERT(new_bindings.size() == q->get_num_decls());
m_bindings.append(new_bindings);
}
return true;
}
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr) {
unsigned curr_sz = m_bindings.size();
SASSERT(old_q->get_num_decls() <= curr_sz);
unsigned num_decls = old_q->get_num_decls();
unsigned old_sz = curr_sz - num_decls;
string_buffer<> name_buffer;
ptr_buffer<sort> new_decl_sorts;
sbuffer<symbol> new_decl_names;
for (unsigned i = 0; i < num_decls; i++) {
symbol const & n = old_q->get_decl_name(i);
sort * s = old_q->get_decl_sort(i);
if (m_conv.is_float(s)) {
unsigned ebits = m_conv.fu().get_ebits(s);
unsigned sbits = m_conv.fu().get_sbits(s);
name_buffer.reset();
name_buffer << n << ".bv";
new_decl_names.push_back(symbol(name_buffer.c_str()));
new_decl_sorts.push_back(m_conv.bu().mk_sort(sbits+ebits));
}
else {
new_decl_sorts.push_back(s);
new_decl_names.push_back(n);
}
}
result = m().mk_quantifier(old_q->is_forall(), new_decl_sorts.size(), new_decl_sorts.c_ptr(), new_decl_names.c_ptr(),
new_body, old_q->get_weight(), old_q->get_qid(), old_q->get_skid(),
old_q->get_num_patterns(), new_patterns, old_q->get_num_no_patterns(), new_no_patterns);
result_pr = 0;
m_bindings.shrink(old_sz);
TRACE("fpa2bv", tout << "reduce_quantifier[" << old_q->get_depth() << "]: " <<
mk_ismt2_pp(old_q->get_expr(), m()) << std::endl <<
" new body: " << mk_ismt2_pp(new_body, m()) << std::endl;
tout << "result = " << mk_ismt2_pp(result, m()) << std::endl;);
return true;
}
bool reduce_var(var * t, expr_ref & result, proof_ref & result_pr) {
if (t->get_idx() >= m_bindings.size())
return false;
// unsigned inx = m_bindings.size() - t->get_idx() - 1;
expr_ref new_exp(m());
sort * s = t->get_sort();
if (m_conv.is_float(s))
{
expr_ref new_var(m());
unsigned ebits = m_conv.fu().get_ebits(s);
unsigned sbits = m_conv.fu().get_sbits(s);
new_var = m().mk_var(t->get_idx(), m_conv.bu().mk_sort(sbits+ebits));
m_conv.mk_triple(m_conv.bu().mk_extract(sbits+ebits-1, sbits+ebits-1, new_var),
m_conv.bu().mk_extract(sbits+ebits-2, ebits, new_var),
m_conv.bu().mk_extract(ebits-1, 0, new_var),
new_exp);
}
else
new_exp = m().mk_var(t->get_idx(), s);
result = new_exp;
result_pr = 0;
TRACE("fpa2bv", tout << "reduce_var: " << mk_ismt2_pp(t, m()) << " -> " << mk_ismt2_pp(result, m()) << std::endl;);
return true;
}
};
template class rewriter_tpl<fpa2bv_rewriter_cfg>;
struct fpa2bv_rewriter : public rewriter_tpl<fpa2bv_rewriter_cfg> {
fpa2bv_rewriter_cfg m_cfg;
fpa2bv_rewriter(ast_manager & m, fpa2bv_converter & c, params_ref const & p):
rewriter_tpl<fpa2bv_rewriter_cfg>(m, m.proofs_enabled(), m_cfg),
m_cfg(m, c, p) {
}
};
#endif