mirror of
				https://github.com/Z3Prover/z3
				synced 2025-11-04 05:19:11 +00:00 
			
		
		
		
	merge
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
						commit
						faf96ca910
					
				
					 76 changed files with 2729 additions and 713 deletions
				
			
		
							
								
								
									
										50
									
								
								examples/python/data/horn1.smt2
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										50
									
								
								examples/python/data/horn1.smt2
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,50 @@
 | 
			
		|||
(declare-rel Goal (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
 | 
			
		||||
(declare-rel Invariant (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
 | 
			
		||||
(declare-var A Bool)
 | 
			
		||||
(declare-var B Bool)
 | 
			
		||||
(declare-var C Bool)
 | 
			
		||||
(declare-var D Bool)
 | 
			
		||||
(declare-var E Bool)
 | 
			
		||||
(declare-var F Bool)
 | 
			
		||||
(declare-var G Bool)
 | 
			
		||||
(declare-var H Bool)
 | 
			
		||||
(declare-var I Bool)
 | 
			
		||||
(declare-var J Bool)
 | 
			
		||||
(declare-var K Bool)
 | 
			
		||||
(declare-var L Bool)
 | 
			
		||||
(declare-var M Bool)
 | 
			
		||||
(declare-var N Bool)
 | 
			
		||||
(declare-var O Bool)
 | 
			
		||||
(declare-var P Bool)
 | 
			
		||||
(declare-var Q Bool)
 | 
			
		||||
(declare-var R Bool)
 | 
			
		||||
(declare-var S Bool)
 | 
			
		||||
(declare-var T Bool)
 | 
			
		||||
(declare-var U Bool)
 | 
			
		||||
(declare-var V Bool)
 | 
			
		||||
(declare-var W Bool)
 | 
			
		||||
(declare-var X Bool)
 | 
			
		||||
(rule (=> (not (or L K J I H G F E D C B A)) (Invariant L K J I H G F E D C B A)))
 | 
			
		||||
(rule (let ((a!1 (and (Invariant X W V U T S R Q P O N M)
 | 
			
		||||
                (=> (not (and true)) (not F))
 | 
			
		||||
                (=> (not (and true)) (not E))
 | 
			
		||||
                (=> (not (and W)) (not D))
 | 
			
		||||
                (=> (not (and W)) (not C))
 | 
			
		||||
                (=> (not (and U)) (not B))
 | 
			
		||||
                (=> (not (and U)) (not A))
 | 
			
		||||
                (= L (xor F X))
 | 
			
		||||
                (= K (xor E W))
 | 
			
		||||
                (= J (xor D V))
 | 
			
		||||
                (= I (xor C U))
 | 
			
		||||
                (= H (xor B T))
 | 
			
		||||
                (= G (xor A S))
 | 
			
		||||
                (=> D (not E))
 | 
			
		||||
                (=> C (not E))
 | 
			
		||||
                (=> B (not C))
 | 
			
		||||
                (=> A (not C))
 | 
			
		||||
                ((_ at-most 5) L K J I H G))))
 | 
			
		||||
  (=> a!1 (Invariant L K J I H G F E D C B A))))
 | 
			
		||||
(rule (=> (and (Invariant L K J I H G F E D C B A) L (not K) J (not I) H G)
 | 
			
		||||
    (Goal L K J I H G F E D C B A)))
 | 
			
		||||
 | 
			
		||||
(query Goal)
 | 
			
		||||
							
								
								
									
										44
									
								
								examples/python/data/horn2.smt2
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										44
									
								
								examples/python/data/horn2.smt2
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,44 @@
 | 
			
		|||
(declare-rel Invariant (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
 | 
			
		||||
(declare-rel Goal (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
 | 
			
		||||
(declare-var A Bool)
 | 
			
		||||
(declare-var B Bool)
 | 
			
		||||
(declare-var C Bool)
 | 
			
		||||
(declare-var D Bool)
 | 
			
		||||
(declare-var E Bool)
 | 
			
		||||
(declare-var F Bool)
 | 
			
		||||
(declare-var G Bool)
 | 
			
		||||
(declare-var H Bool)
 | 
			
		||||
(declare-var I Bool)
 | 
			
		||||
(declare-var J Bool)
 | 
			
		||||
(declare-var K Bool)
 | 
			
		||||
(declare-var L Bool)
 | 
			
		||||
(declare-var M Bool)
 | 
			
		||||
(declare-var N Bool)
 | 
			
		||||
(declare-var O Bool)
 | 
			
		||||
(declare-var P Bool)
 | 
			
		||||
(declare-var Q Bool)
 | 
			
		||||
(declare-var R Bool)
 | 
			
		||||
(declare-var S Bool)
 | 
			
		||||
(declare-var T Bool)
 | 
			
		||||
(rule (=> (not (or J I H G F E D C B A)) (Invariant J I H G F E D C B A)))
 | 
			
		||||
(rule (let ((a!1 (and (Invariant T S R Q P O N M L K)
 | 
			
		||||
                (=> (not (and true)) (not E))
 | 
			
		||||
                (=> (not (and T)) (not D))
 | 
			
		||||
                (=> (not (and S)) (not C))
 | 
			
		||||
                (=> (not (and R)) (not B))
 | 
			
		||||
                (=> (not (and Q)) (not A))
 | 
			
		||||
                (= J (xor E T))
 | 
			
		||||
                (= I (xor D S))
 | 
			
		||||
                (= H (xor C R))
 | 
			
		||||
                (= G (xor B Q))
 | 
			
		||||
                (= F (xor A P))
 | 
			
		||||
                (=> D (not E))
 | 
			
		||||
                (=> C (not D))
 | 
			
		||||
                (=> B (not C))
 | 
			
		||||
                (=> A (not B))
 | 
			
		||||
                ((_ at-most 3) J I H G F))))
 | 
			
		||||
  (=> a!1 (Invariant J I H G F E D C B A))))
 | 
			
		||||
(rule (=> (and (Invariant J I H G F E D C B A) (not J) (not I) (not H) (not G) F)
 | 
			
		||||
    (Goal J I H G F E D C B A)))
 | 
			
		||||
 | 
			
		||||
(query Goal)
 | 
			
		||||
							
								
								
									
										438
									
								
								examples/python/mini_ic3.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										438
									
								
								examples/python/mini_ic3.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,438 @@
 | 
			
		|||
from z3 import *
 | 
			
		||||
import heapq
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Simplistic (and fragile) converter from
 | 
			
		||||
# a class of Horn clauses corresponding to 
 | 
			
		||||
# a transition system into a transition system
 | 
			
		||||
# representation as <init, trans, goal>
 | 
			
		||||
# It assumes it is given three Horn clauses
 | 
			
		||||
# of the form:
 | 
			
		||||
#  init(x) => Invariant(x)
 | 
			
		||||
#  Invariant(x) and trans(x,x') => Invariant(x')
 | 
			
		||||
#  Invariant(x) and goal(x) => Goal(x)
 | 
			
		||||
# where Invariant and Goal are uninterpreted predicates
 | 
			
		||||
    
 | 
			
		||||
class Horn2Transitions:
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        self.trans = True
 | 
			
		||||
        self.init = True
 | 
			
		||||
        self.goal = True
 | 
			
		||||
        self.index = 0
 | 
			
		||||
        
 | 
			
		||||
    def parse(self, file):
 | 
			
		||||
        fp = Fixedpoint()
 | 
			
		||||
        goals = fp.parse_file(file)
 | 
			
		||||
        for r in fp.get_rules():
 | 
			
		||||
            if not is_quantifier(r):
 | 
			
		||||
                continue
 | 
			
		||||
            b = r.body()
 | 
			
		||||
            if not is_implies(b):
 | 
			
		||||
                continue
 | 
			
		||||
            f = b.arg(0)
 | 
			
		||||
            g = b.arg(1)
 | 
			
		||||
            if self.is_goal(f, g):
 | 
			
		||||
                continue
 | 
			
		||||
            if self.is_transition(f, g):
 | 
			
		||||
                continue
 | 
			
		||||
            if self.is_init(f, g):
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
    def is_pred(self, p, name):
 | 
			
		||||
        return is_app(p) and p.decl().name() == name
 | 
			
		||||
    
 | 
			
		||||
    def is_goal(self, body, head):
 | 
			
		||||
        if not self.is_pred(head, "Goal"):
 | 
			
		||||
            return False
 | 
			
		||||
        pred, inv = self.is_body(body)
 | 
			
		||||
        if pred is None:
 | 
			
		||||
            return False
 | 
			
		||||
        self.goal = self.subst_vars("x", inv, pred)
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
    def is_body(self, body):
 | 
			
		||||
        if not is_and(body):
 | 
			
		||||
            return None, None
 | 
			
		||||
        fmls = [f for f in body.children() if self.is_inv(f) is None]
 | 
			
		||||
        inv = None
 | 
			
		||||
        for f in body.children():
 | 
			
		||||
            if self.is_inv(f) is not None:
 | 
			
		||||
                inv = f;
 | 
			
		||||
                break
 | 
			
		||||
        return And(fmls), inv
 | 
			
		||||
 | 
			
		||||
    def is_inv(self, f):
 | 
			
		||||
        if self.is_pred(f, "Invariant"):
 | 
			
		||||
            return f
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    def is_transition(self, body, head):
 | 
			
		||||
        pred, inv0 = self.is_body(body)
 | 
			
		||||
        if pred is None:
 | 
			
		||||
            return False
 | 
			
		||||
        inv1 = self.is_inv(head)
 | 
			
		||||
        if inv1 is None:
 | 
			
		||||
            return False
 | 
			
		||||
        pred = self.subst_vars("x",  inv0, pred)
 | 
			
		||||
        self.xs = self.vars
 | 
			
		||||
        pred = self.subst_vars("xn", inv1, pred)
 | 
			
		||||
        self.xns = self.vars
 | 
			
		||||
        self.trans = pred
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
    def is_init(self, body, head):
 | 
			
		||||
        for f in body.children():
 | 
			
		||||
            if self.is_inv(f) is not None:
 | 
			
		||||
               return False
 | 
			
		||||
        inv = self.is_inv(head)
 | 
			
		||||
        if inv is None:
 | 
			
		||||
            return False
 | 
			
		||||
        self.init = self.subst_vars("x", inv, body)
 | 
			
		||||
        return True
 | 
			
		||||
    
 | 
			
		||||
    def subst_vars(self, prefix, inv, fml):
 | 
			
		||||
        subst = self.mk_subst(prefix, inv)
 | 
			
		||||
        self.vars = [ v for (k,v) in subst ]
 | 
			
		||||
        return substitute(fml, subst)
 | 
			
		||||
 | 
			
		||||
    def mk_subst(self, prefix, inv):
 | 
			
		||||
        self.index = 0
 | 
			
		||||
        return [(f, self.mk_bool(prefix)) for f in inv.children()]
 | 
			
		||||
 | 
			
		||||
    def mk_bool(self, prefix):
 | 
			
		||||
        self.index += 1
 | 
			
		||||
        return Bool("%s%d" % (prefix, self.index))
 | 
			
		||||
 | 
			
		||||
# Produce a finite domain solver.
 | 
			
		||||
# The theory QF_FD covers bit-vector formulas
 | 
			
		||||
# and pseudo-Boolean constraints.
 | 
			
		||||
# By default cardinality and pseudo-Boolean 
 | 
			
		||||
# constraints are converted to clauses. To override
 | 
			
		||||
# this default for cardinality constraints
 | 
			
		||||
# we set sat.cardinality.solver to True
 | 
			
		||||
 | 
			
		||||
def fd_solver():
 | 
			
		||||
    s = SolverFor("QF_FD")
 | 
			
		||||
    s.set("sat.cardinality.solver", True)
 | 
			
		||||
    return s
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# negate, avoid double negation
 | 
			
		||||
def negate(f):
 | 
			
		||||
    if is_not(f):
 | 
			
		||||
        return f.arg(0)
 | 
			
		||||
    else:
 | 
			
		||||
        return Not(f)
 | 
			
		||||
 | 
			
		||||
def cube2clause(cube):
 | 
			
		||||
    return Or([negate(f) for f in cube])
 | 
			
		||||
 | 
			
		||||
class State:
 | 
			
		||||
    def __init__(self, s):
 | 
			
		||||
        self.R = set([])
 | 
			
		||||
        self.solver = s
 | 
			
		||||
 | 
			
		||||
    def add(self, clause):
 | 
			
		||||
        if clause not in self.R:
 | 
			
		||||
           self.R |= { clause }
 | 
			
		||||
           self.solver.add(clause)
 | 
			
		||||
    
 | 
			
		||||
class Goal:
 | 
			
		||||
    def __init__(self, cube, parent, level):
 | 
			
		||||
        self.level = level
 | 
			
		||||
        self.cube = cube
 | 
			
		||||
        self.parent = parent
 | 
			
		||||
 | 
			
		||||
def is_seq(f):
 | 
			
		||||
    return isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector)
 | 
			
		||||
 | 
			
		||||
# Check if the initial state is bad
 | 
			
		||||
def check_disjoint(a, b):
 | 
			
		||||
    s = fd_solver()
 | 
			
		||||
    s.add(a)
 | 
			
		||||
    s.add(b)
 | 
			
		||||
    return unsat == s.check()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Remove clauses that are subsumed
 | 
			
		||||
def prune(R):
 | 
			
		||||
    removed = set([])
 | 
			
		||||
    s = fd_solver()
 | 
			
		||||
    for f1 in R:
 | 
			
		||||
        s.push()
 | 
			
		||||
        for f2 in R:
 | 
			
		||||
            if f2 not in removed:
 | 
			
		||||
               s.add(Not(f2) if f1.eq(f2) else f2)
 | 
			
		||||
        if s.check() == unsat:
 | 
			
		||||
            removed |= { f1 }
 | 
			
		||||
        s.pop()
 | 
			
		||||
    return R - removed
 | 
			
		||||
                
 | 
			
		||||
class MiniIC3:
 | 
			
		||||
    def __init__(self, init, trans, goal, x0, xn):
 | 
			
		||||
        self.x0 = x0
 | 
			
		||||
        self.xn = xn
 | 
			
		||||
        self.init = init
 | 
			
		||||
        self.bad = goal
 | 
			
		||||
        self.trans = trans
 | 
			
		||||
        self.min_cube_solver = fd_solver()
 | 
			
		||||
        self.min_cube_solver.add(Not(trans))
 | 
			
		||||
        self.goals = []
 | 
			
		||||
        s = State(fd_solver())
 | 
			
		||||
        s.add(init)
 | 
			
		||||
        s.solver.add(trans)
 | 
			
		||||
        self.states = [s]
 | 
			
		||||
        self.s_bad = fd_solver()
 | 
			
		||||
        self.s_good = fd_solver()
 | 
			
		||||
        self.s_bad.add(self.bad)
 | 
			
		||||
        self.s_good.add(Not(self.bad))        
 | 
			
		||||
        
 | 
			
		||||
    def next(self, f):
 | 
			
		||||
        if is_seq(f):
 | 
			
		||||
           return [self.next(f1) for f1 in f]
 | 
			
		||||
        return substitute(f, zip(self.x0, self.xn))    
 | 
			
		||||
    
 | 
			
		||||
    def prev(self, f):
 | 
			
		||||
        if is_seq(f):
 | 
			
		||||
           return [self.prev(f1) for f1 in f]
 | 
			
		||||
        return substitute(f, zip(self.xn, self.x0))    
 | 
			
		||||
    
 | 
			
		||||
    def add_solver(self):
 | 
			
		||||
        s = fd_solver()
 | 
			
		||||
        s.add(self.trans)
 | 
			
		||||
        self.states += [State(s)]        
 | 
			
		||||
 | 
			
		||||
    def R(self, i):
 | 
			
		||||
        return And(self.states[i].R)
 | 
			
		||||
 | 
			
		||||
    # Check if there are two states next to each other that have the same clauses.
 | 
			
		||||
    def is_valid(self):
 | 
			
		||||
        i = 1
 | 
			
		||||
        while i + 1 < len(self.states):
 | 
			
		||||
            if not (self.states[i].R - self.states[i+1].R):
 | 
			
		||||
               return And(prune(self.states[i].R))
 | 
			
		||||
            i += 1
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    def value2literal(self, m, x):
 | 
			
		||||
        value = m.eval(x)
 | 
			
		||||
        if is_true(value):
 | 
			
		||||
            return x
 | 
			
		||||
        if is_false(value):
 | 
			
		||||
            return Not(x)
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    def values2literals(self, m, xs):
 | 
			
		||||
        p = [self.value2literal(m, x) for x in xs]
 | 
			
		||||
        return [x for x in p if x is not None]
 | 
			
		||||
 | 
			
		||||
    def project0(self, m):
 | 
			
		||||
        return self.values2literals(m, self.x0)
 | 
			
		||||
 | 
			
		||||
    def projectN(self, m):
 | 
			
		||||
        return self.values2literals(m, self.xn)
 | 
			
		||||
 | 
			
		||||
    # Determine if there is a cube for the current state 
 | 
			
		||||
    # that is potentially reachable.
 | 
			
		||||
    def unfold(self):
 | 
			
		||||
        core = []
 | 
			
		||||
        self.s_bad.push()
 | 
			
		||||
        R = self.R(len(self.states)-1)
 | 
			
		||||
        self.s_bad.add(R)
 | 
			
		||||
        is_sat = self.s_bad.check()
 | 
			
		||||
        if is_sat == sat:
 | 
			
		||||
           m = self.s_bad.model()
 | 
			
		||||
           props = self.project0(m)
 | 
			
		||||
           self.s_good.push()
 | 
			
		||||
           self.s_good.add(R)
 | 
			
		||||
           is_sat2 = self.s_good.check(props)
 | 
			
		||||
           assert is_sat2 == unsat
 | 
			
		||||
           core = self.s_good.unsat_core()
 | 
			
		||||
           self.s_good.pop()
 | 
			
		||||
        self.s_bad.pop()
 | 
			
		||||
        return is_sat, core
 | 
			
		||||
 | 
			
		||||
    # Block a cube by asserting the clause corresponding to its negation
 | 
			
		||||
    def block_cube(self, i, cube):
 | 
			
		||||
        self.assert_clause(i, cube2clause(cube))
 | 
			
		||||
 | 
			
		||||
    # Add a clause to levels 0 until i
 | 
			
		||||
    def assert_clause(self, i, clause):
 | 
			
		||||
        for j in range(i + 1):
 | 
			
		||||
            self.states[j].add(clause)
 | 
			
		||||
 | 
			
		||||
    # minimize cube that is core of Dual solver.
 | 
			
		||||
    # this assumes that props & cube => Trans    
 | 
			
		||||
    def minimize_cube(self, cube, lits):
 | 
			
		||||
        is_sat = self.min_cube_solver.check(lits + [c for c in cube])
 | 
			
		||||
        assert is_sat == unsat
 | 
			
		||||
        core = self.min_cube_solver.unsat_core()
 | 
			
		||||
        assert core
 | 
			
		||||
        return [c for c in core if c in set(cube)]
 | 
			
		||||
 | 
			
		||||
    # push a goal on a heap
 | 
			
		||||
    def push_heap(self, goal):
 | 
			
		||||
        heapq.heappush(self.goals, (goal.level, goal))
 | 
			
		||||
 | 
			
		||||
    # A state s0 and level f0 such that
 | 
			
		||||
    # not(s0) is f0-1 inductive
 | 
			
		||||
    def ic3_blocked(self, s0, f0):
 | 
			
		||||
        self.push_heap(Goal(self.next(s0), None, f0))
 | 
			
		||||
        while self.goals:
 | 
			
		||||
            f, g = heapq.heappop(self.goals)
 | 
			
		||||
            sys.stdout.write("%d." % f)
 | 
			
		||||
            sys.stdout.flush()
 | 
			
		||||
            # Not(g.cube) is f-1 invariant
 | 
			
		||||
            if f == 0:
 | 
			
		||||
               print("")
 | 
			
		||||
               return g
 | 
			
		||||
            cube, f, is_sat = self.is_inductive(f, g.cube)
 | 
			
		||||
            if is_sat == unsat:
 | 
			
		||||
               self.block_cube(f, self.prev(cube))
 | 
			
		||||
               if f < f0:
 | 
			
		||||
                  self.push_heap(Goal(g.cube, g.parent, f + 1))
 | 
			
		||||
            elif is_sat == sat:
 | 
			
		||||
               self.push_heap(Goal(cube, g, f - 1))
 | 
			
		||||
               self.push_heap(g)
 | 
			
		||||
            else:
 | 
			
		||||
               return is_sat
 | 
			
		||||
        print("")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    # Rudimentary generalization:
 | 
			
		||||
    # If the cube is already unsat with respect to transition relation
 | 
			
		||||
    # extract a core (not necessarily minimal)
 | 
			
		||||
    # otherwise, just return the cube.
 | 
			
		||||
    def generalize(self, cube, f):
 | 
			
		||||
        s = self.states[f - 1].solver
 | 
			
		||||
        if unsat == s.check(cube):
 | 
			
		||||
            return s.unsat_core(), f
 | 
			
		||||
        return cube, f
 | 
			
		||||
 | 
			
		||||
    # Check if the negation of cube is inductive at level f
 | 
			
		||||
    def is_inductive(self, f, cube):
 | 
			
		||||
        s = self.states[f - 1].solver
 | 
			
		||||
        s.push()
 | 
			
		||||
        s.add(self.prev(Not(And(cube))))
 | 
			
		||||
        is_sat = s.check(cube)
 | 
			
		||||
        if is_sat == sat:
 | 
			
		||||
           m = s.model()
 | 
			
		||||
        s.pop()
 | 
			
		||||
        if is_sat == sat:
 | 
			
		||||
           cube = self.next(self.minimize_cube(self.project0(m), self.projectN(m)))
 | 
			
		||||
        elif is_sat == unsat:
 | 
			
		||||
           cube, f = self.generalize(cube, f)
 | 
			
		||||
        return cube, f, is_sat
 | 
			
		||||
                        
 | 
			
		||||
    def run(self):
 | 
			
		||||
        if not check_disjoint(self.init, self.bad):
 | 
			
		||||
           return "goal is reached in initial state"
 | 
			
		||||
        level = 0
 | 
			
		||||
        while True:
 | 
			
		||||
            inv = self.is_valid()
 | 
			
		||||
            if inv is not None:
 | 
			
		||||
                return inv
 | 
			
		||||
            is_sat, cube = self.unfold()
 | 
			
		||||
            if is_sat == unsat:
 | 
			
		||||
               level += 1
 | 
			
		||||
               print("Unfold %d" % level)
 | 
			
		||||
               sys.stdout.flush()
 | 
			
		||||
               self.add_solver()
 | 
			
		||||
            elif is_sat == sat:
 | 
			
		||||
               cex = self.ic3_blocked(cube, level)
 | 
			
		||||
               if cex is not None:
 | 
			
		||||
                  return cex
 | 
			
		||||
            else:
 | 
			
		||||
               return is_sat  
 | 
			
		||||
 | 
			
		||||
def test(file):
 | 
			
		||||
    h2t = Horn2Transitions()
 | 
			
		||||
    h2t.parse(file)
 | 
			
		||||
    mp = MiniIC3(h2t.init, h2t.trans, h2t.goal, h2t.xs, h2t.xns)
 | 
			
		||||
    result = mp.run()    
 | 
			
		||||
    if isinstance(result, Goal):
 | 
			
		||||
       g = result
 | 
			
		||||
       print("Trace")
 | 
			
		||||
       while g:
 | 
			
		||||
          print(g.level, g.cube)
 | 
			
		||||
          g = g.parent
 | 
			
		||||
       return
 | 
			
		||||
    if isinstance(result, ExprRef):
 | 
			
		||||
       print("Invariant:\n%s " % result)
 | 
			
		||||
       return
 | 
			
		||||
    print(result)
 | 
			
		||||
 | 
			
		||||
test("data/horn1.smt2")
 | 
			
		||||
test("data/horn2.smt2")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
# TBD: Quip variant of IC3
 | 
			
		||||
 | 
			
		||||
must = True
 | 
			
		||||
may = False
 | 
			
		||||
 | 
			
		||||
class QGoal:
 | 
			
		||||
    def __init__(self, cube, parent, level, must):
 | 
			
		||||
        self.level = level
 | 
			
		||||
        self.cube = cube
 | 
			
		||||
        self.parent = parent
 | 
			
		||||
        self.must = must
 | 
			
		||||
 | 
			
		||||
class Quip(MiniIC3):
 | 
			
		||||
 | 
			
		||||
    # prev & tras -> r', such that r' intersects with cube
 | 
			
		||||
    def add_reachable(self, prev, cube):
 | 
			
		||||
        s = fd_solver()
 | 
			
		||||
        s.add(self.trans)
 | 
			
		||||
        s.add(prev)
 | 
			
		||||
        s.add(Or(cube))
 | 
			
		||||
        is_sat = s.check()
 | 
			
		||||
        assert is_sat == sat
 | 
			
		||||
        m = s.model();
 | 
			
		||||
        result = self.values2literals(m, cube)
 | 
			
		||||
        assert result
 | 
			
		||||
        self.reachable.add(result)
 | 
			
		||||
 | 
			
		||||
    # A state s0 and level f0 such that
 | 
			
		||||
    # not(s0) is f0-1 inductive
 | 
			
		||||
    def quip_blocked(self, s0, f0):
 | 
			
		||||
        self.push_heap(QGoal(self.next(s0), None, f0, must))
 | 
			
		||||
        while self.goals:
 | 
			
		||||
           f, g = heapq.heappop(self.goals)
 | 
			
		||||
           sys.stdout.write("%d." % f)
 | 
			
		||||
           sys.stdout.flush()
 | 
			
		||||
           if f == 0:
 | 
			
		||||
              if g.must:
 | 
			
		||||
                 print("")
 | 
			
		||||
                 return g
 | 
			
		||||
              self.add_reachable(self.init, p.parent.cube)
 | 
			
		||||
              continue
 | 
			
		||||
 | 
			
		||||
        # TBD
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
                        
 | 
			
		||||
    def run(self):
 | 
			
		||||
        if not check_disjoint(self.init, self.bad):
 | 
			
		||||
           return "goal is reached in initial state"
 | 
			
		||||
        level = 0
 | 
			
		||||
        while True:
 | 
			
		||||
            inv = self.is_valid()
 | 
			
		||||
            if inv is not None:
 | 
			
		||||
                return inv
 | 
			
		||||
            is_sat, cube = self.unfold()
 | 
			
		||||
            if is_sat == unsat:
 | 
			
		||||
               level += 1
 | 
			
		||||
               print("Unfold %d" % level)
 | 
			
		||||
               sys.stdout.flush()
 | 
			
		||||
               self.add_solver()
 | 
			
		||||
            elif is_sat == sat:
 | 
			
		||||
               cex = self.quipie_blocked(cube, level)
 | 
			
		||||
               if cex is not None:
 | 
			
		||||
                  return cex
 | 
			
		||||
            else:
 | 
			
		||||
               return is_sat  
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
| 
						 | 
				
			
			@ -10,7 +10,7 @@ from mk_util import *
 | 
			
		|||
# Z3 Project definition
 | 
			
		||||
def init_project_def():
 | 
			
		||||
    set_version(4, 8, 0, 0)
 | 
			
		||||
    add_lib('util', [])
 | 
			
		||||
    add_lib('util', [], includes2install = ['z3_version.h'])
 | 
			
		||||
    add_lib('polynomial', ['util'], 'math/polynomial')
 | 
			
		||||
    add_lib('sat', ['util'])
 | 
			
		||||
    add_lib('nlsat', ['polynomial', 'sat'])
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -2805,8 +2805,8 @@ def get_full_version_string(major, minor, build, revision):
 | 
			
		|||
# Update files with the version number
 | 
			
		||||
def mk_version_dot_h(major, minor, build, revision):
 | 
			
		||||
    c = get_component(UTIL_COMPONENT)
 | 
			
		||||
    version_template = os.path.join(c.src_dir, 'version.h.in')
 | 
			
		||||
    version_header_output = os.path.join(c.src_dir, 'version.h')
 | 
			
		||||
    version_template = os.path.join(c.src_dir, 'z3_version.h.in')
 | 
			
		||||
    version_header_output = os.path.join(c.src_dir, 'z3_version.h')
 | 
			
		||||
    # Note the substitution names are what is used by the CMake
 | 
			
		||||
    # builds system. If you change these you should change them
 | 
			
		||||
    # in the CMake build too
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -166,6 +166,8 @@ foreach (header ${libz3_public_headers})
 | 
			
		|||
  set_property(TARGET libz3 APPEND PROPERTY
 | 
			
		||||
    PUBLIC_HEADER "${CMAKE_SOURCE_DIR}/src/api/${header}")
 | 
			
		||||
endforeach()
 | 
			
		||||
set_property(TARGET libz3 APPEND PROPERTY
 | 
			
		||||
    PUBLIC_HEADER "${CMAKE_CURRENT_BINARY_DIR}/util/z3_version.h")
 | 
			
		||||
 | 
			
		||||
install(TARGETS libz3
 | 
			
		||||
  EXPORT Z3_EXPORTED_TARGETS
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -19,7 +19,7 @@ Revision History:
 | 
			
		|||
--*/
 | 
			
		||||
#include<typeinfo>
 | 
			
		||||
#include "api/api_context.h"
 | 
			
		||||
#include "util/version.h"
 | 
			
		||||
#include "util/z3_version.h"
 | 
			
		||||
#include "ast/ast_pp.h"
 | 
			
		||||
#include "ast/ast_ll_pp.h"
 | 
			
		||||
#include "api/api_log_macros.h"
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -19,7 +19,7 @@ Revision History:
 | 
			
		|||
#include "api/z3.h"
 | 
			
		||||
#include "api/api_log_macros.h"
 | 
			
		||||
#include "util/util.h"
 | 
			
		||||
#include "util/version.h"
 | 
			
		||||
#include "util/z3_version.h"
 | 
			
		||||
 | 
			
		||||
std::ostream * g_z3_log = nullptr;
 | 
			
		||||
bool g_z3_log_enabled   = false;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -179,6 +179,7 @@ extern "C" {
 | 
			
		|||
        LOG_Z3_solver_from_file(c, s, file_name);
 | 
			
		||||
        char const* ext = get_extension(file_name);
 | 
			
		||||
        std::ifstream is(file_name);
 | 
			
		||||
        init_solver(c, s);
 | 
			
		||||
        if (!is) {
 | 
			
		||||
            SET_ERROR_CODE(Z3_FILE_ACCESS_ERROR, nullptr);
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -371,6 +372,21 @@ extern "C" {
 | 
			
		|||
        Z3_CATCH_RETURN(0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Z3_ast_vector Z3_API Z3_solver_get_non_units(Z3_context c, Z3_solver s) {
 | 
			
		||||
        Z3_TRY;
 | 
			
		||||
        LOG_Z3_solver_get_non_units(c, s);
 | 
			
		||||
        RESET_ERROR_CODE();
 | 
			
		||||
        init_solver(c, s);
 | 
			
		||||
        Z3_ast_vector_ref * v = alloc(Z3_ast_vector_ref, *mk_c(c), mk_c(c)->m());
 | 
			
		||||
        mk_c(c)->save_object(v);
 | 
			
		||||
        expr_ref_vector fmls = to_solver_ref(s)->get_non_units(mk_c(c)->m());
 | 
			
		||||
        for (expr* f : fmls) {
 | 
			
		||||
            v->m_ast_vector.push_back(f);
 | 
			
		||||
        }
 | 
			
		||||
        RETURN_Z3(of_ast_vector(v));
 | 
			
		||||
        Z3_CATCH_RETURN(0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    static Z3_lbool _solver_check(Z3_context c, Z3_solver s, unsigned num_assumptions, Z3_ast const assumptions[]) {
 | 
			
		||||
        for (unsigned i = 0; i < num_assumptions; i++) {
 | 
			
		||||
            if (!is_expr(to_ast(assumptions[i]))) {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -2038,6 +2038,8 @@ namespace z3 {
 | 
			
		|||
        stats statistics() const { Z3_stats r = Z3_solver_get_statistics(ctx(), m_solver); check_error(); return stats(ctx(), r); }
 | 
			
		||||
        expr_vector unsat_core() const { Z3_ast_vector r = Z3_solver_get_unsat_core(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
 | 
			
		||||
        expr_vector assertions() const { Z3_ast_vector r = Z3_solver_get_assertions(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
 | 
			
		||||
        expr_vector non_units() const { Z3_ast_vector r = Z3_solver_get_non_units(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
 | 
			
		||||
        expr_vector units() const { Z3_ast_vector r = Z3_solver_get_units(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
 | 
			
		||||
        expr proof() const { Z3_ast r = Z3_solver_get_proof(ctx(), m_solver); check_error(); return expr(ctx(), r); }
 | 
			
		||||
        friend std::ostream & operator<<(std::ostream & out, solver const & s);
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1815,9 +1815,10 @@ struct
 | 
			
		|||
    | _ -> UNKNOWN
 | 
			
		||||
 | 
			
		||||
  let get_model x =
 | 
			
		||||
    try 
 | 
			
		||||
       let q = Z3native.solver_get_model (gc x) x in
 | 
			
		||||
    try if Z3native.is_null_model q then None else Some q with | _ -> None
 | 
			
		||||
    
 | 
			
		||||
       if Z3native.is_null_model q then None else Some q 
 | 
			
		||||
    with | _ -> None
 | 
			
		||||
 | 
			
		||||
  let get_proof x =
 | 
			
		||||
    let q = Z3native.solver_get_proof (gc x) x in
 | 
			
		||||
| 
						 | 
				
			
			@ -1953,8 +1954,10 @@ struct
 | 
			
		|||
    | _ -> Solver.UNKNOWN
 | 
			
		||||
 | 
			
		||||
  let get_model (x:optimize) =
 | 
			
		||||
    try
 | 
			
		||||
      let q = Z3native.optimize_get_model (gc x) x in
 | 
			
		||||
      if Z3native.is_null_model q then None else Some q
 | 
			
		||||
    with | _ -> None
 | 
			
		||||
 | 
			
		||||
  let get_lower (x:handle) = Z3native.optimize_get_lower (gc x.opt) x.opt x.h
 | 
			
		||||
  let get_upper (x:handle) = Z3native.optimize_get_upper (gc x.opt) x.opt x.h
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1258,6 +1258,11 @@ def Consts(names, sort):
 | 
			
		|||
        names = names.split(" ")
 | 
			
		||||
    return [Const(name, sort) for name in names]
 | 
			
		||||
 | 
			
		||||
def FreshConst(sort, prefix='c'):
 | 
			
		||||
    """Create a fresh constant of a specified sort"""
 | 
			
		||||
    ctx = _get_ctx(sort.ctx)
 | 
			
		||||
    return _to_expr_ref(Z3_mk_fresh_const(ctx.ref(), prefix, sort.ast), ctx)
 | 
			
		||||
    
 | 
			
		||||
def Var(idx, s):
 | 
			
		||||
    """Create a Z3 free variable. Free variables are used to create quantified formulas.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -2176,6 +2181,8 @@ class ArithRef(ExprRef):
 | 
			
		|||
        >>> (x * y).sort()
 | 
			
		||||
        Real
 | 
			
		||||
        """
 | 
			
		||||
        if isinstance(other, BoolRef):
 | 
			
		||||
           return If(other, self, 0)
 | 
			
		||||
        a, b = _coerce_exprs(self, other)
 | 
			
		||||
        return ArithRef(_mk_bin(Z3_mk_mul, a, b), self.ctx)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -4278,7 +4285,7 @@ def get_map_func(a):
 | 
			
		|||
        _z3_assert(is_map(a), "Z3 array map expression expected.")
 | 
			
		||||
    return FuncDeclRef(Z3_to_func_decl(a.ctx_ref(), Z3_get_decl_ast_parameter(a.ctx_ref(), a.decl().ast, 0)), a.ctx)
 | 
			
		||||
 | 
			
		||||
def ArraySort(d, r):
 | 
			
		||||
def ArraySort(*sig):
 | 
			
		||||
    """Return the Z3 array sort with the given domain and range sorts.
 | 
			
		||||
 | 
			
		||||
    >>> A = ArraySort(IntSort(), BoolSort())
 | 
			
		||||
| 
						 | 
				
			
			@ -4292,12 +4299,23 @@ def ArraySort(d, r):
 | 
			
		|||
    >>> AA
 | 
			
		||||
    Array(Int, Array(Int, Bool))
 | 
			
		||||
    """
 | 
			
		||||
    sig = _get_args(sig)
 | 
			
		||||
    if __debug__:
 | 
			
		||||
        _z3_assert(is_sort(d), "Z3 sort expected")
 | 
			
		||||
        _z3_assert(is_sort(r), "Z3 sort expected")
 | 
			
		||||
        _z3_assert(d.ctx == r.ctx, "Context mismatch")
 | 
			
		||||
        _z3_assert(len(sig) > 1, "At least two arguments expected")
 | 
			
		||||
    arity = len(sig) - 1
 | 
			
		||||
    r = sig[arity]
 | 
			
		||||
    d = sig[0]
 | 
			
		||||
    if __debug__:
 | 
			
		||||
        for s in sig:
 | 
			
		||||
            _z3_assert(is_sort(s), "Z3 sort expected")
 | 
			
		||||
            _z3_assert(s.ctx == r.ctx, "Context mismatch")
 | 
			
		||||
    ctx = d.ctx
 | 
			
		||||
    if len(sig) == 2:
 | 
			
		||||
        return ArraySortRef(Z3_mk_array_sort(ctx.ref(), d.ast, r.ast), ctx)
 | 
			
		||||
    dom = (Sort * arity)()
 | 
			
		||||
    for i in range(arity):
 | 
			
		||||
        dom[i] = sig[i].ast    
 | 
			
		||||
    return ArraySortRef(Z3_mk_array_sort_n(ctx.ref(), arity, dom, r.ast), ctx)
 | 
			
		||||
 | 
			
		||||
def Array(name, dom, rng):
 | 
			
		||||
    """Return an array constant named `name` with the given domain and range sorts.
 | 
			
		||||
| 
						 | 
				
			
			@ -6603,7 +6621,12 @@ class Solver(Z3PPObject):
 | 
			
		|||
            _handle_parse_error(e, self.ctx)        
 | 
			
		||||
    
 | 
			
		||||
    def cube(self, vars = None):
 | 
			
		||||
        """Get set of cubes"""
 | 
			
		||||
        """Get set of cubes
 | 
			
		||||
        The method takes an optional set of variables that restrict which
 | 
			
		||||
        variables may be used as a starting point for cubing.
 | 
			
		||||
        If vars is not None, then the first case split is based on a variable in
 | 
			
		||||
        this set.
 | 
			
		||||
        """
 | 
			
		||||
        self.cube_vs = AstVector(None, self.ctx)
 | 
			
		||||
        if vars is not None:
 | 
			
		||||
           for v in vars:
 | 
			
		||||
| 
						 | 
				
			
			@ -6619,20 +6642,16 @@ class Solver(Z3PPObject):
 | 
			
		|||
                return
 | 
			
		||||
 | 
			
		||||
    def cube_vars(self):
 | 
			
		||||
        """Access the set of variables that were touched by the most recently generated cube.
 | 
			
		||||
        This set of variables can be used as a starting point for additional cubes.
 | 
			
		||||
        The idea is that variables that appear in clauses that are reduced by the most recent
 | 
			
		||||
        cube are likely more useful to cube on."""
 | 
			
		||||
        return self.cube_vs
 | 
			
		||||
 | 
			
		||||
    def proof(self):
 | 
			
		||||
        """Return a proof for the last `check()`. Proof construction must be enabled."""
 | 
			
		||||
        return _to_expr_ref(Z3_solver_get_proof(self.ctx.ref(), self.solver), self.ctx)
 | 
			
		||||
        
 | 
			
		||||
    def from_file(self, filename):
 | 
			
		||||
        """Parse assertions from a file"""
 | 
			
		||||
        Z3_solver_from_file(self.ctx.ref(), self.solver, filename)
 | 
			
		||||
 | 
			
		||||
    def from_string(self, s):
 | 
			
		||||
        """Parse assertions from a string"""
 | 
			
		||||
        Z3_solver_from_string(self.ctx.ref(), self.solver, s)
 | 
			
		||||
        
 | 
			
		||||
    def assertions(self):
 | 
			
		||||
        """Return an AST vector containing all added constraints.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -6652,6 +6671,11 @@ class Solver(Z3PPObject):
 | 
			
		|||
        """
 | 
			
		||||
        return AstVector(Z3_solver_get_units(self.ctx.ref(), self.solver), self.ctx)
 | 
			
		||||
 | 
			
		||||
    def non_units(self):
 | 
			
		||||
        """Return an AST vector containing all atomic formulas in solver state that are not units.
 | 
			
		||||
        """
 | 
			
		||||
        return AstVector(Z3_solver_get_non_units(self.ctx.ref(), self.solver), self.ctx)
 | 
			
		||||
 | 
			
		||||
    def statistics(self):
 | 
			
		||||
        """Return statistics for the last `check()`.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -8040,7 +8064,7 @@ def substitute(t, *m):
 | 
			
		|||
    """
 | 
			
		||||
    if isinstance(m, tuple):
 | 
			
		||||
        m1 = _get_args(m)
 | 
			
		||||
        if isinstance(m1, list):
 | 
			
		||||
        if isinstance(m1, list) and all(isinstance(p, tuple) for p in m1):
 | 
			
		||||
            m = m1
 | 
			
		||||
    if __debug__:
 | 
			
		||||
        _z3_assert(is_expr(t), "Z3 expression expected")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -6121,6 +6121,14 @@ extern "C" {
 | 
			
		|||
    */
 | 
			
		||||
    Z3_ast_vector Z3_API Z3_solver_get_units(Z3_context c, Z3_solver s);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
       \brief Return the set of non units in the solver state.
 | 
			
		||||
 | 
			
		||||
       def_API('Z3_solver_get_non_units', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
 | 
			
		||||
    */
 | 
			
		||||
    Z3_ast_vector Z3_API Z3_solver_get_non_units(Z3_context c, Z3_solver s);
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
       \brief Check whether the assertions in a given solver are consistent or not.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -21,6 +21,7 @@ Revision History:
 | 
			
		|||
#include "math/polynomial/algebraic_numbers.h"
 | 
			
		||||
#include "util/id_gen.h"
 | 
			
		||||
#include "ast/ast_smt2_pp.h"
 | 
			
		||||
#include "util/gparams.h"
 | 
			
		||||
 | 
			
		||||
struct arith_decl_plugin::algebraic_numbers_wrapper {
 | 
			
		||||
    unsynch_mpq_manager           m_qmanager;
 | 
			
		||||
| 
						 | 
				
			
			@ -487,7 +488,7 @@ func_decl * arith_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters
 | 
			
		|||
        if (arity != 1 || domain[0] != m_int_decl || num_parameters != 1 || !parameters[0].is_int()) {
 | 
			
		||||
            m_manager->raise_exception("invalid divides application. Expects integer parameter and one argument of sort integer");
 | 
			
		||||
        }
 | 
			
		||||
        return m_manager->mk_func_decl(symbol("divides"), 1, &m_int_decl, m_manager->mk_bool_sort(), 
 | 
			
		||||
        return m_manager->mk_func_decl(symbol("divisible"), 1, &m_int_decl, m_manager->mk_bool_sort(), 
 | 
			
		||||
                                       func_decl_info(m_family_id, k, num_parameters, parameters));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -512,7 +513,7 @@ func_decl * arith_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters
 | 
			
		|||
        if (num_args != 1 || m_manager->get_sort(args[0]) != m_int_decl || num_parameters != 1 || !parameters[0].is_int()) {
 | 
			
		||||
            m_manager->raise_exception("invalid divides application. Expects integer parameter and one argument of sort integer");
 | 
			
		||||
        }
 | 
			
		||||
        return m_manager->mk_func_decl(symbol("divides"), 1, &m_int_decl, m_manager->mk_bool_sort(), 
 | 
			
		||||
        return m_manager->mk_func_decl(symbol("divisible"), 1, &m_int_decl, m_manager->mk_bool_sort(), 
 | 
			
		||||
                                       func_decl_info(m_family_id, k, num_parameters, parameters));
 | 
			
		||||
    }
 | 
			
		||||
    if (m_manager->int_real_coercions() && use_coercion(k)) {
 | 
			
		||||
| 
						 | 
				
			
			@ -549,8 +550,9 @@ void arith_decl_plugin::get_op_names(svector<builtin_name>& op_names, symbol con
 | 
			
		|||
    op_names.push_back(builtin_name("*",OP_MUL));
 | 
			
		||||
    op_names.push_back(builtin_name("/",OP_DIV));
 | 
			
		||||
    op_names.push_back(builtin_name("div",OP_IDIV));
 | 
			
		||||
    // clashes with user-defined functions
 | 
			
		||||
    // op_names.push_back(builtin_name("divides",OP_IDIVIDES));
 | 
			
		||||
    if (gparams::get_value("smtlib2_compliant") == "true") {
 | 
			
		||||
        op_names.push_back(builtin_name("divisible",OP_IDIVIDES));
 | 
			
		||||
    }
 | 
			
		||||
    op_names.push_back(builtin_name("rem",OP_REM));
 | 
			
		||||
    op_names.push_back(builtin_name("mod",OP_MOD));
 | 
			
		||||
    op_names.push_back(builtin_name("to_real",OP_TO_REAL));
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1656,6 +1656,12 @@ bool ast_manager::are_distinct(expr* a, expr* b) const {
 | 
			
		|||
    return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func_decl* ast_manager::get_rec_fun_decl(quantifier* q) const {
 | 
			
		||||
    SASSERT(is_rec_fun_def(q)); 
 | 
			
		||||
    return to_app(to_app(q->get_pattern(0))->get_arg(0))->get_decl(); 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void ast_manager::register_plugin(family_id id, decl_plugin * plugin) {
 | 
			
		||||
    SASSERT(m_plugins.get(id, 0) == 0);
 | 
			
		||||
    m_plugins.setx(id, plugin, 0);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1632,6 +1632,7 @@ public:
 | 
			
		|||
 | 
			
		||||
    bool is_rec_fun_def(quantifier* q) const { return q->get_qid() == m_rec_fun; }
 | 
			
		||||
    bool is_lambda_def(quantifier* q) const { return q->get_qid() == m_lambda_def; }
 | 
			
		||||
    func_decl* get_rec_fun_decl(quantifier* q) const;
 | 
			
		||||
    
 | 
			
		||||
    symbol const& rec_fun_qid() const { return m_rec_fun; }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -842,7 +842,9 @@ void seq_decl_plugin::get_sort_names(svector<builtin_name> & sort_names, symbol
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
app* seq_decl_plugin::mk_string(symbol const& s) {
 | 
			
		||||
    parameter param(s);
 | 
			
		||||
    zstring canonStr(s.bare_str());
 | 
			
		||||
    symbol canonSym(canonStr.encode().c_str());
 | 
			
		||||
    parameter param(canonSym);
 | 
			
		||||
    func_decl* f = m_manager->mk_const_decl(m_stringc_sym, m_string,
 | 
			
		||||
                                            func_decl_info(m_family_id, OP_STRING_CONST, 1, ¶m));
 | 
			
		||||
    return m_manager->mk_const(f);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -17,7 +17,7 @@ Notes:
 | 
			
		|||
--*/
 | 
			
		||||
#include "util/gparams.h"
 | 
			
		||||
#include "util/env_params.h"
 | 
			
		||||
#include "util/version.h"
 | 
			
		||||
#include "util/z3_version.h"
 | 
			
		||||
#include "ast/ast_smt_pp.h"
 | 
			
		||||
#include "ast/ast_smt2_pp.h"
 | 
			
		||||
#include "ast/ast_pp_dot.h"
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -358,6 +358,23 @@ namespace datalog {
 | 
			
		|||
        DEL_VECTOR(m_rules);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void rule_set::replace_rule(rule * r, rule * other) {
 | 
			
		||||
        TRACE("dl", r->display(m_context, tout << "replace:"););
 | 
			
		||||
        func_decl* d = r->get_decl();
 | 
			
		||||
        rule_vector* rules = m_head2rules.find(d);
 | 
			
		||||
#define REPLACE_VECTOR(_v)                              \
 | 
			
		||||
        for (unsigned i = (_v).size(); i > 0; ) {       \
 | 
			
		||||
            --i;                                        \
 | 
			
		||||
            if ((_v)[i] == r) {                         \
 | 
			
		||||
                (_v)[i] = other;                        \
 | 
			
		||||
                break;                                  \
 | 
			
		||||
            }                                           \
 | 
			
		||||
        }                                               \
 | 
			
		||||
 | 
			
		||||
        REPLACE_VECTOR(*rules);
 | 
			
		||||
        REPLACE_VECTOR(m_rules);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void rule_set::ensure_closed() {
 | 
			
		||||
        if (!is_closed()) {
 | 
			
		||||
            VERIFY(close());
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -203,6 +203,10 @@ namespace datalog {
 | 
			
		|||
           \brief Remove rule \c r from the rule set.
 | 
			
		||||
        */
 | 
			
		||||
        void del_rule(rule * r);
 | 
			
		||||
        /**
 | 
			
		||||
           \brief Replace a rule \c r with the rule \c other
 | 
			
		||||
        */
 | 
			
		||||
        void replace_rule(rule * r, rule * other);
 | 
			
		||||
 | 
			
		||||
        /**
 | 
			
		||||
           \brief Add all rules from a different rule_set.
 | 
			
		||||
| 
						 | 
				
			
			@ -280,4 +284,3 @@ namespace datalog {
 | 
			
		|||
};
 | 
			
		||||
 | 
			
		||||
#endif /* DL_RULE_SET_H_ */
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -177,5 +177,6 @@ def_module_params('fp',
 | 
			
		|||
                          ('spacer.dump_threshold', DOUBLE, 5.0, 'Threshold in seconds on dumping benchmarks'),
 | 
			
		||||
                          ('spacer.gpdr', BOOL, False, 'Use GPDR solving strategy for non-linear CHC'),
 | 
			
		||||
                          ('spacer.gpdr.bfs', BOOL, True, 'Use BFS exploration strategy for expanding model search'),
 | 
			
		||||
                          ('spacer.use_bg_invs', BOOL, False, 'Enable external background invariants'),
 | 
			
		||||
 | 
			
		||||
                          ))
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -493,7 +493,8 @@ lemma::lemma (ast_manager &manager, expr * body, unsigned lvl) :
 | 
			
		|||
    m_pob(nullptr), m_ctp(nullptr),
 | 
			
		||||
    m_lvl(lvl), m_init_lvl(m_lvl),
 | 
			
		||||
    m_bumped(0), m_weakness(WEAKNESS_MAX),
 | 
			
		||||
    m_external(false), m_blocked(false) {
 | 
			
		||||
    m_external(false), m_blocked(false),
 | 
			
		||||
    m_background(false) {
 | 
			
		||||
    SASSERT(m_body);
 | 
			
		||||
    normalize(m_body, m_body);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -505,7 +506,8 @@ lemma::lemma(pob_ref const &p) :
 | 
			
		|||
    m_pob(p), m_ctp(nullptr),
 | 
			
		||||
    m_lvl(p->level()), m_init_lvl(m_lvl),
 | 
			
		||||
    m_bumped(0), m_weakness(p->weakness()),
 | 
			
		||||
    m_external(false), m_blocked(false) {
 | 
			
		||||
    m_external(false), m_blocked(false),
 | 
			
		||||
    m_background(false) {
 | 
			
		||||
    SASSERT(m_pob);
 | 
			
		||||
    m_pob->get_skolems(m_zks);
 | 
			
		||||
    add_binding(m_pob->get_binding());
 | 
			
		||||
| 
						 | 
				
			
			@ -519,8 +521,8 @@ lemma::lemma(pob_ref const &p, expr_ref_vector &cube, unsigned lvl) :
 | 
			
		|||
    m_pob(p), m_ctp(nullptr),
 | 
			
		||||
    m_lvl(p->level()), m_init_lvl(m_lvl),
 | 
			
		||||
    m_bumped(0), m_weakness(p->weakness()),
 | 
			
		||||
    m_external(false), m_blocked(false)
 | 
			
		||||
{
 | 
			
		||||
    m_external(false), m_blocked(false),
 | 
			
		||||
    m_background(false) {
 | 
			
		||||
    if (m_pob) {
 | 
			
		||||
        m_pob->get_skolems(m_zks);
 | 
			
		||||
        add_binding(m_pob->get_binding());
 | 
			
		||||
| 
						 | 
				
			
			@ -921,10 +923,10 @@ void pred_transformer::simplify_formulas()
 | 
			
		|||
{m_frames.simplify_formulas ();}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
expr_ref pred_transformer::get_formulas(unsigned level) const
 | 
			
		||||
expr_ref pred_transformer::get_formulas(unsigned level, bool bg) const
 | 
			
		||||
{
 | 
			
		||||
    expr_ref_vector res(m);
 | 
			
		||||
    m_frames.get_frame_geq_lemmas (level, res);
 | 
			
		||||
    m_frames.get_frame_geq_lemmas (level, res, bg);
 | 
			
		||||
    return mk_and(res);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -935,6 +937,7 @@ bool pred_transformer::propagate_to_next_level (unsigned src_level)
 | 
			
		|||
/// \brief adds a lemma to the solver and to child solvers
 | 
			
		||||
void pred_transformer::add_lemma_core(lemma* lemma, bool ground_only)
 | 
			
		||||
{
 | 
			
		||||
    SASSERT(!lemma->is_background());
 | 
			
		||||
    unsigned lvl = lemma->level();
 | 
			
		||||
    expr* l = lemma->get_expr();
 | 
			
		||||
    SASSERT(!lemma->is_ground() || is_clause(m, l));
 | 
			
		||||
| 
						 | 
				
			
			@ -975,8 +978,9 @@ void pred_transformer::add_lemma_core(lemma* lemma, bool ground_only)
 | 
			
		|||
                                      next_level(lvl), ground_only); }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool pred_transformer::add_lemma (expr *e, unsigned lvl) {
 | 
			
		||||
bool pred_transformer::add_lemma (expr *e, unsigned lvl, bool bg) {
 | 
			
		||||
    lemma_ref lem = alloc(lemma, m, e, lvl);
 | 
			
		||||
    lem->set_background(bg);
 | 
			
		||||
    return m_frames.add_lemma(lem.get());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1217,15 +1221,18 @@ expr_ref pred_transformer::get_origin_summary (model &mdl,
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void pred_transformer::add_cover(unsigned level, expr* property)
 | 
			
		||||
void pred_transformer::add_cover(unsigned level, expr* property, bool bg)
 | 
			
		||||
{
 | 
			
		||||
    SASSERT(!bg || is_infty_level(level));
 | 
			
		||||
    // replace bound variables by local constants.
 | 
			
		||||
    expr_ref result(property, m), v(m), c(m);
 | 
			
		||||
    expr_substitution sub(m);
 | 
			
		||||
    proof_ref pr(m);
 | 
			
		||||
    pr = m.mk_asserted(m.mk_true());
 | 
			
		||||
    for (unsigned i = 0; i < sig_size(); ++i) {
 | 
			
		||||
        c = m.mk_const(pm.o2n(sig(i), 0));
 | 
			
		||||
        v = m.mk_var(i, sig(i)->get_range());
 | 
			
		||||
        sub.insert(v, c);
 | 
			
		||||
        sub.insert(v, c, pr);
 | 
			
		||||
    }
 | 
			
		||||
    scoped_ptr<expr_replacer> rep = mk_default_expr_replacer(m);
 | 
			
		||||
    rep->set_substitution(&sub);
 | 
			
		||||
| 
						 | 
				
			
			@ -1236,13 +1243,38 @@ void pred_transformer::add_cover(unsigned level, expr* property)
 | 
			
		|||
    expr_ref_vector lemmas(m);
 | 
			
		||||
    flatten_and(result, lemmas);
 | 
			
		||||
    for (unsigned i = 0, sz = lemmas.size(); i < sz; ++i) {
 | 
			
		||||
        add_lemma(lemmas.get(i), level);
 | 
			
		||||
        add_lemma(lemmas.get(i), level, bg);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void pred_transformer::propagate_to_infinity (unsigned level)
 | 
			
		||||
{m_frames.propagate_to_infinity (level);}
 | 
			
		||||
 | 
			
		||||
// compute a conjunction of all background facts
 | 
			
		||||
void pred_transformer::get_pred_bg_invs(expr_ref_vector& out) {
 | 
			
		||||
    expr_ref inv(m), tmp1(m), tmp2(m);
 | 
			
		||||
    ptr_vector<func_decl> preds;
 | 
			
		||||
    for (auto kv : m_pt_rules) {
 | 
			
		||||
        expr* tag = kv.m_value->tag();
 | 
			
		||||
        datalog::rule const &r = kv.m_value->rule();
 | 
			
		||||
        find_predecessors (r, preds);
 | 
			
		||||
 | 
			
		||||
        for (unsigned i = 0, preds_sz = preds.size(); i < preds_sz; i++) {
 | 
			
		||||
            func_decl* pre = preds[i];
 | 
			
		||||
            pred_transformer &pt = ctx.get_pred_transformer(pre);
 | 
			
		||||
            const lemma_ref_vector &invs = pt.get_bg_invs();
 | 
			
		||||
            CTRACE("spacer", !invs.empty(),
 | 
			
		||||
                   tout << "add-bg-invariant: " << mk_pp (pre, m) << "\n";);
 | 
			
		||||
            for (auto inv : invs) {
 | 
			
		||||
                // tag -> inv1 ...  tag -> invn
 | 
			
		||||
                tmp1 = m.mk_implies(tag, inv->get_expr());
 | 
			
		||||
                pm.formula_n2o(tmp1, tmp2, i);
 | 
			
		||||
                out.push_back(tmp2);
 | 
			
		||||
                TRACE("spacer", tout << tmp2 << "\n";);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/// \brief Returns true if the obligation is already blocked by current lemmas
 | 
			
		||||
| 
						 | 
				
			
			@ -1344,6 +1376,14 @@ lbool pred_transformer::is_reachable(pob& n, expr_ref_vector* core,
 | 
			
		|||
 | 
			
		||||
    expr_ref_vector post (m), reach_assumps (m);
 | 
			
		||||
    post.push_back (n.post ());
 | 
			
		||||
    flatten_and(post);
 | 
			
		||||
 | 
			
		||||
    // if equality propagation is disabled in arithmetic, expand
 | 
			
		||||
    // equality literals into two inequalities to increase the space
 | 
			
		||||
    // for interpolation
 | 
			
		||||
    if (!ctx.use_eq_prop()) {
 | 
			
		||||
        expand_literals(m, post);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // populate reach_assumps
 | 
			
		||||
    if (n.level () > 0 && !m_all_init) {
 | 
			
		||||
| 
						 | 
				
			
			@ -1472,7 +1512,7 @@ bool pred_transformer::is_invariant(unsigned level, lemma* lem,
 | 
			
		|||
    expr_ref lemma_expr(m);
 | 
			
		||||
    lemma_expr = lem->get_expr();
 | 
			
		||||
 | 
			
		||||
    expr_ref_vector conj(m), aux(m);
 | 
			
		||||
    expr_ref_vector cand(m), aux(m), conj(m);
 | 
			
		||||
    expr_ref gnd_lemma(m);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1482,8 +1522,8 @@ bool pred_transformer::is_invariant(unsigned level, lemma* lem,
 | 
			
		|||
        lemma_expr = gnd_lemma.get();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    conj.push_back(mk_not(m, lemma_expr));
 | 
			
		||||
    flatten_and (conj);
 | 
			
		||||
    cand.push_back(mk_not(m, lemma_expr));
 | 
			
		||||
    flatten_and (cand);
 | 
			
		||||
 | 
			
		||||
    prop_solver::scoped_level _sl(*m_solver, level);
 | 
			
		||||
    prop_solver::scoped_subset_core _sc (*m_solver, true);
 | 
			
		||||
| 
						 | 
				
			
			@ -1494,9 +1534,12 @@ bool pred_transformer::is_invariant(unsigned level, lemma* lem,
 | 
			
		|||
    if (ctx.use_ctp()) {mdl_ref_ptr = &mdl;}
 | 
			
		||||
    m_solver->set_core(core);
 | 
			
		||||
    m_solver->set_model(mdl_ref_ptr);
 | 
			
		||||
    expr * bg = m_extend_lit.get ();
 | 
			
		||||
    lbool r = m_solver->check_assumptions (conj, aux, m_transition_clause,
 | 
			
		||||
                                          1, &bg, 1);
 | 
			
		||||
 | 
			
		||||
    conj.push_back(m_extend_lit);
 | 
			
		||||
    if (ctx.use_bg_invs()) get_pred_bg_invs(conj);
 | 
			
		||||
 | 
			
		||||
    lbool r = m_solver->check_assumptions (cand, aux, m_transition_clause,
 | 
			
		||||
                                           conj.size(), conj.c_ptr(), 1);
 | 
			
		||||
    if (r == l_false) {
 | 
			
		||||
        solver_level = m_solver->uses_level ();
 | 
			
		||||
        lem->reset_ctp();
 | 
			
		||||
| 
						 | 
				
			
			@ -1527,6 +1570,7 @@ bool pred_transformer::check_inductive(unsigned level, expr_ref_vector& state,
 | 
			
		|||
    m_solver->set_core(&core);
 | 
			
		||||
    m_solver->set_model (nullptr);
 | 
			
		||||
    expr_ref_vector aux (m);
 | 
			
		||||
    if (ctx.use_bg_invs()) get_pred_bg_invs(conj);
 | 
			
		||||
    conj.push_back (m_extend_lit);
 | 
			
		||||
    lbool res = m_solver->check_assumptions (state, aux,
 | 
			
		||||
                                            m_transition_clause,
 | 
			
		||||
| 
						 | 
				
			
			@ -1941,14 +1985,27 @@ void pred_transformer::update_solver_with_rfs(prop_solver *solver,
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
/// pred_transformer::frames
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
bool pred_transformer::frames::add_lemma(lemma *new_lemma)
 | 
			
		||||
{
 | 
			
		||||
    TRACE("spacer", tout << "add-lemma: " << pp_level(new_lemma->level()) << " "
 | 
			
		||||
          << m_pt.head()->get_name() << " "
 | 
			
		||||
          << mk_pp(new_lemma->get_expr(), m_pt.get_ast_manager()) << "\n";);
 | 
			
		||||
 | 
			
		||||
    if (new_lemma->is_background()) {
 | 
			
		||||
        SASSERT (is_infty_level(new_lemma->level()));
 | 
			
		||||
 | 
			
		||||
        for (auto &l : m_bg_invs) {
 | 
			
		||||
            if (l->get_expr() == new_lemma->get_expr()) return false;
 | 
			
		||||
        }
 | 
			
		||||
        TRACE("spacer", tout << "add-external-lemma: "
 | 
			
		||||
              << pp_level(new_lemma->level()) << " "
 | 
			
		||||
              << m_pt.head()->get_name() << " "
 | 
			
		||||
              << mk_pp(new_lemma->get_expr(), m_pt.get_ast_manager()) << "\n";);
 | 
			
		||||
 | 
			
		||||
        m_bg_invs.push_back(new_lemma);
 | 
			
		||||
        return true;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    unsigned i = 0;
 | 
			
		||||
    for (auto *old_lemma : m_lemmas) {
 | 
			
		||||
        if (old_lemma->get_expr() == new_lemma->get_expr()) {
 | 
			
		||||
| 
						 | 
				
			
			@ -2295,6 +2352,7 @@ void context::updt_params() {
 | 
			
		|||
    m_use_restarts = m_params.spacer_restarts();
 | 
			
		||||
    m_restart_initial_threshold = m_params.spacer_restart_initial_threshold();
 | 
			
		||||
    m_pdr_bfs = m_params.spacer_gpdr_bfs();
 | 
			
		||||
    m_use_bg_invs = m_params.spacer_use_bg_invs();
 | 
			
		||||
 | 
			
		||||
    if (m_use_gpdr) {
 | 
			
		||||
        // set options to be compatible with GPDR
 | 
			
		||||
| 
						 | 
				
			
			@ -2423,36 +2481,38 @@ expr_ref context::get_cover_delta(int level, func_decl* p_orig, func_decl* p)
 | 
			
		|||
    if (m_rels.find(p, pt)) {
 | 
			
		||||
        return pt->get_cover_delta(p_orig, level);
 | 
			
		||||
    } else {
 | 
			
		||||
        IF_VERBOSE(10, verbose_stream() << "did not find predicate " << p->get_name() << "\n";);
 | 
			
		||||
        IF_VERBOSE(10, verbose_stream() << "did not find predicate "
 | 
			
		||||
                   << p->get_name() << "\n";);
 | 
			
		||||
        return expr_ref(m.mk_true(), m);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void context::add_cover(int level, func_decl* p, expr* property)
 | 
			
		||||
void context::add_cover(int level, func_decl* p, expr* property, bool bg)
 | 
			
		||||
{
 | 
			
		||||
    scoped_proof _pf_(m);
 | 
			
		||||
 | 
			
		||||
    pred_transformer* pt = nullptr;
 | 
			
		||||
    if (!m_rels.find(p, pt)) {
 | 
			
		||||
        pt = alloc(pred_transformer, *this, get_manager(), p);
 | 
			
		||||
        m_rels.insert(p, pt);
 | 
			
		||||
        IF_VERBOSE(10, verbose_stream() << "did not find predicate " << p->get_name() << "\n";);
 | 
			
		||||
        IF_VERBOSE(10, verbose_stream() << "did not find predicate "
 | 
			
		||||
                   << p->get_name() << "\n";);
 | 
			
		||||
    }
 | 
			
		||||
    unsigned lvl = (level == -1)?infty_level():((unsigned)level);
 | 
			
		||||
    pt->add_cover(lvl, property);
 | 
			
		||||
    pt->add_cover(lvl, property, bg);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void context::add_invariant (func_decl *p, expr *property)
 | 
			
		||||
{add_cover (infty_level(), p, property);}
 | 
			
		||||
{add_cover (infty_level(), p, property, true);}
 | 
			
		||||
 | 
			
		||||
expr_ref context::get_reachable(func_decl *p)
 | 
			
		||||
{
 | 
			
		||||
expr_ref context::get_reachable(func_decl *p) {
 | 
			
		||||
    pred_transformer* pt = nullptr;
 | 
			
		||||
    if (!m_rels.find(p, pt))
 | 
			
		||||
    { return expr_ref(m.mk_false(), m); }
 | 
			
		||||
    return pt->get_reachable();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool context::validate()
 | 
			
		||||
{
 | 
			
		||||
bool context::validate() {
 | 
			
		||||
    if (!m_validate_result) { return true; }
 | 
			
		||||
 | 
			
		||||
    std::stringstream msg;
 | 
			
		||||
| 
						 | 
				
			
			@ -2483,7 +2543,7 @@ bool context::validate()
 | 
			
		|||
        model_ref model;
 | 
			
		||||
        vector<relation_info> rs;
 | 
			
		||||
        model_converter_ref mc;
 | 
			
		||||
        get_level_property(m_inductive_lvl, refs, rs);
 | 
			
		||||
        get_level_property(m_inductive_lvl, refs, rs, use_bg_invs());
 | 
			
		||||
        inductive_property ex(m, mc, rs);
 | 
			
		||||
        ex.to_model(model);
 | 
			
		||||
        var_subst vs(m, false);
 | 
			
		||||
| 
						 | 
				
			
			@ -2624,13 +2684,13 @@ void context::init_lemma_generalizers()
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
void context::get_level_property(unsigned lvl, expr_ref_vector& res,
 | 
			
		||||
                                 vector<relation_info>& rs) const {
 | 
			
		||||
                                 vector<relation_info>& rs, bool with_bg) const {
 | 
			
		||||
    for (auto const& kv : m_rels) {
 | 
			
		||||
        pred_transformer* r = kv.m_value;
 | 
			
		||||
        if (r->head() == m_query_pred) {
 | 
			
		||||
            continue;
 | 
			
		||||
        }
 | 
			
		||||
        expr_ref conj = r->get_formulas(lvl);
 | 
			
		||||
        expr_ref conj = r->get_formulas(lvl, with_bg);
 | 
			
		||||
        m_pm.formula_n2o(0, false, conj);
 | 
			
		||||
        res.push_back(conj);
 | 
			
		||||
        ptr_vector<func_decl> sig(r->head()->get_arity(), r->sig());
 | 
			
		||||
| 
						 | 
				
			
			@ -2662,7 +2722,7 @@ lbool context::solve(unsigned from_lvl)
 | 
			
		|||
            IF_VERBOSE(1, {
 | 
			
		||||
                    expr_ref_vector refs(m);
 | 
			
		||||
                    vector<relation_info> rs;
 | 
			
		||||
                    get_level_property(m_inductive_lvl, refs, rs);
 | 
			
		||||
                    get_level_property(m_inductive_lvl, refs, rs, use_bg_invs());
 | 
			
		||||
                    model_converter_ref mc;
 | 
			
		||||
                    inductive_property ex(m, mc, rs);
 | 
			
		||||
                    verbose_stream() << ex.to_string();
 | 
			
		||||
| 
						 | 
				
			
			@ -2844,7 +2904,7 @@ model_ref context::get_model()
 | 
			
		|||
    model_ref model;
 | 
			
		||||
    expr_ref_vector refs(m);
 | 
			
		||||
    vector<relation_info> rs;
 | 
			
		||||
    get_level_property(m_inductive_lvl, refs, rs);
 | 
			
		||||
    get_level_property(m_inductive_lvl, refs, rs, use_bg_invs());
 | 
			
		||||
    inductive_property ex(m, const_cast<model_converter_ref&>(m_mc), rs);
 | 
			
		||||
    ex.to_model (model);
 | 
			
		||||
    return model;
 | 
			
		||||
| 
						 | 
				
			
			@ -2877,7 +2937,7 @@ expr_ref context::mk_unsat_answer() const
 | 
			
		|||
{
 | 
			
		||||
    expr_ref_vector refs(m);
 | 
			
		||||
    vector<relation_info> rs;
 | 
			
		||||
    get_level_property(m_inductive_lvl, refs, rs);
 | 
			
		||||
    get_level_property(m_inductive_lvl, refs, rs, use_bg_invs());
 | 
			
		||||
    inductive_property ex(m, const_cast<model_converter_ref&>(m_mc), rs);
 | 
			
		||||
    return ex.to_expr();
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -128,8 +128,9 @@ class lemma {
 | 
			
		|||
    unsigned m_init_lvl;       // level at which lemma was created
 | 
			
		||||
    unsigned m_bumped:16;
 | 
			
		||||
    unsigned m_weakness:16;
 | 
			
		||||
    unsigned m_external:1;
 | 
			
		||||
    unsigned m_blocked:1;
 | 
			
		||||
    unsigned m_external:1;    // external lemma from another solver
 | 
			
		||||
    unsigned m_blocked:1;     // blocked by CTP
 | 
			
		||||
    unsigned m_background:1;  // background assumed fact
 | 
			
		||||
 | 
			
		||||
    void mk_expr_core();
 | 
			
		||||
    void mk_cube_core();
 | 
			
		||||
| 
						 | 
				
			
			@ -163,6 +164,9 @@ public:
 | 
			
		|||
    void set_external(bool ext){m_external = ext;}
 | 
			
		||||
    bool external() { return m_external;}
 | 
			
		||||
 | 
			
		||||
    void set_background(bool v) {m_background = v;}
 | 
			
		||||
    bool is_background() {return m_background;}
 | 
			
		||||
 | 
			
		||||
    bool is_blocked() {return m_blocked;}
 | 
			
		||||
    void set_blocked(bool v) {m_blocked=v;}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -222,6 +226,7 @@ class pred_transformer {
 | 
			
		|||
        pred_transformer &m_pt;            // parent pred_transformer
 | 
			
		||||
        lemma_ref_vector m_pinned_lemmas;  // all created lemmas
 | 
			
		||||
        lemma_ref_vector m_lemmas;         // active lemmas
 | 
			
		||||
        lemma_ref_vector m_bg_invs;        // background (assumed) invariants
 | 
			
		||||
        unsigned m_size;                   // num of frames
 | 
			
		||||
 | 
			
		||||
        bool m_sorted;                     // true if m_lemmas is sorted by m_lt
 | 
			
		||||
| 
						 | 
				
			
			@ -230,7 +235,8 @@ class pred_transformer {
 | 
			
		|||
        void sort ();
 | 
			
		||||
 | 
			
		||||
    public:
 | 
			
		||||
        frames (pred_transformer &pt) : m_pt (pt), m_size(0), m_sorted (true) {}
 | 
			
		||||
        frames (pred_transformer &pt) : m_pt (pt),
 | 
			
		||||
                                        m_size(0), m_sorted (true) {}
 | 
			
		||||
        ~frames() {}
 | 
			
		||||
        void simplify_formulas ();
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -245,16 +251,24 @@ class pred_transformer {
 | 
			
		|||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        void get_frame_geq_lemmas (unsigned level, expr_ref_vector &out) const {
 | 
			
		||||
        void get_frame_geq_lemmas (unsigned level, expr_ref_vector &out,
 | 
			
		||||
                                   bool with_bg = false) const {
 | 
			
		||||
            for (auto &lemma : m_lemmas) {
 | 
			
		||||
                if (lemma->level() >= level) {
 | 
			
		||||
                    out.push_back(lemma->get_expr());
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            if (with_bg) {
 | 
			
		||||
                for (auto &lemma : m_bg_invs)
 | 
			
		||||
                    out.push_back(lemma->get_expr());
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        const lemma_ref_vector& get_bg_invs() const {return m_bg_invs;}
 | 
			
		||||
        unsigned size() const {return m_size;}
 | 
			
		||||
        unsigned lemma_size() const {return m_lemmas.size ();}
 | 
			
		||||
        unsigned bg_invs_size() const {return m_bg_invs.size();}
 | 
			
		||||
 | 
			
		||||
        void add_frame() {m_size++;}
 | 
			
		||||
        void inherit_frames (frames &other) {
 | 
			
		||||
            for (auto &other_lemma : other.m_lemmas) {
 | 
			
		||||
| 
						 | 
				
			
			@ -265,6 +279,7 @@ class pred_transformer {
 | 
			
		|||
                add_lemma(new_lemma.get());
 | 
			
		||||
            }
 | 
			
		||||
            m_sorted = false;
 | 
			
		||||
            m_bg_invs.append(other.m_bg_invs);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        bool add_lemma (lemma *new_lemma);
 | 
			
		||||
| 
						 | 
				
			
			@ -418,6 +433,11 @@ class pred_transformer {
 | 
			
		|||
 | 
			
		||||
    app_ref mk_fresh_rf_tag ();
 | 
			
		||||
 | 
			
		||||
    // get tagged formulae of all of the background invariants for all of the
 | 
			
		||||
    // predecessors of the current transformer
 | 
			
		||||
    void get_pred_bg_invs(expr_ref_vector &out);
 | 
			
		||||
    const lemma_ref_vector &get_bg_invs() const {return m_frames.get_bg_invs();}
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    pred_transformer(context& ctx, manager& pm, func_decl* head);
 | 
			
		||||
    ~pred_transformer() {}
 | 
			
		||||
| 
						 | 
				
			
			@ -448,7 +468,7 @@ public:
 | 
			
		|||
    }
 | 
			
		||||
    unsigned get_num_levels() const {return m_frames.size ();}
 | 
			
		||||
    expr_ref get_cover_delta(func_decl* p_orig, int level);
 | 
			
		||||
    void     add_cover(unsigned level, expr* property);
 | 
			
		||||
    void     add_cover(unsigned level, expr* property, bool bg = false);
 | 
			
		||||
    expr_ref get_reachable();
 | 
			
		||||
 | 
			
		||||
    std::ostream& display(std::ostream& strm) const;
 | 
			
		||||
| 
						 | 
				
			
			@ -484,7 +504,7 @@ public:
 | 
			
		|||
    bool propagate_to_next_level(unsigned level);
 | 
			
		||||
    void propagate_to_infinity(unsigned level);
 | 
			
		||||
    /// \brief  Add a lemma to the current context and all users
 | 
			
		||||
    bool add_lemma(expr * lemma, unsigned lvl);
 | 
			
		||||
    bool add_lemma(expr * e, unsigned lvl, bool bg);
 | 
			
		||||
    bool add_lemma(lemma* lem) {return m_frames.add_lemma(lem);}
 | 
			
		||||
    expr* get_reach_case_var (unsigned idx) const;
 | 
			
		||||
    bool has_rfs () const { return !m_reach_facts.empty () ;}
 | 
			
		||||
| 
						 | 
				
			
			@ -527,7 +547,7 @@ public:
 | 
			
		|||
    bool check_inductive(unsigned level, expr_ref_vector& state,
 | 
			
		||||
                         unsigned& assumes_level, unsigned weakness = UINT_MAX);
 | 
			
		||||
 | 
			
		||||
    expr_ref get_formulas(unsigned level) const;
 | 
			
		||||
    expr_ref get_formulas(unsigned level, bool bg = false) const;
 | 
			
		||||
 | 
			
		||||
    void simplify_formulas();
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -958,6 +978,7 @@ class context {
 | 
			
		|||
    bool                 m_simplify_formulas_pre;
 | 
			
		||||
    bool                 m_simplify_formulas_post;
 | 
			
		||||
    bool                 m_pdr_bfs;
 | 
			
		||||
    bool                 m_use_bg_invs;
 | 
			
		||||
    unsigned             m_push_pob_max_depth;
 | 
			
		||||
    unsigned             m_max_level;
 | 
			
		||||
    unsigned             m_restart_initial_threshold;
 | 
			
		||||
| 
						 | 
				
			
			@ -992,7 +1013,8 @@ class context {
 | 
			
		|||
 | 
			
		||||
    // Generate inductive property
 | 
			
		||||
    void get_level_property(unsigned lvl, expr_ref_vector& res,
 | 
			
		||||
                            vector<relation_info> & rs) const;
 | 
			
		||||
                            vector<relation_info> & rs,
 | 
			
		||||
                            bool with_bg = false) const;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    // Initialization
 | 
			
		||||
| 
						 | 
				
			
			@ -1027,18 +1049,20 @@ public:
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
    const fp_params &get_params() const { return m_params; }
 | 
			
		||||
    bool use_native_mbp () {return m_use_native_mbp;}
 | 
			
		||||
    bool use_ground_pob () {return m_ground_pob;}
 | 
			
		||||
    bool use_instantiate () {return m_instantiate;}
 | 
			
		||||
    bool weak_abs() {return m_weak_abs;}
 | 
			
		||||
    bool use_qlemmas () {return m_use_qlemmas;}
 | 
			
		||||
    bool use_euf_gen() {return m_use_euf_gen;}
 | 
			
		||||
    bool simplify_pob() {return m_simplify_pob;}
 | 
			
		||||
    bool use_ctp() {return m_use_ctp;}
 | 
			
		||||
    bool use_inc_clause() {return m_use_inc_clause;}
 | 
			
		||||
    unsigned blast_term_ite_inflation() {return m_blast_term_ite_inflation;}
 | 
			
		||||
    bool elim_aux() {return m_elim_aux;}
 | 
			
		||||
    bool reach_dnf() {return m_reach_dnf;}
 | 
			
		||||
    bool use_eq_prop() const {return m_use_eq_prop;}
 | 
			
		||||
    bool use_native_mbp() const {return m_use_native_mbp;}
 | 
			
		||||
    bool use_ground_pob() const {return m_ground_pob;}
 | 
			
		||||
    bool use_instantiate() const {return m_instantiate;}
 | 
			
		||||
    bool weak_abs() const {return m_weak_abs;}
 | 
			
		||||
    bool use_qlemmas() const {return m_use_qlemmas;}
 | 
			
		||||
    bool use_euf_gen() const {return m_use_euf_gen;}
 | 
			
		||||
    bool simplify_pob() const {return m_simplify_pob;}
 | 
			
		||||
    bool use_ctp() const {return m_use_ctp;}
 | 
			
		||||
    bool use_inc_clause() const {return m_use_inc_clause;}
 | 
			
		||||
    unsigned blast_term_ite_inflation() const {return m_blast_term_ite_inflation;}
 | 
			
		||||
    bool elim_aux() const {return m_elim_aux;}
 | 
			
		||||
    bool reach_dnf() const {return m_reach_dnf;}
 | 
			
		||||
    bool use_bg_invs() const {return m_use_bg_invs;}
 | 
			
		||||
 | 
			
		||||
    ast_manager&      get_ast_manager() const {return m;}
 | 
			
		||||
    manager&          get_manager() {return m_pm;}
 | 
			
		||||
| 
						 | 
				
			
			@ -1081,7 +1105,7 @@ public:
 | 
			
		|||
    unsigned get_num_levels(func_decl* p);
 | 
			
		||||
 | 
			
		||||
    expr_ref get_cover_delta(int level, func_decl* p_orig, func_decl* p);
 | 
			
		||||
    void add_cover(int level, func_decl* pred, expr* property);
 | 
			
		||||
    void add_cover(int level, func_decl* pred, expr* property, bool bg = false);
 | 
			
		||||
    expr_ref get_reachable (func_decl* p);
 | 
			
		||||
    void add_invariant (func_decl *pred, expr* property);
 | 
			
		||||
    model_ref get_model();
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -94,6 +94,7 @@ void prop_solver::add_level()
 | 
			
		|||
 | 
			
		||||
void prop_solver::ensure_level(unsigned lvl)
 | 
			
		||||
{
 | 
			
		||||
    if (is_infty_level(lvl)) return;
 | 
			
		||||
    while (lvl >= level_cnt()) {
 | 
			
		||||
        add_level();
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -48,7 +48,8 @@ namespace spacer {
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    inline bool is_infty_level(unsigned lvl) {
 | 
			
		||||
        return lvl == infty_level ();
 | 
			
		||||
        // XXX: level is 16 bits in class pob
 | 
			
		||||
        return lvl >= 65535;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    inline unsigned next_level(unsigned lvl) {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -25,6 +25,7 @@ z3_add_component(transforms
 | 
			
		|||
    dl_mk_array_eq_rewrite.cpp
 | 
			
		||||
    dl_mk_array_instantiation.cpp
 | 
			
		||||
    dl_mk_elim_term_ite.cpp
 | 
			
		||||
    dl_mk_synchronize.cpp
 | 
			
		||||
  COMPONENT_DEPENDENCIES
 | 
			
		||||
    dataflow
 | 
			
		||||
    hilbert
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										376
									
								
								src/muz/transforms/dl_mk_synchronize.cpp
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										376
									
								
								src/muz/transforms/dl_mk_synchronize.cpp
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,376 @@
 | 
			
		|||
/*++
 | 
			
		||||
Copyright (c) 2017-2018 Saint-Petersburg State University
 | 
			
		||||
 | 
			
		||||
Module Name:
 | 
			
		||||
 | 
			
		||||
    dl_mk_synchronize.h
 | 
			
		||||
 | 
			
		||||
Abstract:
 | 
			
		||||
 | 
			
		||||
    Rule transformer that attempts to merge recursive iterations
 | 
			
		||||
    relaxing the shape of the inductive invariant.
 | 
			
		||||
 | 
			
		||||
Author:
 | 
			
		||||
 | 
			
		||||
    Dmitry Mordvinov (dvvrd) 2017-05-24
 | 
			
		||||
    Lidiia Chernigovskaia (LChernigovskaya) 2017-10-20
 | 
			
		||||
 | 
			
		||||
Revision History:
 | 
			
		||||
 | 
			
		||||
--*/
 | 
			
		||||
#include "muz/transforms/dl_mk_synchronize.h"
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
namespace datalog {
 | 
			
		||||
 | 
			
		||||
    typedef mk_synchronize::item_set_vector item_set_vector;
 | 
			
		||||
 | 
			
		||||
    mk_synchronize::mk_synchronize(context& ctx, unsigned priority):
 | 
			
		||||
        rule_transformer::plugin(priority, false),
 | 
			
		||||
        m_ctx(ctx),
 | 
			
		||||
        m(ctx.get_manager()),
 | 
			
		||||
        rm(ctx.get_rule_manager())
 | 
			
		||||
    {}
 | 
			
		||||
 | 
			
		||||
    bool mk_synchronize::is_recursive(rule &r, func_decl &decl) const {
 | 
			
		||||
        func_decl *hdecl = r.get_head()->get_decl();
 | 
			
		||||
        // AG: shouldn't decl appear in the body?
 | 
			
		||||
        if (hdecl == &decl)  return true;
 | 
			
		||||
        auto & strata = m_stratifier->get_strats();
 | 
			
		||||
        unsigned num_of_stratum = m_stratifier->get_predicate_strat(hdecl);
 | 
			
		||||
        return strata[num_of_stratum]->contains(&decl);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool mk_synchronize::has_recursive_premise(app * app) const {
 | 
			
		||||
        func_decl* app_decl = app->get_decl();
 | 
			
		||||
        if (m_deps->get_deps(app_decl).contains(app_decl)) {
 | 
			
		||||
            return true;
 | 
			
		||||
        }
 | 
			
		||||
        rule_stratifier::comp_vector const & strata = m_stratifier->get_strats();
 | 
			
		||||
        unsigned num_of_stratum = m_stratifier->get_predicate_strat(app_decl);
 | 
			
		||||
        return strata[num_of_stratum]->size() > 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    item_set_vector mk_synchronize::add_merged_decls(ptr_vector<app> & apps) {
 | 
			
		||||
        unsigned sz = apps.size();
 | 
			
		||||
        item_set_vector merged_decls;
 | 
			
		||||
        merged_decls.resize(sz);
 | 
			
		||||
        auto & strata = m_stratifier->get_strats();
 | 
			
		||||
        for (unsigned j = 0; j < sz; ++j) {
 | 
			
		||||
            unsigned nos;
 | 
			
		||||
            nos = m_stratifier->get_predicate_strat(apps[j]->get_decl());
 | 
			
		||||
            merged_decls[j] = strata[nos];
 | 
			
		||||
        }
 | 
			
		||||
        return merged_decls;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void mk_synchronize::add_new_rel_symbols(unsigned idx,
 | 
			
		||||
                                             item_set_vector const & decls,
 | 
			
		||||
                                             ptr_vector<func_decl> & decls_buf,
 | 
			
		||||
                                             bool & was_added) {
 | 
			
		||||
        if (idx >= decls.size()) {
 | 
			
		||||
            string_buffer<> buffer;
 | 
			
		||||
            ptr_vector<sort> domain;
 | 
			
		||||
            for (auto &d : decls_buf) {
 | 
			
		||||
                buffer << d->get_name() << "!!";
 | 
			
		||||
                domain.append(d->get_arity(), d->get_domain());
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            symbol new_name = symbol(buffer.c_str());
 | 
			
		||||
 | 
			
		||||
            if (!m_cache.contains(new_name)) {
 | 
			
		||||
                was_added = true;
 | 
			
		||||
                func_decl* orig = decls_buf[0];
 | 
			
		||||
                func_decl* product_pred = m_ctx.mk_fresh_head_predicate(new_name,
 | 
			
		||||
                    symbol::null, domain.size(), domain.c_ptr(), orig);
 | 
			
		||||
                m_cache.insert(new_name, product_pred);
 | 
			
		||||
            }
 | 
			
		||||
            return;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // -- compute Cartesian product of decls, and create a new
 | 
			
		||||
        // -- predicate for each element of the product
 | 
			
		||||
        for (auto &p : *decls[idx]) {
 | 
			
		||||
            decls_buf[idx] = p;
 | 
			
		||||
            add_new_rel_symbols(idx + 1, decls, decls_buf, was_added);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void mk_synchronize::replace_applications(rule & r, rule_set & rules,
 | 
			
		||||
                                              ptr_vector<app> & apps) {
 | 
			
		||||
        app_ref replacing = product_application(apps);
 | 
			
		||||
 | 
			
		||||
        ptr_vector<app> new_tail;
 | 
			
		||||
        svector<bool> new_tail_neg;
 | 
			
		||||
        unsigned n = r.get_tail_size() - apps.size() + 1;
 | 
			
		||||
        unsigned tail_idx = 0;
 | 
			
		||||
        new_tail.resize(n);
 | 
			
		||||
        new_tail_neg.resize(n);
 | 
			
		||||
        new_tail[0] = replacing;
 | 
			
		||||
        new_tail_neg[0] = false;
 | 
			
		||||
 | 
			
		||||
        for (unsigned i = 0; i < r.get_positive_tail_size(); ++i) {
 | 
			
		||||
            app* tail = r.get_tail(i);
 | 
			
		||||
            if (!apps.contains(tail)) {
 | 
			
		||||
                ++tail_idx;
 | 
			
		||||
                new_tail[tail_idx] = tail;
 | 
			
		||||
                new_tail_neg[tail_idx] = false;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        for (unsigned i = r.get_positive_tail_size(); i < r.get_uninterpreted_tail_size(); ++i) {
 | 
			
		||||
            ++tail_idx;
 | 
			
		||||
            new_tail[tail_idx] = r.get_tail(i);
 | 
			
		||||
            new_tail_neg[tail_idx] = true;
 | 
			
		||||
        }
 | 
			
		||||
        for (unsigned i = r.get_uninterpreted_tail_size(); i < r.get_tail_size(); ++i) {
 | 
			
		||||
            ++tail_idx;
 | 
			
		||||
            new_tail[tail_idx] = r.get_tail(i);
 | 
			
		||||
            new_tail_neg[tail_idx] = false;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        rule_ref new_rule(rm);
 | 
			
		||||
        new_rule = rm.mk(r.get_head(), tail_idx + 1,
 | 
			
		||||
            new_tail.c_ptr(), new_tail_neg.c_ptr(), symbol::null, false);
 | 
			
		||||
        rules.replace_rule(&r, new_rule.get());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    rule_ref mk_synchronize::rename_bound_vars_in_rule(rule * r,
 | 
			
		||||
                                                       unsigned & var_idx) {
 | 
			
		||||
        // AG: shift all variables in a rule so that lowest var index is var_idx?
 | 
			
		||||
        // AG: update var_idx in the process?
 | 
			
		||||
        ptr_vector<sort> sorts;
 | 
			
		||||
        r->get_vars(m, sorts);
 | 
			
		||||
        expr_ref_vector revsub(m);
 | 
			
		||||
        revsub.resize(sorts.size());
 | 
			
		||||
        for (unsigned i = 0; i < sorts.size(); ++i) {
 | 
			
		||||
            if (sorts[i]) {
 | 
			
		||||
                revsub[i] = m.mk_var(var_idx++, sorts[i]);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        rule_ref new_rule(rm);
 | 
			
		||||
        new_rule = rm.mk(r);
 | 
			
		||||
        rm.substitute(new_rule, revsub.size(), revsub.c_ptr());
 | 
			
		||||
        return new_rule;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    vector<rule_ref_vector> mk_synchronize::rename_bound_vars(item_set_vector const & heads,
 | 
			
		||||
                                                              rule_set & rules) {
 | 
			
		||||
        // AG: is every item_set in heads corresponds to rules that are merged?
 | 
			
		||||
        // AG: why are bound variables renamed in the first place?
 | 
			
		||||
        // AG: the data structure seems too complex
 | 
			
		||||
        vector<rule_ref_vector> result;
 | 
			
		||||
        unsigned var_idx = 0;
 | 
			
		||||
        for (auto item : heads) {
 | 
			
		||||
            rule_ref_vector dst_vector(rm);
 | 
			
		||||
            for (auto *head : *item) {
 | 
			
		||||
                for (auto *r : rules.get_predicate_rules(head)) {
 | 
			
		||||
                    rule_ref new_rule = rename_bound_vars_in_rule(r, var_idx);
 | 
			
		||||
                    dst_vector.push_back(new_rule.get());
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            result.push_back(dst_vector);
 | 
			
		||||
        }
 | 
			
		||||
        return result;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void mk_synchronize::add_rec_tail(vector< ptr_vector<app> > & recursive_calls,
 | 
			
		||||
                                      app_ref_vector & new_tail,
 | 
			
		||||
                                      svector<bool> & new_tail_neg,
 | 
			
		||||
                                      unsigned & tail_idx) {
 | 
			
		||||
        unsigned max_sz = 0;
 | 
			
		||||
        for (auto &rc : recursive_calls)
 | 
			
		||||
            max_sz= std::max(rc.size(), max_sz);
 | 
			
		||||
 | 
			
		||||
        unsigned n = recursive_calls.size();
 | 
			
		||||
        ptr_vector<app> merged_recursive_calls;
 | 
			
		||||
 | 
			
		||||
        for (unsigned j = 0; j < max_sz; ++j) {
 | 
			
		||||
            merged_recursive_calls.reset();
 | 
			
		||||
            merged_recursive_calls.resize(n);
 | 
			
		||||
            for (unsigned i = 0; i < n; ++i) {
 | 
			
		||||
                unsigned sz = recursive_calls[i].size();
 | 
			
		||||
                merged_recursive_calls[i] =
 | 
			
		||||
                    j < sz ? recursive_calls[i][j] : recursive_calls[i][sz - 1];
 | 
			
		||||
            }
 | 
			
		||||
            ++tail_idx;
 | 
			
		||||
            new_tail[tail_idx] = product_application(merged_recursive_calls);
 | 
			
		||||
            new_tail_neg[tail_idx] = false;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void mk_synchronize::add_non_rec_tail(rule & r, app_ref_vector & new_tail,
 | 
			
		||||
                                          svector<bool> & new_tail_neg,
 | 
			
		||||
                                          unsigned & tail_idx) {
 | 
			
		||||
        for (unsigned i = 0, sz = r.get_positive_tail_size(); i < sz; ++i) {
 | 
			
		||||
            app* tail = r.get_tail(i);
 | 
			
		||||
            if (!is_recursive(r, *tail)) {
 | 
			
		||||
                ++tail_idx;
 | 
			
		||||
                new_tail[tail_idx] = tail;
 | 
			
		||||
                new_tail_neg[tail_idx] = false;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        for (unsigned i = r.get_positive_tail_size(),
 | 
			
		||||
                 sz = r.get_uninterpreted_tail_size() ; i < sz; ++i) {
 | 
			
		||||
            ++tail_idx;
 | 
			
		||||
            new_tail[tail_idx] = r.get_tail(i);
 | 
			
		||||
            new_tail_neg[tail_idx] = true;
 | 
			
		||||
        }
 | 
			
		||||
        for (unsigned i = r.get_uninterpreted_tail_size(),
 | 
			
		||||
                 sz = r.get_tail_size(); i < sz; ++i) {
 | 
			
		||||
            ++tail_idx;
 | 
			
		||||
            new_tail[tail_idx] = r.get_tail(i);
 | 
			
		||||
            new_tail_neg[tail_idx] = r.is_neg_tail(i);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    app_ref mk_synchronize::product_application(ptr_vector<app> const &apps) {
 | 
			
		||||
        unsigned args_num = 0;
 | 
			
		||||
        string_buffer<> buffer;
 | 
			
		||||
 | 
			
		||||
        // AG: factor out into mk_name
 | 
			
		||||
        for (auto *app : apps) {
 | 
			
		||||
            buffer << app->get_decl()->get_name() << "!!";
 | 
			
		||||
            args_num += app->get_num_args();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        symbol name = symbol(buffer.c_str());
 | 
			
		||||
        SASSERT(m_cache.contains(name));
 | 
			
		||||
        func_decl * pred = m_cache[name];
 | 
			
		||||
 | 
			
		||||
        ptr_vector<expr> args;
 | 
			
		||||
        args.resize(args_num);
 | 
			
		||||
        unsigned idx = 0;
 | 
			
		||||
        for (auto *a : apps) {
 | 
			
		||||
            for (unsigned i = 0, sz = a->get_num_args(); i < sz; ++i, ++idx)
 | 
			
		||||
                args[idx] = a->get_arg(i);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        return app_ref(m.mk_app(pred, args_num, args.c_ptr()), m);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    rule_ref mk_synchronize::product_rule(rule_ref_vector const & rules) {
 | 
			
		||||
        unsigned n = rules.size();
 | 
			
		||||
 | 
			
		||||
        string_buffer<> buffer;
 | 
			
		||||
        bool first_rule = true;
 | 
			
		||||
        for (auto it = rules.begin(); it != rules.end(); ++it, first_rule = false) {
 | 
			
		||||
            if (!first_rule) {
 | 
			
		||||
                buffer << "+";
 | 
			
		||||
            }
 | 
			
		||||
            buffer << (*it)->name();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        ptr_vector<app> heads;
 | 
			
		||||
        heads.resize(n);
 | 
			
		||||
        for (unsigned i = 0; i < n; ++i) {
 | 
			
		||||
            heads[i] = rules[i]->get_head();
 | 
			
		||||
        }
 | 
			
		||||
        app_ref product_head = product_application(heads);
 | 
			
		||||
        unsigned product_tail_length = 0;
 | 
			
		||||
        bool has_recursion = false;
 | 
			
		||||
        vector< ptr_vector<app> > recursive_calls;
 | 
			
		||||
        recursive_calls.resize(n);
 | 
			
		||||
        for (unsigned i = 0; i < n; ++i) {
 | 
			
		||||
            rule& rule = *rules[i];
 | 
			
		||||
            product_tail_length += rule.get_tail_size();
 | 
			
		||||
            for (unsigned j = 0; j < rule.get_positive_tail_size(); ++j) {
 | 
			
		||||
                app* tail = rule.get_tail(j);
 | 
			
		||||
                if (is_recursive(rule, *tail)) {
 | 
			
		||||
                    has_recursion = true;
 | 
			
		||||
                    recursive_calls[i].push_back(tail);
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            if (recursive_calls[i].empty()) {
 | 
			
		||||
                recursive_calls[i].push_back(rule.get_head());
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        app_ref_vector new_tail(m);
 | 
			
		||||
        svector<bool> new_tail_neg;
 | 
			
		||||
        new_tail.resize(product_tail_length);
 | 
			
		||||
        new_tail_neg.resize(product_tail_length);
 | 
			
		||||
        unsigned tail_idx = -1;
 | 
			
		||||
        if (has_recursion) {
 | 
			
		||||
            add_rec_tail(recursive_calls, new_tail, new_tail_neg, tail_idx);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for (rule_vector::const_iterator it = rules.begin(); it != rules.end(); ++it) {
 | 
			
		||||
            rule& rule = **it;
 | 
			
		||||
            add_non_rec_tail(rule, new_tail, new_tail_neg, tail_idx);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        rule_ref new_rule(rm);
 | 
			
		||||
        new_rule = rm.mk(product_head, tail_idx + 1,
 | 
			
		||||
            new_tail.c_ptr(), new_tail_neg.c_ptr(), symbol(buffer.c_str()), false);
 | 
			
		||||
        rm.fix_unbound_vars(new_rule, false);
 | 
			
		||||
        return new_rule;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void mk_synchronize::merge_rules(unsigned idx, rule_ref_vector & buf,
 | 
			
		||||
                                     vector<rule_ref_vector> const & merged_rules,
 | 
			
		||||
                                     rule_set & all_rules) {
 | 
			
		||||
        if (idx >= merged_rules.size()) {
 | 
			
		||||
            rule_ref product = product_rule(buf);
 | 
			
		||||
            all_rules.add_rule(product.get());
 | 
			
		||||
            return;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for (auto *r : merged_rules[idx]) {
 | 
			
		||||
            buf[idx] = r;
 | 
			
		||||
            merge_rules(idx + 1, buf, merged_rules, all_rules);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void mk_synchronize::merge_applications(rule & r, rule_set & rules) {
 | 
			
		||||
        ptr_vector<app> non_recursive_preds;
 | 
			
		||||
        obj_hashtable<app> apps;
 | 
			
		||||
        for (unsigned i = 0; i < r.get_positive_tail_size(); ++i) {
 | 
			
		||||
            app* t = r.get_tail(i);
 | 
			
		||||
            if (!is_recursive(r, *t) && has_recursive_premise(t)) {
 | 
			
		||||
                apps.insert(t);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        if (apps.size() < 2) return;
 | 
			
		||||
        for (auto *a : apps) non_recursive_preds.push_back(a);
 | 
			
		||||
 | 
			
		||||
        item_set_vector merged_decls = add_merged_decls(non_recursive_preds);
 | 
			
		||||
 | 
			
		||||
        unsigned n = non_recursive_preds.size();
 | 
			
		||||
        ptr_vector<func_decl> decls_buf;
 | 
			
		||||
        decls_buf.resize(n);
 | 
			
		||||
        bool was_added = false;
 | 
			
		||||
        add_new_rel_symbols(0, merged_decls, decls_buf, was_added);
 | 
			
		||||
        if (was_added){
 | 
			
		||||
            rule_ref_vector rules_buf(rm);
 | 
			
		||||
            rules_buf.resize(n);
 | 
			
		||||
            vector<rule_ref_vector> renamed_rules = rename_bound_vars(merged_decls, rules);
 | 
			
		||||
            merge_rules(0, rules_buf, renamed_rules, rules);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        replace_applications(r, rules, non_recursive_preds);
 | 
			
		||||
        m_deps->populate(rules);
 | 
			
		||||
        m_stratifier = alloc(rule_stratifier, *m_deps);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    rule_set * mk_synchronize::operator()(rule_set const & source) {
 | 
			
		||||
        rule_set* rules = alloc(rule_set, m_ctx);
 | 
			
		||||
        rules->inherit_predicates(source);
 | 
			
		||||
 | 
			
		||||
        for (auto *r : source) { rules->add_rule(r); }
 | 
			
		||||
 | 
			
		||||
        m_deps = alloc(rule_dependencies, m_ctx);
 | 
			
		||||
        m_deps->populate(*rules);
 | 
			
		||||
        m_stratifier = alloc(rule_stratifier, *m_deps);
 | 
			
		||||
 | 
			
		||||
        unsigned current_rule = 0;
 | 
			
		||||
        while (current_rule < rules->get_num_rules()) {
 | 
			
		||||
            rule *r = rules->get_rule(current_rule);
 | 
			
		||||
            merge_applications(*r, *rules);
 | 
			
		||||
            ++current_rule;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        return rules;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
							
								
								
									
										134
									
								
								src/muz/transforms/dl_mk_synchronize.h
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										134
									
								
								src/muz/transforms/dl_mk_synchronize.h
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,134 @@
 | 
			
		|||
/*++
 | 
			
		||||
Copyright (c) 2017-2018 Saint-Petersburg State University
 | 
			
		||||
 | 
			
		||||
Module Name:
 | 
			
		||||
 | 
			
		||||
    dl_mk_synchronize.h
 | 
			
		||||
 | 
			
		||||
Abstract:
 | 
			
		||||
 | 
			
		||||
    Rule transformer that attempts to merge recursive iterations
 | 
			
		||||
    relaxing the shape of the inductive invariant.
 | 
			
		||||
 | 
			
		||||
Example:
 | 
			
		||||
 | 
			
		||||
    Q(z)  :- A(x), B(y), phi1(x,y,z).
 | 
			
		||||
    A(x)  :- A(x'), phi2(x,x').
 | 
			
		||||
    A(x)  :- phi3(x).
 | 
			
		||||
    B(y)  :- C(y'), phi4(y,y').
 | 
			
		||||
    C(y)  :- B(y'), phi5(y,y').
 | 
			
		||||
    B(y)  :- phi6(y).
 | 
			
		||||
 | 
			
		||||
    Transformed clauses:
 | 
			
		||||
 | 
			
		||||
    Q(z)    :- AB(x,y), phi1(x,y,z).
 | 
			
		||||
    AB(x,y) :- AC(x',y'), phi2(x,x'), phi4(y,y').
 | 
			
		||||
    AC(x,y) :- AB(x',y'), phi2(x,x'), phi5(y,y').
 | 
			
		||||
    AB(x,y) :- AC(x, y'), phi3(x), phi4(y,y').
 | 
			
		||||
    AC(x,y) :- AB(x, y'), phi3(x), phi5(y,y').
 | 
			
		||||
    AB(x,y) :- AB(x',y), phi2(x,x'), phi6(y).
 | 
			
		||||
    AB(x,y) :- phi3(x), phi6(y).
 | 
			
		||||
 | 
			
		||||
Author:
 | 
			
		||||
 | 
			
		||||
    Dmitry Mordvinov (dvvrd) 2017-05-24
 | 
			
		||||
    Lidiia Chernigovskaia (LChernigovskaya) 2017-10-20
 | 
			
		||||
 | 
			
		||||
Revision History:
 | 
			
		||||
 | 
			
		||||
--*/
 | 
			
		||||
#ifndef DL_MK_SYNCHRONIZE_H_
 | 
			
		||||
#define DL_MK_SYNCHRONIZE_H_
 | 
			
		||||
 | 
			
		||||
#include"muz/base/dl_context.h"
 | 
			
		||||
#include"muz/base/dl_rule_set.h"
 | 
			
		||||
#include"util/uint_set.h"
 | 
			
		||||
#include"muz/base/dl_rule_transformer.h"
 | 
			
		||||
#include"muz/transforms/dl_mk_rule_inliner.h"
 | 
			
		||||
 | 
			
		||||
namespace datalog {
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
       \brief Implements a synchronous product transformation.
 | 
			
		||||
    */
 | 
			
		||||
    class mk_synchronize : public rule_transformer::plugin {
 | 
			
		||||
    public:
 | 
			
		||||
        typedef ptr_vector<rule_stratifier::item_set> item_set_vector;
 | 
			
		||||
    private:
 | 
			
		||||
        context&        m_ctx;
 | 
			
		||||
        ast_manager&    m;
 | 
			
		||||
        rule_manager&   rm;
 | 
			
		||||
 | 
			
		||||
        scoped_ptr<rule_dependencies> m_deps;
 | 
			
		||||
        scoped_ptr<rule_stratifier> m_stratifier;
 | 
			
		||||
 | 
			
		||||
        // symbol table that maps new predicate names to corresponding
 | 
			
		||||
        // func_decl
 | 
			
		||||
        map<symbol, func_decl*, symbol_hash_proc, symbol_eq_proc> m_cache;
 | 
			
		||||
 | 
			
		||||
        /// returns true if decl is recursive in the given rule
 | 
			
		||||
        /// requires that decl appears in the tail of r
 | 
			
		||||
        bool is_recursive(rule &r, func_decl &decl) const;
 | 
			
		||||
        bool is_recursive(rule &r, expr &e) const {
 | 
			
		||||
            SASSERT(is_app(&e));
 | 
			
		||||
            return is_app(&e) && is_recursive(r, *to_app(&e)->get_decl());
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// returns true if the top-level predicate of app is recursive
 | 
			
		||||
        bool has_recursive_premise(app * app) const;
 | 
			
		||||
 | 
			
		||||
        item_set_vector add_merged_decls(ptr_vector<app> & apps);
 | 
			
		||||
 | 
			
		||||
        /**
 | 
			
		||||
            Compute Cartesian product of decls and create a new
 | 
			
		||||
            predicate for each element. For example, if decls is
 | 
			
		||||
 | 
			
		||||
            ( (a, b), (c, d) ) )
 | 
			
		||||
 | 
			
		||||
            create new predicates: a!!c, a!!d, b!!c, and b!!d
 | 
			
		||||
        */
 | 
			
		||||
        void add_new_rel_symbols(unsigned idx, item_set_vector const & decls,
 | 
			
		||||
                                 ptr_vector<func_decl> & buf, bool & was_added);
 | 
			
		||||
 | 
			
		||||
        /**
 | 
			
		||||
           Convert vector of predicate apps into a single app. For example,
 | 
			
		||||
           (Foo a) (Bar b) becomes (Foo!!Bar a b)
 | 
			
		||||
         */
 | 
			
		||||
        app_ref product_application(ptr_vector<app> const & apps);
 | 
			
		||||
 | 
			
		||||
        /**
 | 
			
		||||
            Replace a given rule by a rule in which conjunction of
 | 
			
		||||
            predicates is replaced by a single product predicate
 | 
			
		||||
         */
 | 
			
		||||
        void replace_applications(rule & r, rule_set & rules,
 | 
			
		||||
                                  ptr_vector<app> & apps);
 | 
			
		||||
 | 
			
		||||
        rule_ref rename_bound_vars_in_rule(rule * r, unsigned & var_idx);
 | 
			
		||||
        vector<rule_ref_vector> rename_bound_vars(item_set_vector const & heads,
 | 
			
		||||
                                                  rule_set & rules);
 | 
			
		||||
 | 
			
		||||
        void add_rec_tail(vector< ptr_vector<app> > & recursive_calls,
 | 
			
		||||
                          app_ref_vector & new_tail,
 | 
			
		||||
                          svector<bool> & new_tail_neg, unsigned & tail_idx);
 | 
			
		||||
        void add_non_rec_tail(rule & r, app_ref_vector & new_tail,
 | 
			
		||||
                              svector<bool> & new_tail_neg,
 | 
			
		||||
                              unsigned & tail_idx);
 | 
			
		||||
 | 
			
		||||
        rule_ref product_rule(rule_ref_vector const & rules);
 | 
			
		||||
 | 
			
		||||
        void merge_rules(unsigned idx, rule_ref_vector & buf,
 | 
			
		||||
            vector<rule_ref_vector> const & merged_rules, rule_set & all_rules);
 | 
			
		||||
        void merge_applications(rule & r, rule_set & rules);
 | 
			
		||||
 | 
			
		||||
    public:
 | 
			
		||||
        /**
 | 
			
		||||
           \brief Create synchronous product transformer.
 | 
			
		||||
         */
 | 
			
		||||
        mk_synchronize(context & ctx, unsigned priority = 22500);
 | 
			
		||||
 | 
			
		||||
        rule_set * operator()(rule_set const & source);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif /* DL_MK_SYNCHRONIZE_H_ */
 | 
			
		||||
| 
						 | 
				
			
			@ -351,7 +351,7 @@ namespace opt {
 | 
			
		|||
    void context::get_model_core(model_ref& mdl) {
 | 
			
		||||
        mdl = m_model;
 | 
			
		||||
        fix_model(mdl);
 | 
			
		||||
        mdl->set_model_completion(true);
 | 
			
		||||
        if (mdl) mdl->set_model_completion(true);
 | 
			
		||||
        TRACE("opt", tout << *mdl;);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1084,11 +1084,7 @@ namespace opt {
 | 
			
		|||
            }
 | 
			
		||||
            term = m_arith.mk_add(args.size(), args.c_ptr());
 | 
			
		||||
        }
 | 
			
		||||
        else if (m_arith.is_arith_expr(term) && !is_mul_const(term)) {
 | 
			
		||||
            TRACE("opt", tout << "Purifying " << term << "\n";);
 | 
			
		||||
            term = purify(fm, term);
 | 
			
		||||
        }
 | 
			
		||||
        else if (m.is_ite(term)) {
 | 
			
		||||
        else if (m.is_ite(term) || !is_mul_const(term)) {
 | 
			
		||||
            TRACE("opt", tout << "Purifying " << term << "\n";);
 | 
			
		||||
            term = purify(fm, term);
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1268,7 +1268,7 @@ namespace qe {
 | 
			
		|||
                result.push_back(in.get());
 | 
			
		||||
                if (in->models_enabled()) {                    
 | 
			
		||||
                    model_converter_ref mc;
 | 
			
		||||
                    mc = model2model_converter(m_model.get());
 | 
			
		||||
                    mc = model2model_converter(m_model_save.get());
 | 
			
		||||
                    mc = concat(m_pred_abs.fmc(), mc.get());
 | 
			
		||||
                    in->add(mc.get());
 | 
			
		||||
                }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1551,10 +1551,10 @@ namespace sat {
 | 
			
		|||
        if (k == 1 && lit == null_literal) {
 | 
			
		||||
            literal_vector _lits(lits);
 | 
			
		||||
            s().mk_clause(_lits.size(), _lits.c_ptr(), learned);
 | 
			
		||||
            return 0;
 | 
			
		||||
            return nullptr;
 | 
			
		||||
        }
 | 
			
		||||
        if (!learned && clausify(lit, lits.size(), lits.c_ptr(), k)) {
 | 
			
		||||
            return 0;
 | 
			
		||||
            return nullptr;
 | 
			
		||||
        }
 | 
			
		||||
        void * mem = m_allocator.allocate(card::get_obj_size(lits.size()));
 | 
			
		||||
        card* c = new (mem) card(next_id(), lit, lits, k);
 | 
			
		||||
| 
						 | 
				
			
			@ -1615,7 +1615,7 @@ namespace sat {
 | 
			
		|||
        bool units = true;
 | 
			
		||||
        for (wliteral wl : wlits) units &= wl.first == 1;
 | 
			
		||||
        if (k == 0 && lit == null_literal) {
 | 
			
		||||
            return 0;
 | 
			
		||||
            return nullptr;
 | 
			
		||||
        }
 | 
			
		||||
        if (units || k == 1) {
 | 
			
		||||
            literal_vector lits;
 | 
			
		||||
| 
						 | 
				
			
			@ -3405,7 +3405,7 @@ namespace sat {
 | 
			
		|||
            return;
 | 
			
		||||
        }
 | 
			
		||||
        for (wliteral l : p1) {
 | 
			
		||||
            SASSERT(m_weights[l.second.index()] == 0);
 | 
			
		||||
            SASSERT(m_weights.size() <= l.second.index() || m_weights[l.second.index()] == 0);
 | 
			
		||||
            m_weights.setx(l.second.index(), l.first, 0);
 | 
			
		||||
            mark_visited(l.second);  
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -3837,8 +3837,8 @@ namespace sat {
 | 
			
		|||
        reset_active_var_set();
 | 
			
		||||
        m_wlits.reset();
 | 
			
		||||
        uint64_t sum = 0;
 | 
			
		||||
        if (m_bound == 1) return 0;
 | 
			
		||||
        if (m_overflow) return 0;
 | 
			
		||||
        if (m_bound == 1) return nullptr;
 | 
			
		||||
        if (m_overflow) return nullptr;
 | 
			
		||||
        
 | 
			
		||||
        for (bool_var v : m_active_vars) {
 | 
			
		||||
            int coeff = get_int_coeff(v);
 | 
			
		||||
| 
						 | 
				
			
			@ -3850,7 +3850,7 @@ namespace sat {
 | 
			
		|||
        }
 | 
			
		||||
 | 
			
		||||
        if (m_overflow || sum >= UINT_MAX/2) {
 | 
			
		||||
            return 0;
 | 
			
		||||
            return nullptr;
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            return add_pb_ge(null_literal, m_wlits, m_bound, true);
 | 
			
		||||
| 
						 | 
				
			
			@ -3905,7 +3905,7 @@ namespace sat {
 | 
			
		|||
            ++k;
 | 
			
		||||
        }
 | 
			
		||||
        if (k == 1) {
 | 
			
		||||
            return 0;
 | 
			
		||||
            return nullptr;
 | 
			
		||||
        }
 | 
			
		||||
        while (!m_wlits.empty()) {
 | 
			
		||||
            wliteral wl = m_wlits.back();
 | 
			
		||||
| 
						 | 
				
			
			@ -3928,7 +3928,7 @@ namespace sat {
 | 
			
		|||
                ++num_max_level;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        if (m_overflow) return 0;
 | 
			
		||||
        if (m_overflow) return nullptr;
 | 
			
		||||
 | 
			
		||||
        if (slack >= k) {
 | 
			
		||||
#if 0
 | 
			
		||||
| 
						 | 
				
			
			@ -3937,7 +3937,7 @@ namespace sat {
 | 
			
		|||
            std::cout << "not asserting\n";
 | 
			
		||||
            display(std::cout, m_A, true);
 | 
			
		||||
#endif
 | 
			
		||||
            return 0;
 | 
			
		||||
            return nullptr;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // produce asserting cardinality constraint
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -16,6 +16,8 @@ Author:
 | 
			
		|||
 | 
			
		||||
Notes:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
--*/
 | 
			
		||||
 | 
			
		||||
#include <cmath>
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -50,17 +50,39 @@ def_module_params('sat',
 | 
			
		|||
	                  ('unit_walk', BOOL, False, 'use unit-walk search instead of CDCL'),
 | 
			
		||||
                          ('unit_walk_threads', UINT, 0, 'number of unit-walk search threads to find satisfiable solution'),
 | 
			
		||||
                          ('lookahead.cube.cutoff', SYMBOL, 'depth', 'cutoff type used to create lookahead cubes: depth, freevars, psat, adaptive_freevars, adaptive_psat'),
 | 
			
		||||
                          # - depth: the maximal cutoff is fixed to the value of lookahead.cube.depth. 
 | 
			
		||||
                          #          So if the value is 10, at most 1024 cubes will be generated of length 10.
 | 
			
		||||
                          # - freevars: cutoff based on a variable fraction of lookahead.cube.freevars. 
 | 
			
		||||
                          #          Cut if the number of current unassigned variables drops below a fraction of number of initial variables.
 | 
			
		||||
                          # - psat:  Let psat_heur := (Sum_{clause C} (psat.clause_base ^ {-|C|+1})) / |freevars|^psat.var_exp
 | 
			
		||||
                          #          Cut if the value of psat_heur exceeds psat.trigger
 | 
			
		||||
                          # - adaptive_freevars: Cut if the number of current unassigned variables drops below a fraction of free variables
 | 
			
		||||
                          #          at the time of the last conflict. The fraction is increased every time the a cutoff is created.
 | 
			
		||||
                          # - adative_psat: Cut based on psat_heur in an adaptive way.
 | 
			
		||||
                          ('lookahead.cube.fraction', DOUBLE, 0.4, 'adaptive fraction to create lookahead cubes. Used when lookahead.cube.cutoff is adaptive_freevars or adaptive_psat'),
 | 
			
		||||
                          ('lookahead.cube.depth', UINT, 1, 'cut-off depth to create cubes. Used when lookahead.cube.cutoff is depth.'),
 | 
			
		||||
                          ('lookahead.cube.freevars', DOUBLE, 0.8, 'cube free fariable fraction. Used when lookahead.cube.cutoff is freevars'),
 | 
			
		||||
                          ('lookahead.cube.freevars', DOUBLE, 0.8, 'cube free variable fraction. Used when lookahead.cube.cutoff is freevars'),
 | 
			
		||||
                          ('lookahead.cube.psat.var_exp', DOUBLE, 1, 'free variable exponent for PSAT cutoff'),
 | 
			
		||||
                          ('lookahead.cube.psat.clause_base', DOUBLE, 2, 'clause base for PSAT cutoff'),
 | 
			
		||||
                          ('lookahead.cube.psat.trigger', DOUBLE, 5, 'trigger value to create lookahead cubes for PSAT cutoff. Used when lookahead.cube.cutoff is psat'),
 | 
			
		||||
                          ('lookahead_search', BOOL, False, 'use lookahead solver'),
 | 
			
		||||
                          ('lookahead.preselect', BOOL, False, 'use pre-selection of subset of variables for branching'),
 | 
			
		||||
                          ('lookahead_simplify', BOOL, False, 'use lookahead solver during simplification'),
 | 
			
		||||
                          ('lookahead.use_learned', BOOL, False, 'use learned clauses when selecting lookahead literal'),
 | 
			
		||||
                          ('lookahead_simplify.bca', BOOL, True, 'add learned binary clauses as part of lookahead simplification'),
 | 
			
		||||
                          ('lookahead.global_autarky', BOOL, False, 'prefer to branch on variables that occur in clauses that are reduced'),
 | 
			
		||||
                          ('lookahead.reward', SYMBOL, 'march_cu', 'select lookahead heuristic: ternary, heule_schur (Heule Schur), heuleu (Heule Unit), unit, or march_cu')))
 | 
			
		||||
                          ('lookahead.reward', SYMBOL, 'march_cu', 'select lookahead heuristic: ternary, heule_schur (Heule Schur), heuleu (Heule Unit), unit, or march_cu'))
 | 
			
		||||
                          # reward function used to determine which literal to cube on.
 | 
			
		||||
                          # - ternary: reward function useful for random 3-SAT instances. Used by Heule and Knuth in March.
 | 
			
		||||
                          # - heule_schur: reward function based on "Schur Number 5", Heule, AAAI 2018
 | 
			
		||||
                          #   The score of a literal lit is: 
 | 
			
		||||
                          #           Sum_{C in Clauses | lit in C} 2 ^ (- |C|+1)
 | 
			
		||||
                          #           * Sum_{lit' in C | lit' != lit} lit_occs(~lit')
 | 
			
		||||
                          #           / | C |
 | 
			
		||||
                          #   where lit_occs(lit) is the number of clauses containing lit.
 | 
			
		||||
                          # - heuleu: The score of a literal lit is: Sum_{C in Clauses | lit in C} 2 ^ (-|C| + 1)
 | 
			
		||||
                          # - unit: heule_schur + also counts number of unit clauses.
 | 
			
		||||
                          # - march_cu: default reward function used in a version of March
 | 
			
		||||
                          # Each reward function also comes with its own variant of "mix_diff", which 
 | 
			
		||||
                          # is the function for combining reward metrics for the positive and negative variant of a literal. 
 | 
			
		||||
                          )
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -311,7 +311,10 @@ public:
 | 
			
		|||
    expr_ref_vector cube(expr_ref_vector& vs, unsigned backtrack_level) override {
 | 
			
		||||
        if (!is_internalized()) {
 | 
			
		||||
            lbool r = internalize_formulas();
 | 
			
		||||
            if (r != l_true) return expr_ref_vector(m);
 | 
			
		||||
            if (r != l_true) {
 | 
			
		||||
                IF_VERBOSE(0, verbose_stream() << "internalize produced " << r << "\n");
 | 
			
		||||
                return expr_ref_vector(m);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        convert_internalized();
 | 
			
		||||
        obj_hashtable<expr> _vs;
 | 
			
		||||
| 
						 | 
				
			
			@ -329,6 +332,7 @@ public:
 | 
			
		|||
            return result;
 | 
			
		||||
        }
 | 
			
		||||
        if (result == l_true) {
 | 
			
		||||
            IF_VERBOSE(1, verbose_stream() << "formulas are SAT\n");
 | 
			
		||||
            return expr_ref_vector(m);
 | 
			
		||||
        }        
 | 
			
		||||
        expr_ref_vector fmls(m);
 | 
			
		||||
| 
						 | 
				
			
			@ -345,6 +349,7 @@ public:
 | 
			
		|||
                vs.push_back(x);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        if (fmls.empty()) { IF_VERBOSE(0, verbose_stream() << "no literals were produced in cube\n"); }
 | 
			
		||||
        return fmls;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
| 
						 | 
				
			
			@ -473,6 +478,7 @@ public:
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    void convert_internalized() {
 | 
			
		||||
        m_solver.pop_to_base_level();
 | 
			
		||||
        if (!is_internalized() && m_fmls_head > 0) {
 | 
			
		||||
            internalize_formulas();
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -26,7 +26,7 @@ Revision History:
 | 
			
		|||
#include "shell/smtlib_frontend.h"
 | 
			
		||||
#include "shell/z3_log_frontend.h"
 | 
			
		||||
#include "util/warning.h"
 | 
			
		||||
#include "util/version.h"
 | 
			
		||||
#include "util/z3_version.h"
 | 
			
		||||
#include "shell/dimacs_frontend.h"
 | 
			
		||||
#include "shell/datalog_frontend.h"
 | 
			
		||||
#include "shell/opt_frontend.h"
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -13,6 +13,7 @@ z3_add_component(smt
 | 
			
		|||
    old_interval.cpp
 | 
			
		||||
    qi_queue.cpp
 | 
			
		||||
    smt_almost_cg_table.cpp
 | 
			
		||||
    smt_arith_value.cpp
 | 
			
		||||
    smt_case_split_queue.cpp
 | 
			
		||||
    smt_cg_table.cpp
 | 
			
		||||
    smt_checker.cpp
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										97
									
								
								src/smt/smt_arith_value.cpp
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										97
									
								
								src/smt/smt_arith_value.cpp
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,97 @@
 | 
			
		|||
/*++
 | 
			
		||||
Copyright (c) 2018 Microsoft Corporation
 | 
			
		||||
 | 
			
		||||
Module Name:
 | 
			
		||||
 | 
			
		||||
    smt_arith_value.cpp
 | 
			
		||||
 | 
			
		||||
Abstract:
 | 
			
		||||
 | 
			
		||||
    Utility to extract arithmetic values from context.
 | 
			
		||||
 | 
			
		||||
Author:
 | 
			
		||||
 | 
			
		||||
    Nikolaj Bjorner (nbjorner) 2018-12-08.
 | 
			
		||||
 | 
			
		||||
Revision History:
 | 
			
		||||
 | 
			
		||||
--*/
 | 
			
		||||
 | 
			
		||||
#include "smt/smt_arith_value.h"
 | 
			
		||||
#include "smt/theory_lra.h"
 | 
			
		||||
#include "smt/theory_arith.h"
 | 
			
		||||
 | 
			
		||||
namespace smt {
 | 
			
		||||
 | 
			
		||||
    arith_value::arith_value(context& ctx): 
 | 
			
		||||
        m_ctx(ctx), m(ctx.get_manager()), a(m) {}
 | 
			
		||||
 | 
			
		||||
    bool arith_value::get_lo(expr* e, rational& lo, bool& is_strict) {
 | 
			
		||||
        if (!m_ctx.e_internalized(e)) return false;
 | 
			
		||||
        family_id afid = a.get_family_id();
 | 
			
		||||
        is_strict = false;
 | 
			
		||||
        enode* next = m_ctx.get_enode(e), *n = next;
 | 
			
		||||
        bool found = false;
 | 
			
		||||
        bool is_strict1; 
 | 
			
		||||
        rational lo1;
 | 
			
		||||
        theory* th = m_ctx.get_theory(afid);
 | 
			
		||||
        theory_mi_arith* tha = dynamic_cast<theory_mi_arith*>(th);
 | 
			
		||||
        theory_i_arith*  thi = dynamic_cast<theory_i_arith*>(th);
 | 
			
		||||
        theory_lra*      thr = dynamic_cast<theory_lra*>(th);
 | 
			
		||||
        do {
 | 
			
		||||
            if ((tha && tha->get_lower(next, lo1, is_strict1)) ||
 | 
			
		||||
                (thi && thi->get_lower(next, lo1, is_strict1)) ||
 | 
			
		||||
                (thr && thr->get_lower(next, lo1, is_strict1))) {
 | 
			
		||||
                if (!found || lo1 > lo || (lo == lo1 && is_strict1)) lo = lo1, is_strict = is_strict1;
 | 
			
		||||
                found = true;
 | 
			
		||||
            }
 | 
			
		||||
            next = next->get_next();
 | 
			
		||||
        }
 | 
			
		||||
        while (n != next);
 | 
			
		||||
        return found;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool arith_value::get_up(expr* e, rational& up, bool& is_strict) {
 | 
			
		||||
        if (!m_ctx.e_internalized(e)) return false;
 | 
			
		||||
        family_id afid = a.get_family_id();
 | 
			
		||||
        is_strict = false;
 | 
			
		||||
        enode* next = m_ctx.get_enode(e), *n = next;
 | 
			
		||||
        bool found = false, is_strict1;
 | 
			
		||||
        rational up1;
 | 
			
		||||
        theory* th = m_ctx.get_theory(afid);
 | 
			
		||||
        theory_mi_arith* tha = dynamic_cast<theory_mi_arith*>(th);
 | 
			
		||||
        theory_i_arith*  thi = dynamic_cast<theory_i_arith*>(th);
 | 
			
		||||
        theory_lra*      thr = dynamic_cast<theory_lra*>(th);
 | 
			
		||||
        do {
 | 
			
		||||
            if ((tha && tha->get_upper(next, up1, is_strict1)) ||
 | 
			
		||||
                (thi && thi->get_upper(next, up1, is_strict1)) ||
 | 
			
		||||
                (thr && thr->get_upper(next, up1, is_strict1))) {
 | 
			
		||||
                if (!found || up1 < up || (up1 == up && is_strict1)) up = up1, is_strict = is_strict1;
 | 
			
		||||
                found = true;
 | 
			
		||||
            }
 | 
			
		||||
            next = next->get_next();
 | 
			
		||||
        }
 | 
			
		||||
        while (n != next);
 | 
			
		||||
        return found;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool arith_value::get_value(expr* e, rational& val) {
 | 
			
		||||
        if (!m_ctx.e_internalized(e)) return false;
 | 
			
		||||
        expr_ref _val(m);
 | 
			
		||||
        enode* next = m_ctx.get_enode(e), *n = next;
 | 
			
		||||
        family_id afid = a.get_family_id();
 | 
			
		||||
        theory* th = m_ctx.get_theory(afid);
 | 
			
		||||
        theory_mi_arith* tha = dynamic_cast<theory_mi_arith*>(th);
 | 
			
		||||
        theory_i_arith* thi = dynamic_cast<theory_i_arith*>(th);
 | 
			
		||||
        theory_lra* thr = dynamic_cast<theory_lra*>(th);           
 | 
			
		||||
        do { 
 | 
			
		||||
            e = next->get_owner();
 | 
			
		||||
            if (tha && tha->get_value(next, _val) && a.is_numeral(_val, val)) return true;
 | 
			
		||||
            if (thi && thi->get_value(next, _val) && a.is_numeral(_val, val)) return true;
 | 
			
		||||
            if (thr && thr->get_value(next, val)) return true;
 | 
			
		||||
            next = next->get_next();
 | 
			
		||||
        }
 | 
			
		||||
        while (next != n);
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
							
								
								
									
										37
									
								
								src/smt/smt_arith_value.h
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								src/smt/smt_arith_value.h
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,37 @@
 | 
			
		|||
 | 
			
		||||
/*++
 | 
			
		||||
Copyright (c) 2018 Microsoft Corporation
 | 
			
		||||
 | 
			
		||||
Module Name:
 | 
			
		||||
 | 
			
		||||
    smt_arith_value.h
 | 
			
		||||
 | 
			
		||||
Abstract:
 | 
			
		||||
 | 
			
		||||
    Utility to extract arithmetic values from context.
 | 
			
		||||
 | 
			
		||||
Author:
 | 
			
		||||
 | 
			
		||||
    Nikolaj Bjorner (nbjorner) 2018-12-08.
 | 
			
		||||
 | 
			
		||||
Revision History:
 | 
			
		||||
 | 
			
		||||
--*/
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include "ast/arith_decl_plugin.h"
 | 
			
		||||
#include "smt/smt_context.h"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
namespace smt {
 | 
			
		||||
    class arith_value {
 | 
			
		||||
        context& m_ctx;        
 | 
			
		||||
        ast_manager& m;
 | 
			
		||||
        arith_util a;
 | 
			
		||||
    public:
 | 
			
		||||
        arith_value(context& ctx);
 | 
			
		||||
        bool get_lo(expr* e, rational& lo, bool& strict);
 | 
			
		||||
        bool get_up(expr* e, rational& up, bool& strict);
 | 
			
		||||
        bool get_value(expr* e, rational& value);
 | 
			
		||||
    };
 | 
			
		||||
};
 | 
			
		||||
| 
						 | 
				
			
			@ -426,6 +426,7 @@ namespace smt {
 | 
			
		|||
        std::stringstream strm;
 | 
			
		||||
        strm << "lemma_" << (++m_lemma_id) << ".smt2";
 | 
			
		||||
        std::ofstream out(strm.str());
 | 
			
		||||
        TRACE("lemma", tout << strm.str() << "\n";);
 | 
			
		||||
        display_lemma_as_smt_problem(out, num_antecedents, antecedents, consequent, logic);
 | 
			
		||||
        out.close();
 | 
			
		||||
        return m_lemma_id;
 | 
			
		||||
| 
						 | 
				
			
			@ -466,6 +467,7 @@ namespace smt {
 | 
			
		|||
        std::stringstream strm;
 | 
			
		||||
        strm << "lemma_" << (++m_lemma_id) << ".smt2";
 | 
			
		||||
        std::ofstream out(strm.str());
 | 
			
		||||
        TRACE("lemma", tout << strm.str() << "\n";);
 | 
			
		||||
        display_lemma_as_smt_problem(out, num_antecedents, antecedents, num_eq_antecedents, eq_antecedents, consequent, logic);
 | 
			
		||||
        out.close();
 | 
			
		||||
        return m_lemma_id;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -312,6 +312,13 @@ namespace smt {
 | 
			
		|||
    }
 | 
			
		||||
    
 | 
			
		||||
    expr_ref farkas_util::get() {
 | 
			
		||||
        TRACE("arith", 
 | 
			
		||||
              for (unsigned i = 0; i < m_coeffs.size(); ++i) {
 | 
			
		||||
                  tout << m_coeffs[i] << " * (" << mk_pp(m_ineqs[i].get(), m) << ") ";
 | 
			
		||||
              }
 | 
			
		||||
              tout << "\n";
 | 
			
		||||
              );
 | 
			
		||||
 | 
			
		||||
        m_normalize_factor = rational::one();
 | 
			
		||||
        expr_ref res(m);
 | 
			
		||||
        if (m_coeffs.empty()) {
 | 
			
		||||
| 
						 | 
				
			
			@ -330,13 +337,12 @@ namespace smt {
 | 
			
		|||
            partition_ineqs();
 | 
			
		||||
            expr_ref_vector lits(m);
 | 
			
		||||
            unsigned lo = 0;
 | 
			
		||||
            for (unsigned i = 0; i < m_his.size(); ++i) {
 | 
			
		||||
                unsigned hi = m_his[i];
 | 
			
		||||
            for (unsigned hi : m_his) {
 | 
			
		||||
                lits.push_back(extract_consequence(lo, hi));
 | 
			
		||||
                lo = hi;
 | 
			
		||||
            }
 | 
			
		||||
            bool_rewriter(m).mk_or(lits.size(), lits.c_ptr(), res);
 | 
			
		||||
            IF_VERBOSE(2, { if (lits.size() > 1) { verbose_stream() << "combined lemma: " << mk_pp(res, m) << "\n"; } });
 | 
			
		||||
            IF_VERBOSE(2, { if (lits.size() > 1) { verbose_stream() << "combined lemma: " << res << "\n"; } });
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            res = extract_consequence(0, m_coeffs.size());
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -216,13 +216,17 @@ namespace smt {
 | 
			
		|||
        SASSERT(m_manager.is_bool(n));
 | 
			
		||||
        if (is_gate(m_manager, n)) {
 | 
			
		||||
            switch(to_app(n)->get_decl_kind()) {
 | 
			
		||||
            case OP_AND:
 | 
			
		||||
                UNREACHABLE();
 | 
			
		||||
            case OP_AND: {
 | 
			
		||||
                for (expr * arg : *to_app(n)) {
 | 
			
		||||
                    internalize(arg, true);
 | 
			
		||||
                    literal lit = get_literal(arg);
 | 
			
		||||
                    mk_root_clause(1, &lit, pr);
 | 
			
		||||
                }
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            case OP_OR: {
 | 
			
		||||
                literal_buffer lits;
 | 
			
		||||
                unsigned num = to_app(n)->get_num_args();
 | 
			
		||||
                for (unsigned i = 0; i < num; i++) {
 | 
			
		||||
                    expr * arg = to_app(n)->get_arg(i); 
 | 
			
		||||
                for (expr * arg : *to_app(n)) { 
 | 
			
		||||
                    internalize(arg, true);
 | 
			
		||||
                    lits.push_back(get_literal(arg));
 | 
			
		||||
                }
 | 
			
		||||
| 
						 | 
				
			
			@ -294,8 +298,7 @@ namespace smt {
 | 
			
		|||
        sort * s = m_manager.get_sort(n->get_arg(0));
 | 
			
		||||
        sort_ref u(m_manager.mk_fresh_sort("distinct-elems"), m_manager);
 | 
			
		||||
        func_decl_ref f(m_manager.mk_fresh_func_decl("distinct-aux-f", "", 1, &s, u), m_manager);
 | 
			
		||||
        for (unsigned i = 0; i < num_args; i++) {
 | 
			
		||||
            expr * arg  = n->get_arg(i);
 | 
			
		||||
        for (expr * arg : *n) {
 | 
			
		||||
            app_ref fapp(m_manager.mk_app(f, arg), m_manager);
 | 
			
		||||
            app_ref val(m_manager.mk_fresh_const("unique-value", u), m_manager);
 | 
			
		||||
            enode * e   = mk_enode(val, false, false, true);
 | 
			
		||||
| 
						 | 
				
			
			@ -826,9 +829,7 @@ namespace smt {
 | 
			
		|||
    void context::internalize_uninterpreted(app * n) {
 | 
			
		||||
        SASSERT(!e_internalized(n));
 | 
			
		||||
        // process args
 | 
			
		||||
        unsigned num = n->get_num_args();
 | 
			
		||||
        for (unsigned i = 0; i < num; i++) {
 | 
			
		||||
            expr * arg = n->get_arg(i); 
 | 
			
		||||
        for (expr * arg : *n) {
 | 
			
		||||
            internalize(arg, false);
 | 
			
		||||
            SASSERT(e_internalized(arg));
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -1542,10 +1543,9 @@ namespace smt {
 | 
			
		|||
    void context::add_and_rel_watches(app * n) {
 | 
			
		||||
        if (relevancy()) {
 | 
			
		||||
            relevancy_eh * eh = m_relevancy_propagator->mk_and_relevancy_eh(n);
 | 
			
		||||
            unsigned num = n->get_num_args();
 | 
			
		||||
            for (unsigned i = 0; i < num; i++) {
 | 
			
		||||
            for (expr * arg : *n) {
 | 
			
		||||
                // if one child is assigned to false, the and-parent must be notified
 | 
			
		||||
                literal l = get_literal(n->get_arg(i));
 | 
			
		||||
                literal l = get_literal(arg);
 | 
			
		||||
                add_rel_watch(~l, eh);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -1554,10 +1554,9 @@ namespace smt {
 | 
			
		|||
    void context::add_or_rel_watches(app * n) {
 | 
			
		||||
        if (relevancy()) {
 | 
			
		||||
            relevancy_eh * eh = m_relevancy_propagator->mk_or_relevancy_eh(n);
 | 
			
		||||
            unsigned num = n->get_num_args();
 | 
			
		||||
            for (unsigned i = 0; i < num; i++) {
 | 
			
		||||
            for (expr * arg : *n) {
 | 
			
		||||
                // if one child is assigned to true, the or-parent must be notified
 | 
			
		||||
                literal l = get_literal(n->get_arg(i));
 | 
			
		||||
                literal l = get_literal(arg);
 | 
			
		||||
                add_rel_watch(l, eh);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -1588,9 +1587,8 @@ namespace smt {
 | 
			
		|||
        TRACE("mk_and_cnstr", tout << "l: "; display_literal(tout, l); tout << "\n";);
 | 
			
		||||
        literal_buffer buffer;
 | 
			
		||||
        buffer.push_back(l);
 | 
			
		||||
        unsigned num_args = n->get_num_args();
 | 
			
		||||
        for (unsigned i = 0; i < num_args; i++) {
 | 
			
		||||
            literal l_arg = get_literal(n->get_arg(i));
 | 
			
		||||
        for (expr * arg : *n) {
 | 
			
		||||
            literal l_arg = get_literal(arg);
 | 
			
		||||
            TRACE("mk_and_cnstr", tout << "l_arg: "; display_literal(tout, l_arg); tout << "\n";);
 | 
			
		||||
            mk_gate_clause(~l, l_arg);
 | 
			
		||||
            buffer.push_back(~l_arg);
 | 
			
		||||
| 
						 | 
				
			
			@ -1602,9 +1600,8 @@ namespace smt {
 | 
			
		|||
        literal l = get_literal(n);
 | 
			
		||||
        literal_buffer buffer;
 | 
			
		||||
        buffer.push_back(~l);
 | 
			
		||||
        unsigned num_args = n->get_num_args();
 | 
			
		||||
        for (unsigned i = 0; i < num_args; i++) {
 | 
			
		||||
            literal l_arg = get_literal(n->get_arg(i));
 | 
			
		||||
        for (expr * arg : *n) {
 | 
			
		||||
            literal l_arg = get_literal(arg);
 | 
			
		||||
            mk_gate_clause(l, ~l_arg);
 | 
			
		||||
            buffer.push_back(l_arg);
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -47,6 +47,7 @@ namespace smt {
 | 
			
		|||
        m_model_finder(mf),
 | 
			
		||||
        m_max_cexs(1),
 | 
			
		||||
        m_iteration_idx(0),
 | 
			
		||||
        m_has_rec_fun(false),
 | 
			
		||||
        m_curr_model(nullptr),
 | 
			
		||||
        m_pinned_exprs(m) {
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -351,9 +352,7 @@ namespace smt {
 | 
			
		|||
    bool model_checker::check_rec_fun(quantifier* q, bool strict_rec_fun) {
 | 
			
		||||
        TRACE("model_checker", tout << mk_pp(q, m) << "\n";);
 | 
			
		||||
        SASSERT(q->get_num_patterns() == 2); // first pattern is the function, second is the body.
 | 
			
		||||
        expr* fn = to_app(q->get_pattern(0))->get_arg(0);
 | 
			
		||||
        SASSERT(is_app(fn));
 | 
			
		||||
        func_decl* f = to_app(fn)->get_decl();
 | 
			
		||||
        func_decl* f = m.get_rec_fun_decl(q);
 | 
			
		||||
 | 
			
		||||
        expr_ref_vector args(m);
 | 
			
		||||
        unsigned num_decls = q->get_num_decls();
 | 
			
		||||
| 
						 | 
				
			
			@ -433,7 +432,7 @@ namespace smt {
 | 
			
		|||
        TRACE("model_checker", tout << "model checker result: " << (num_failures == 0) << "\n";);
 | 
			
		||||
        m_max_cexs += m_params.m_mbqi_max_cexs;
 | 
			
		||||
 | 
			
		||||
        if (num_failures == 0 && !m_context->validate_model()) {
 | 
			
		||||
        if (num_failures == 0 && (!m_context->validate_model() || has_rec_under_quantifiers())) {
 | 
			
		||||
            num_failures = 1;
 | 
			
		||||
            // this time force expanding recursive function definitions
 | 
			
		||||
            // that are not forced true in the current model.
 | 
			
		||||
| 
						 | 
				
			
			@ -450,6 +449,43 @@ namespace smt {
 | 
			
		|||
        return num_failures == 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    struct has_rec_fun_proc {
 | 
			
		||||
        obj_hashtable<func_decl>& m_rec_funs;
 | 
			
		||||
        bool m_has_rec_fun;
 | 
			
		||||
 | 
			
		||||
        bool has_rec_fun() const { return m_has_rec_fun; }
 | 
			
		||||
 | 
			
		||||
        has_rec_fun_proc(obj_hashtable<func_decl>& rec_funs):
 | 
			
		||||
            m_rec_funs(rec_funs),
 | 
			
		||||
            m_has_rec_fun(false) {}
 | 
			
		||||
 | 
			
		||||
        void operator()(app* fn) {
 | 
			
		||||
            m_has_rec_fun |= m_rec_funs.contains(fn->get_decl());
 | 
			
		||||
        }
 | 
			
		||||
        void operator()(expr*) {}
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    bool model_checker::has_rec_under_quantifiers() {
 | 
			
		||||
        if (!m_has_rec_fun) {
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
        obj_hashtable<func_decl> rec_funs;
 | 
			
		||||
        for (quantifier * q : *m_qm) {
 | 
			
		||||
            if (m.is_rec_fun_def(q)) {
 | 
			
		||||
                rec_funs.insert(m.get_rec_fun_decl(q));
 | 
			
		||||
            }            
 | 
			
		||||
        }
 | 
			
		||||
        expr_fast_mark1 visited;
 | 
			
		||||
        has_rec_fun_proc proc(rec_funs);
 | 
			
		||||
        for (quantifier * q : *m_qm) {
 | 
			
		||||
            if (!m.is_rec_fun_def(q)) {
 | 
			
		||||
                quick_for_each_expr(proc, visited, q);
 | 
			
		||||
                if (proc.has_rec_fun()) return true;
 | 
			
		||||
            }            
 | 
			
		||||
        }
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // 
 | 
			
		||||
    // (repeated from defined_names.cpp)
 | 
			
		||||
    // NB. The pattern for lambdas is incomplete.
 | 
			
		||||
| 
						 | 
				
			
			@ -479,6 +515,7 @@ namespace smt {
 | 
			
		|||
            }
 | 
			
		||||
            found_relevant = true;
 | 
			
		||||
            if (m.is_rec_fun_def(q)) {
 | 
			
		||||
                m_has_rec_fun = true;
 | 
			
		||||
                if (!check_rec_fun(q, strict_rec_fun)) {
 | 
			
		||||
                    TRACE("model_checker", tout << "checking recursive function failed\n";);
 | 
			
		||||
                    num_failures++;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -51,8 +51,10 @@ namespace smt {
 | 
			
		|||
        scoped_ptr<context>                         m_aux_context; // Auxiliary context used for model checking quantifiers.
 | 
			
		||||
        unsigned                                    m_max_cexs;
 | 
			
		||||
        unsigned                                    m_iteration_idx;
 | 
			
		||||
        bool                                        m_has_rec_fun;
 | 
			
		||||
        proto_model *                               m_curr_model;
 | 
			
		||||
        obj_map<expr, expr *>                       m_value2expr;
 | 
			
		||||
 | 
			
		||||
        friend class instantiation_set;
 | 
			
		||||
 | 
			
		||||
        void init_aux_context();
 | 
			
		||||
| 
						 | 
				
			
			@ -64,6 +66,7 @@ namespace smt {
 | 
			
		|||
        bool add_blocking_clause(model * cex, expr_ref_vector & sks);
 | 
			
		||||
        bool check(quantifier * q);
 | 
			
		||||
        bool check_rec_fun(quantifier* q, bool strict_rec_fun);
 | 
			
		||||
        bool has_rec_under_quantifiers();
 | 
			
		||||
        void check_quantifiers(bool strict_rec_fun, bool& found_relevant, unsigned& num_failures);
 | 
			
		||||
 | 
			
		||||
        struct instance {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1071,6 +1071,8 @@ namespace smt {
 | 
			
		|||
 | 
			
		||||
        bool get_lower(enode* n, expr_ref& r);
 | 
			
		||||
        bool get_upper(enode* n, expr_ref& r);
 | 
			
		||||
        bool get_lower(enode* n, rational& r, bool &is_strict);
 | 
			
		||||
        bool get_upper(enode* n, rational& r, bool &is_strict);
 | 
			
		||||
        bool to_expr(inf_numeral const& val, bool is_int, expr_ref& r);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -484,7 +484,6 @@ namespace smt {
 | 
			
		|||
    void theory_arith<Ext>::mk_idiv_mod_axioms(expr * dividend, expr * divisor) {
 | 
			
		||||
        if (!m_util.is_zero(divisor)) {
 | 
			
		||||
            ast_manager & m = get_manager();
 | 
			
		||||
            bool is_numeral = m_util.is_numeral(divisor);
 | 
			
		||||
            // if divisor is zero, then idiv and mod are uninterpreted functions.
 | 
			
		||||
            expr_ref div(m), mod(m), zero(m), abs_divisor(m), one(m);
 | 
			
		||||
            expr_ref eqz(m), eq(m), lower(m), upper(m);
 | 
			
		||||
| 
						 | 
				
			
			@ -3303,6 +3302,21 @@ namespace smt {
 | 
			
		|||
        return b && to_expr(b->get_value(), is_int(v), r);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template<typename Ext>
 | 
			
		||||
    bool theory_arith<Ext>::get_lower(enode * n, rational& r, bool& is_strict) {
 | 
			
		||||
        theory_var v = n->get_th_var(get_id());
 | 
			
		||||
        bound* b = (v == null_theory_var) ? nullptr : lower(v);
 | 
			
		||||
        return b && (r = b->get_value().get_rational().to_rational(), is_strict = b->get_value().get_infinitesimal().is_pos(), true);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<typename Ext>
 | 
			
		||||
    bool theory_arith<Ext>::get_upper(enode * n, rational& r, bool& is_strict) {
 | 
			
		||||
        theory_var v = n->get_th_var(get_id());
 | 
			
		||||
        bound* b = (v == null_theory_var) ? nullptr : upper(v);
 | 
			
		||||
        return b && (r = b->get_value().get_rational().to_rational(), is_strict = b->get_value().get_infinitesimal().is_neg(), true);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // -----------------------------------
 | 
			
		||||
    //
 | 
			
		||||
    // Backtracking
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -396,7 +396,9 @@ namespace smt {
 | 
			
		|||
        for (; it != end; ++it) {
 | 
			
		||||
            if (!it->is_dead() && it->m_var != b && is_free(it->m_var)) {
 | 
			
		||||
                theory_var v  = it->m_var;
 | 
			
		||||
                expr * bound  = m_util.mk_ge(get_enode(v)->get_owner(), m_util.mk_numeral(rational::zero(), is_int(v)));
 | 
			
		||||
                expr* e = get_enode(v)->get_owner();
 | 
			
		||||
                bool _is_int = m_util.is_int(e);
 | 
			
		||||
                expr * bound  = m_util.mk_ge(e, m_util.mk_numeral(rational::zero(), _is_int));
 | 
			
		||||
                context & ctx = get_context();
 | 
			
		||||
                ctx.internalize(bound, true);
 | 
			
		||||
                ctx.mark_as_relevant(bound);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -129,6 +129,7 @@ class theory_lra::imp {
 | 
			
		|||
 | 
			
		||||
    struct scope {
 | 
			
		||||
        unsigned m_bounds_lim;
 | 
			
		||||
        unsigned m_idiv_lim;
 | 
			
		||||
        unsigned m_asserted_qhead;            
 | 
			
		||||
        unsigned m_asserted_atoms_lim;
 | 
			
		||||
        unsigned m_underspecified_lim;
 | 
			
		||||
| 
						 | 
				
			
			@ -154,6 +155,7 @@ class theory_lra::imp {
 | 
			
		|||
    ast_manager&         m;
 | 
			
		||||
    theory_arith_params& m_arith_params;
 | 
			
		||||
    arith_util           a;
 | 
			
		||||
    bool                 m_has_int;
 | 
			
		||||
    arith_eq_adapter     m_arith_eq_adapter;
 | 
			
		||||
    vector<rational>     m_columns;
 | 
			
		||||
      
 | 
			
		||||
| 
						 | 
				
			
			@ -163,13 +165,13 @@ class theory_lra::imp {
 | 
			
		|||
        expr_ref_vector     m_terms;                     
 | 
			
		||||
        vector<rational>    m_coeffs;
 | 
			
		||||
        svector<theory_var> m_vars;
 | 
			
		||||
        rational            m_coeff;
 | 
			
		||||
        rational            m_offset;
 | 
			
		||||
        ptr_vector<expr>    m_terms_to_internalize;
 | 
			
		||||
        internalize_state(ast_manager& m): m_terms(m) {}
 | 
			
		||||
        void reset() {
 | 
			
		||||
            m_terms.reset();
 | 
			
		||||
            m_coeffs.reset();
 | 
			
		||||
            m_coeff.reset();
 | 
			
		||||
            m_offset.reset();
 | 
			
		||||
            m_vars.reset();
 | 
			
		||||
            m_terms_to_internalize.reset();
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -195,7 +197,7 @@ class theory_lra::imp {
 | 
			
		|||
        expr_ref_vector&     terms() { return m_st.m_terms; }                     
 | 
			
		||||
        vector<rational>&    coeffs() { return m_st.m_coeffs; }
 | 
			
		||||
        svector<theory_var>& vars() { return m_st.m_vars; }
 | 
			
		||||
        rational&            coeff() { return m_st.m_coeff; }
 | 
			
		||||
        rational&            offset() { return m_st.m_offset; }
 | 
			
		||||
        ptr_vector<expr>&    terms_to_internalize() { return m_st.m_terms_to_internalize; }            
 | 
			
		||||
        void push(expr* e, rational c) { m_st.m_terms.push_back(e); m_st.m_coeffs.push_back(c); }
 | 
			
		||||
        void set_back(unsigned i) { 
 | 
			
		||||
| 
						 | 
				
			
			@ -214,6 +216,10 @@ class theory_lra::imp {
 | 
			
		|||
    svector<theory_var>      m_term_index2theory_var;   // reverse map from lp_solver variables to theory variables  
 | 
			
		||||
    var_coeffs               m_left_side;              // constraint left side
 | 
			
		||||
    mutable std::unordered_map<lp::var_index, rational> m_variable_values; // current model
 | 
			
		||||
    lp::var_index m_one_var;
 | 
			
		||||
    lp::var_index m_zero_var;
 | 
			
		||||
    lp::var_index m_rone_var;
 | 
			
		||||
    lp::var_index m_rzero_var;
 | 
			
		||||
 | 
			
		||||
    enum constraint_source {
 | 
			
		||||
        inequality_source,
 | 
			
		||||
| 
						 | 
				
			
			@ -229,6 +235,7 @@ class theory_lra::imp {
 | 
			
		|||
    svector<delayed_atom>  m_asserted_atoms;        
 | 
			
		||||
    expr*                  m_not_handled;
 | 
			
		||||
    ptr_vector<app>        m_underspecified;
 | 
			
		||||
    ptr_vector<expr>       m_idiv_terms;
 | 
			
		||||
    unsigned_vector        m_var_trail;
 | 
			
		||||
    vector<ptr_vector<lp_api::bound> > m_use_list;        // bounds where variables are used.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -328,6 +335,31 @@ class theory_lra::imp {
 | 
			
		|||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    lp::var_index add_const(int c, lp::var_index& var, bool is_int) {
 | 
			
		||||
        if (var != UINT_MAX) {
 | 
			
		||||
            return var;
 | 
			
		||||
        }
 | 
			
		||||
        app_ref cnst(a.mk_numeral(rational(c), is_int), m);
 | 
			
		||||
        TRACE("arith", tout << "add " << cnst << "\n";);
 | 
			
		||||
        enode* e = mk_enode(cnst);
 | 
			
		||||
        theory_var v = mk_var(cnst);
 | 
			
		||||
        var = m_solver->add_var(v, true);
 | 
			
		||||
        m_theory_var2var_index.setx(v, var, UINT_MAX);
 | 
			
		||||
        m_var_index2theory_var.setx(var, v, UINT_MAX);
 | 
			
		||||
        m_var_trail.push_back(v);
 | 
			
		||||
        add_def_constraint(m_solver->add_var_bound(var, lp::GE, rational(c)));
 | 
			
		||||
        add_def_constraint(m_solver->add_var_bound(var, lp::LE, rational(c)));
 | 
			
		||||
        return var;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    lp::var_index get_one(bool is_int) {
 | 
			
		||||
        return add_const(1, is_int ? m_one_var : m_rone_var, is_int);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    lp::var_index get_zero(bool is_int) {
 | 
			
		||||
        return add_const(0, is_int ? m_zero_var : m_rzero_var, is_int);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void found_not_handled(expr* n) {
 | 
			
		||||
        m_not_handled = n;
 | 
			
		||||
| 
						 | 
				
			
			@ -372,7 +404,7 @@ class theory_lra::imp {
 | 
			
		|||
        expr_ref_vector & terms = st.terms();
 | 
			
		||||
        svector<theory_var>& vars = st.vars();
 | 
			
		||||
        vector<rational>& coeffs = st.coeffs();
 | 
			
		||||
        rational& coeff = st.coeff();
 | 
			
		||||
        rational& offset = st.offset();
 | 
			
		||||
        rational r;
 | 
			
		||||
        expr* n1, *n2;
 | 
			
		||||
        unsigned index = 0;
 | 
			
		||||
| 
						 | 
				
			
			@ -412,7 +444,7 @@ class theory_lra::imp {
 | 
			
		|||
                ++index;
 | 
			
		||||
            }
 | 
			
		||||
            else if (a.is_numeral(n, r)) {
 | 
			
		||||
                coeff += coeffs[index]*r;
 | 
			
		||||
                offset += coeffs[index]*r;
 | 
			
		||||
                ++index;
 | 
			
		||||
            }
 | 
			
		||||
            else if (a.is_uminus(n, n1)) {
 | 
			
		||||
| 
						 | 
				
			
			@ -424,7 +456,6 @@ class theory_lra::imp {
 | 
			
		|||
                app* t = to_app(n);
 | 
			
		||||
                internalize_args(t);
 | 
			
		||||
                mk_enode(t);
 | 
			
		||||
				
 | 
			
		||||
                theory_var v = mk_var(n);
 | 
			
		||||
                coeffs[vars.size()] = coeffs[index];
 | 
			
		||||
                vars.push_back(v);
 | 
			
		||||
| 
						 | 
				
			
			@ -442,6 +473,7 @@ class theory_lra::imp {
 | 
			
		|||
                }
 | 
			
		||||
                else if (a.is_idiv(n, n1, n2)) {
 | 
			
		||||
                    if (!a.is_numeral(n2, r) || r.is_zero()) found_not_handled(n);
 | 
			
		||||
                    m_idiv_terms.push_back(n);
 | 
			
		||||
                    app * mod = a.mk_mod(n1, n2);
 | 
			
		||||
                    ctx().internalize(mod, false);
 | 
			
		||||
                    if (ctx().relevancy()) ctx().add_relevancy_dependency(n, mod);
 | 
			
		||||
| 
						 | 
				
			
			@ -451,6 +483,7 @@ class theory_lra::imp {
 | 
			
		|||
                    if (!is_num) {
 | 
			
		||||
                        found_not_handled(n);
 | 
			
		||||
                    }
 | 
			
		||||
#if 0
 | 
			
		||||
                    else {
 | 
			
		||||
                        app_ref div(a.mk_idiv(n1, n2), m);
 | 
			
		||||
                        mk_enode(div);
 | 
			
		||||
| 
						 | 
				
			
			@ -461,7 +494,8 @@ class theory_lra::imp {
 | 
			
		|||
                        // abs(r) > v >= 0
 | 
			
		||||
                        assert_idiv_mod_axioms(u, v, w, r);
 | 
			
		||||
                    }
 | 
			
		||||
                    if (!ctx().relevancy() && !is_num) mk_idiv_mod_axioms(n1, n2);                    
 | 
			
		||||
#endif
 | 
			
		||||
                    if (!ctx().relevancy()) mk_idiv_mod_axioms(n1, n2);                    
 | 
			
		||||
                }
 | 
			
		||||
                else if (a.is_rem(n, n1, n2)) {
 | 
			
		||||
                    if (!a.is_numeral(n2, r) || r.is_zero()) found_not_handled(n);
 | 
			
		||||
| 
						 | 
				
			
			@ -544,6 +578,7 @@ class theory_lra::imp {
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    enode * mk_enode(app * n) {
 | 
			
		||||
        TRACE("arith", tout << expr_ref(n, m) << "\n";);
 | 
			
		||||
        if (ctx().e_internalized(n)) {
 | 
			
		||||
            return get_enode(n);
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -624,6 +659,7 @@ class theory_lra::imp {
 | 
			
		|||
        }
 | 
			
		||||
        if (result == UINT_MAX) {
 | 
			
		||||
            result = m_solver->add_var(v, is_int(v));
 | 
			
		||||
            m_has_int |= is_int(v);
 | 
			
		||||
            m_theory_var2var_index.setx(v, result, UINT_MAX);
 | 
			
		||||
            m_var_index2theory_var.setx(result, v, UINT_MAX);
 | 
			
		||||
            m_var_trail.push_back(v);
 | 
			
		||||
| 
						 | 
				
			
			@ -677,7 +713,7 @@ class theory_lra::imp {
 | 
			
		|||
        m_constraint_sources.setx(index, inequality_source, null_source);
 | 
			
		||||
        m_inequalities.setx(index, lit, null_literal);
 | 
			
		||||
        ++m_stats.m_add_rows;
 | 
			
		||||
        TRACE("arith", m_solver->print_constraint(index, tout); tout << "\n";);
 | 
			
		||||
        TRACE("arith", m_solver->print_constraint(index, tout) << "\n";);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void add_def_constraint(lp::constraint_index index) {
 | 
			
		||||
| 
						 | 
				
			
			@ -693,8 +729,6 @@ class theory_lra::imp {
 | 
			
		|||
    }
 | 
			
		||||
        
 | 
			
		||||
    void internalize_eq(theory_var v1, theory_var v2) {  
 | 
			
		||||
        enode* n1 = get_enode(v1);
 | 
			
		||||
        enode* n2 = get_enode(v2);
 | 
			
		||||
        app_ref term(m.mk_fresh_const("eq", a.mk_real()), m);
 | 
			
		||||
        scoped_internalize_state st(*this);
 | 
			
		||||
        st.vars().push_back(v1);
 | 
			
		||||
| 
						 | 
				
			
			@ -707,8 +741,8 @@ class theory_lra::imp {
 | 
			
		|||
        add_def_constraint(m_solver->add_var_bound(vi, lp::GE, rational::zero()));
 | 
			
		||||
        TRACE("arith", 
 | 
			
		||||
              {
 | 
			
		||||
                  expr*  o1 = n1->get_owner();
 | 
			
		||||
                  expr*  o2 = n2->get_owner();                  
 | 
			
		||||
                  expr*  o1 = get_enode(v1)->get_owner();
 | 
			
		||||
                  expr*  o2 = get_enode(v2)->get_owner();                  
 | 
			
		||||
                  tout << "v" << v1 << " = " << "v" << v2 << ": "
 | 
			
		||||
                       << mk_pp(o1, m) << " = " << mk_pp(o2, m) << "\n";
 | 
			
		||||
              });
 | 
			
		||||
| 
						 | 
				
			
			@ -733,10 +767,19 @@ class theory_lra::imp {
 | 
			
		|||
    }
 | 
			
		||||
       
 | 
			
		||||
    bool is_unit_var(scoped_internalize_state& st) {
 | 
			
		||||
        return st.coeff().is_zero() && st.vars().size() == 1 && st.coeffs()[0].is_one();
 | 
			
		||||
        return st.offset().is_zero() && st.vars().size() == 1 && st.coeffs()[0].is_one();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool is_one(scoped_internalize_state& st) {
 | 
			
		||||
        return st.offset().is_one() && st.vars().empty();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool is_zero(scoped_internalize_state& st) {
 | 
			
		||||
        return st.offset().is_zero() && st.vars().empty();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    theory_var internalize_def(app* term, scoped_internalize_state& st) {
 | 
			
		||||
        TRACE("arith", tout << expr_ref(term, m) << "\n";);
 | 
			
		||||
        if (ctx().e_internalized(term)) {
 | 
			
		||||
            IF_VERBOSE(0, verbose_stream() << "repeated term\n";);
 | 
			
		||||
            return mk_var(term, false);
 | 
			
		||||
| 
						 | 
				
			
			@ -766,13 +809,24 @@ class theory_lra::imp {
 | 
			
		|||
        if (is_unit_var(st)) {
 | 
			
		||||
            return st.vars()[0];
 | 
			
		||||
        }
 | 
			
		||||
        else if (is_one(st)) {
 | 
			
		||||
            return get_one(a.is_int(term));
 | 
			
		||||
        }
 | 
			
		||||
        else if (is_zero(st)) {
 | 
			
		||||
            return get_zero(a.is_int(term));
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            init_left_side(st);
 | 
			
		||||
            theory_var v = mk_var(term);
 | 
			
		||||
            lp::var_index vi = m_theory_var2var_index.get(v, UINT_MAX);
 | 
			
		||||
            TRACE("arith", tout << mk_pp(term, m) << " " << v << " " << vi << "\n";);
 | 
			
		||||
            TRACE("arith", tout << mk_pp(term, m) << " v" << v << "\n";);
 | 
			
		||||
            if (vi == UINT_MAX) {
 | 
			
		||||
                vi = m_solver->add_term(m_left_side, st.coeff());
 | 
			
		||||
                rational const& offset = st.offset();
 | 
			
		||||
                if (!offset.is_zero()) {
 | 
			
		||||
                    m_left_side.push_back(std::make_pair(offset, get_one(a.is_int(term))));
 | 
			
		||||
                }
 | 
			
		||||
                SASSERT(!m_left_side.empty());
 | 
			
		||||
                vi = m_solver->add_term(m_left_side);
 | 
			
		||||
                m_theory_var2var_index.setx(v, vi, UINT_MAX);
 | 
			
		||||
                if (m_solver->is_term(vi)) {
 | 
			
		||||
                    m_term_index2theory_var.setx(m_solver->adjust_term_index(vi), v, UINT_MAX);
 | 
			
		||||
| 
						 | 
				
			
			@ -782,7 +836,7 @@ class theory_lra::imp {
 | 
			
		|||
                }
 | 
			
		||||
                m_var_trail.push_back(v);
 | 
			
		||||
                TRACE("arith_verbose", tout << "v" << v << " := " << mk_pp(term, m) << " slack: " << vi << " scopes: " << m_scopes.size() << "\n";
 | 
			
		||||
                      m_solver->print_term(m_solver->get_term(vi), tout); tout << "\n";);
 | 
			
		||||
                      m_solver->print_term(m_solver->get_term(vi), tout) << "\n";);
 | 
			
		||||
            }
 | 
			
		||||
            rational val;
 | 
			
		||||
            if (a.is_numeral(term, val)) {
 | 
			
		||||
| 
						 | 
				
			
			@ -798,9 +852,14 @@ public:
 | 
			
		|||
        th(th), m(m), 
 | 
			
		||||
        m_arith_params(ap), 
 | 
			
		||||
        a(m), 
 | 
			
		||||
        m_has_int(false),
 | 
			
		||||
        m_arith_eq_adapter(th, ap, a),            
 | 
			
		||||
        m_internalize_head(0),
 | 
			
		||||
        m_not_handled(0),
 | 
			
		||||
        m_one_var(UINT_MAX),
 | 
			
		||||
        m_zero_var(UINT_MAX),
 | 
			
		||||
        m_rone_var(UINT_MAX),
 | 
			
		||||
        m_rzero_var(UINT_MAX),
 | 
			
		||||
        m_not_handled(nullptr),
 | 
			
		||||
        m_asserted_qhead(0), 
 | 
			
		||||
        m_assume_eq_head(0),
 | 
			
		||||
        m_num_conflicts(0),
 | 
			
		||||
| 
						 | 
				
			
			@ -872,15 +931,17 @@ public:
 | 
			
		|||
        return true;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool is_arith(enode* n) {
 | 
			
		||||
        return n && n->get_th_var(get_id()) != null_theory_var;
 | 
			
		||||
    }
 | 
			
		||||
        
 | 
			
		||||
    void internalize_eq_eh(app * atom, bool_var) {
 | 
			
		||||
        expr* lhs = 0, *rhs = 0;
 | 
			
		||||
        TRACE("arith_verbose", tout << mk_pp(atom, m) << "\n";);
 | 
			
		||||
        expr* lhs = nullptr, *rhs = nullptr;
 | 
			
		||||
        VERIFY(m.is_eq(atom, lhs, rhs));
 | 
			
		||||
        enode * n1 = get_enode(lhs);
 | 
			
		||||
        enode * n2 = get_enode(rhs);
 | 
			
		||||
        if (n1->get_th_var(get_id()) != null_theory_var &&
 | 
			
		||||
            n2->get_th_var(get_id()) != null_theory_var &&
 | 
			
		||||
            n1 != n2) {
 | 
			
		||||
            TRACE("arith_verbose", tout << mk_pp(atom, m) << "\n";);
 | 
			
		||||
        if (is_arith(n1) && is_arith(n2) && n1 != n2) {
 | 
			
		||||
            m_arith_eq_adapter.mk_axioms(n1, n2);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -910,6 +971,7 @@ public:
 | 
			
		|||
        scope& s = m_scopes.back();
 | 
			
		||||
        s.m_bounds_lim = m_bounds_trail.size();
 | 
			
		||||
        s.m_asserted_qhead = m_asserted_qhead;
 | 
			
		||||
        s.m_idiv_lim = m_idiv_terms.size();
 | 
			
		||||
        s.m_asserted_atoms_lim = m_asserted_atoms.size();
 | 
			
		||||
        s.m_not_handled = m_not_handled;
 | 
			
		||||
        s.m_underspecified_lim = m_underspecified.size();
 | 
			
		||||
| 
						 | 
				
			
			@ -935,6 +997,7 @@ public:
 | 
			
		|||
            }
 | 
			
		||||
            m_theory_var2var_index[m_var_trail[i]] = UINT_MAX;
 | 
			
		||||
        }
 | 
			
		||||
        m_idiv_terms.shrink(m_scopes[old_size].m_idiv_lim);
 | 
			
		||||
        m_asserted_atoms.shrink(m_scopes[old_size].m_asserted_atoms_lim);
 | 
			
		||||
        m_asserted_qhead = m_scopes[old_size].m_asserted_qhead;
 | 
			
		||||
        m_underspecified.shrink(m_scopes[old_size].m_underspecified_lim);
 | 
			
		||||
| 
						 | 
				
			
			@ -1030,37 +1093,74 @@ public:
 | 
			
		|||
        add_def_constraint(m_solver->add_var_bound(vi, lp::LE, rational::zero()));
 | 
			
		||||
        add_def_constraint(m_solver->add_var_bound(get_var_index(v), lp::GE, rational::zero()));
 | 
			
		||||
        add_def_constraint(m_solver->add_var_bound(get_var_index(v), lp::LT, abs(r)));
 | 
			
		||||
        TRACE("arith", m_solver->print_constraints(tout << term << "\n"););
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void mk_idiv_mod_axioms(expr * p, expr * q) {
 | 
			
		||||
        if (a.is_zero(q)) {
 | 
			
		||||
            return;
 | 
			
		||||
        }
 | 
			
		||||
        TRACE("arith", tout << expr_ref(p, m) << " " << expr_ref(q, m) << "\n";);
 | 
			
		||||
        // if q is zero, then idiv and mod are uninterpreted functions.
 | 
			
		||||
        expr_ref div(a.mk_idiv(p, q), m);
 | 
			
		||||
        expr_ref mod(a.mk_mod(p, q), m);
 | 
			
		||||
        expr_ref zero(a.mk_int(0), m);
 | 
			
		||||
        literal q_ge_0     = mk_literal(a.mk_ge(q, zero));
 | 
			
		||||
        literal q_le_0     = mk_literal(a.mk_le(q, zero));
 | 
			
		||||
        //            literal eqz        = th.mk_eq(q, zero, false);
 | 
			
		||||
        literal eq         = th.mk_eq(a.mk_add(a.mk_mul(q, div), mod), p, false);
 | 
			
		||||
        literal mod_ge_0   = mk_literal(a.mk_ge(mod, zero));
 | 
			
		||||
        literal div_ge_0   = mk_literal(a.mk_ge(div, zero));
 | 
			
		||||
        literal div_le_0   = mk_literal(a.mk_le(div, zero));
 | 
			
		||||
        literal p_ge_0     = mk_literal(a.mk_ge(p, zero));
 | 
			
		||||
        literal p_le_0     = mk_literal(a.mk_le(p, zero));
 | 
			
		||||
 | 
			
		||||
        rational k(0);
 | 
			
		||||
        expr_ref upper(m);
 | 
			
		||||
 | 
			
		||||
        if (a.is_numeral(q, k)) {
 | 
			
		||||
            if (k.is_pos()) { 
 | 
			
		||||
                upper = a.mk_numeral(k - 1, true);
 | 
			
		||||
            }
 | 
			
		||||
            else if (k.is_neg()) {
 | 
			
		||||
                upper = a.mk_numeral(-k - 1, true);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            k = rational::zero();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if (!k.is_zero()) {
 | 
			
		||||
            mk_axiom(eq);
 | 
			
		||||
            mk_axiom(mod_ge_0);
 | 
			
		||||
            mk_axiom(mk_literal(a.mk_le(mod, upper)));
 | 
			
		||||
            if (k.is_pos()) {
 | 
			
		||||
                mk_axiom(~p_ge_0, div_ge_0);
 | 
			
		||||
                mk_axiom(~p_le_0, div_le_0);
 | 
			
		||||
            }
 | 
			
		||||
            else {
 | 
			
		||||
                mk_axiom(~p_ge_0, div_le_0);
 | 
			
		||||
                mk_axiom(~p_le_0, div_ge_0);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            // q >= 0 or p = (p mod q) + q * (p div q)
 | 
			
		||||
            // q <= 0 or p = (p mod q) + q * (p div q)
 | 
			
		||||
            // q >= 0 or (p mod q) >= 0
 | 
			
		||||
            // q <= 0 or (p mod q) >= 0
 | 
			
		||||
            // q <= 0 or (p mod q) <  q
 | 
			
		||||
            // q >= 0 or (p mod q) < -q
 | 
			
		||||
        // enable_trace("mk_bool_var");
 | 
			
		||||
            literal q_ge_0 = mk_literal(a.mk_ge(q, zero));
 | 
			
		||||
            literal q_le_0 = mk_literal(a.mk_le(q, zero));
 | 
			
		||||
            mk_axiom(q_ge_0, eq);
 | 
			
		||||
            mk_axiom(q_le_0, eq);
 | 
			
		||||
            mk_axiom(q_ge_0, mod_ge_0);
 | 
			
		||||
            mk_axiom(q_le_0, mod_ge_0);
 | 
			
		||||
            mk_axiom(q_le_0, ~mk_literal(a.mk_ge(a.mk_sub(mod, q), zero)));
 | 
			
		||||
            mk_axiom(q_ge_0, ~mk_literal(a.mk_ge(a.mk_add(mod, q), zero)));        
 | 
			
		||||
        rational k;
 | 
			
		||||
        if (m_arith_params.m_arith_enum_const_mod && a.is_numeral(q, k) && 
 | 
			
		||||
            k.is_pos() && k < rational(8)) {
 | 
			
		||||
            mk_axiom(q_le_0, ~p_ge_0, div_ge_0); 
 | 
			
		||||
            mk_axiom(q_le_0, ~p_le_0, div_le_0); 
 | 
			
		||||
            mk_axiom(q_ge_0, ~p_ge_0, div_le_0); 
 | 
			
		||||
            mk_axiom(q_ge_0, ~p_le_0, div_ge_0); 
 | 
			
		||||
        }
 | 
			
		||||
        if (m_arith_params.m_arith_enum_const_mod && k.is_pos() && k < rational(8)) {
 | 
			
		||||
            unsigned _k = k.get_unsigned();
 | 
			
		||||
            literal_buffer lits;
 | 
			
		||||
            for (unsigned j = 0; j < _k; ++j) {
 | 
			
		||||
| 
						 | 
				
			
			@ -1152,7 +1252,6 @@ public:
 | 
			
		|||
            m_todo_terms.pop_back();
 | 
			
		||||
            if (m_solver->is_term(vi)) {
 | 
			
		||||
                const lp::lar_term& term = m_solver->get_term(vi);
 | 
			
		||||
                result += term.m_v * coeff;
 | 
			
		||||
                for (const auto & i:  term) {
 | 
			
		||||
                    m_todo_terms.push_back(std::make_pair(i.var(), coeff * i.coeff()));
 | 
			
		||||
                }                    
 | 
			
		||||
| 
						 | 
				
			
			@ -1189,7 +1288,6 @@ public:
 | 
			
		|||
            m_todo_terms.pop_back();
 | 
			
		||||
            if (m_solver->is_term(wi)) {
 | 
			
		||||
                const lp::lar_term& term = m_solver->get_term(wi);
 | 
			
		||||
                result += term.m_v * coeff;
 | 
			
		||||
                for (const auto & i : term) {
 | 
			
		||||
                    if (m_variable_values.count(i.var()) > 0) {
 | 
			
		||||
                        result += m_variable_values[i.var()] * coeff * i.coeff();
 | 
			
		||||
| 
						 | 
				
			
			@ -1208,10 +1306,10 @@ public:
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    void init_variable_values() {
 | 
			
		||||
        if (!m.canceled() && m_solver.get() && th.get_num_vars() > 0) {
 | 
			
		||||
        reset_variable_values();
 | 
			
		||||
        if (!m.canceled() && m_solver.get() && th.get_num_vars() > 0) {
 | 
			
		||||
            TRACE("arith", tout << "update variable values\n";);
 | 
			
		||||
            m_solver->get_model(m_variable_values);
 | 
			
		||||
            TRACE("arith", display(tout););
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1314,6 +1412,7 @@ public:
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    final_check_status final_check_eh() {
 | 
			
		||||
        IF_VERBOSE(2, verbose_stream() << "final-check\n");
 | 
			
		||||
        m_use_nra_model = false;
 | 
			
		||||
        lbool is_sat = l_true;
 | 
			
		||||
        if (m_solver->get_status() != lp::lp_status::OPTIMAL) {
 | 
			
		||||
| 
						 | 
				
			
			@ -1378,6 +1477,18 @@ public:
 | 
			
		|||
        u_map<rational> coeffs;
 | 
			
		||||
        term2coeffs(term, coeffs, rational::one(), offset);
 | 
			
		||||
        offset.neg();
 | 
			
		||||
        TRACE("arith", 
 | 
			
		||||
              m_solver->print_term(term, tout << "term: ") << "\n";
 | 
			
		||||
              for (auto const& kv : coeffs) {
 | 
			
		||||
                  tout << "v" << kv.m_key << " * " << kv.m_value << "\n";
 | 
			
		||||
              }
 | 
			
		||||
              tout << offset << "\n";
 | 
			
		||||
              rational g(0);
 | 
			
		||||
              for (auto const& kv : coeffs) {
 | 
			
		||||
                  g = gcd(g, kv.m_value);
 | 
			
		||||
              }
 | 
			
		||||
              tout << "gcd: " << g << "\n";
 | 
			
		||||
              );
 | 
			
		||||
        if (is_int) {
 | 
			
		||||
            // 3x + 6y >= 5 -> x + 3y >= 5/3, then x + 3y >= 2
 | 
			
		||||
            // 3x + 6y <= 5 -> x + 3y <= 1
 | 
			
		||||
| 
						 | 
				
			
			@ -1385,10 +1496,12 @@ public:
 | 
			
		|||
            rational g = gcd_reduce(coeffs);
 | 
			
		||||
            if (!g.is_one()) {
 | 
			
		||||
                if (lower_bound) {
 | 
			
		||||
                    offset = div(offset + g - rational::one(), g);
 | 
			
		||||
                    TRACE("arith", tout << "lower: " << offset << " / " << g << " = " << offset / g << " >= " << ceil(offset / g) << "\n";);
 | 
			
		||||
                    offset = ceil(offset / g);
 | 
			
		||||
                }
 | 
			
		||||
                else {
 | 
			
		||||
                    offset = div(offset, g);
 | 
			
		||||
                    TRACE("arith", tout << "upper: " << offset << " / " << g << " = " << offset / g << " <= " << floor(offset / g) << "\n";);
 | 
			
		||||
                    offset = floor(offset / g);
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -1408,27 +1521,247 @@ public:
 | 
			
		|||
        }
 | 
			
		||||
 | 
			
		||||
        TRACE("arith", tout << t << ": " << atom << "\n";
 | 
			
		||||
              m_solver->print_term(term, tout << "bound atom: "); tout << (lower_bound?" >= ":" <= ") << k << "\n";);
 | 
			
		||||
              m_solver->print_term(term, tout << "bound atom: ") << (lower_bound?" >= ":" <= ") << k << "\n";);
 | 
			
		||||
        ctx().internalize(atom, true);
 | 
			
		||||
        ctx().mark_as_relevant(atom.get());
 | 
			
		||||
        return atom;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool make_sure_all_vars_have_bounds() {
 | 
			
		||||
        if (!m_has_int) {
 | 
			
		||||
            return true;
 | 
			
		||||
        }
 | 
			
		||||
        unsigned nv = std::min(th.get_num_vars(), m_theory_var2var_index.size());
 | 
			
		||||
        bool all_bounded = true;
 | 
			
		||||
        for (unsigned v = 0; v < nv; ++v) {
 | 
			
		||||
            lp::var_index vi = m_theory_var2var_index[v];
 | 
			
		||||
            if (vi == UINT_MAX)
 | 
			
		||||
                continue;
 | 
			
		||||
            if (!m_solver->is_term(vi) && !var_has_bound(vi, true) && !var_has_bound(vi, false)) {
 | 
			
		||||
                lp::lar_term term;
 | 
			
		||||
                term.add_monomial(rational::one(), vi);
 | 
			
		||||
                app_ref b = mk_bound(term, rational::zero(), true);
 | 
			
		||||
                TRACE("arith", tout << "added bound " << b << "\n";);
 | 
			
		||||
                IF_VERBOSE(2, verbose_stream() << "bound: " << b << "\n");
 | 
			
		||||
                all_bounded = false;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        return all_bounded;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * n = (div p q)
 | 
			
		||||
     *
 | 
			
		||||
     * (div p q) * q + (mod p q) = p, (mod p q) >= 0
 | 
			
		||||
     *
 | 
			
		||||
     * 0 < q => (p/q <= v(p)/v(q) => n <= floor(v(p)/v(q)))
 | 
			
		||||
     * 0 < q => (v(p)/v(q) <= p/q => v(p)/v(q) - 1 < n) 
 | 
			
		||||
     * 
 | 
			
		||||
     */
 | 
			
		||||
    bool check_idiv_bounds() {
 | 
			
		||||
        if (m_idiv_terms.empty()) {
 | 
			
		||||
            return true;
 | 
			
		||||
        }
 | 
			
		||||
        bool all_divs_valid = true;        
 | 
			
		||||
        init_variable_values();
 | 
			
		||||
        for (expr* n : m_idiv_terms) {
 | 
			
		||||
            expr* p = nullptr, *q = nullptr;
 | 
			
		||||
            VERIFY(a.is_idiv(n, p, q));
 | 
			
		||||
            theory_var v  = mk_var(n);
 | 
			
		||||
            theory_var v1 = mk_var(p);
 | 
			
		||||
            theory_var v2 = mk_var(q);
 | 
			
		||||
            rational r1 = get_value(v1);
 | 
			
		||||
            rational r2;
 | 
			
		||||
 | 
			
		||||
            if (!r1.is_int() || r1.is_neg()) {
 | 
			
		||||
                // TBD
 | 
			
		||||
                // r1 = 223/4, r2 = 2, r = 219/8 
 | 
			
		||||
                // take ceil(r1), floor(r1), ceil(r2), floor(r2), for floor(r2) > 0
 | 
			
		||||
                // then 
 | 
			
		||||
                //      p/q <= ceil(r1)/floor(r2) => n <= div(ceil(r1), floor(r2))
 | 
			
		||||
                //      p/q >= floor(r1)/ceil(r2) => n >= div(floor(r1), ceil(r2))
 | 
			
		||||
                continue;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (a.is_numeral(q, r2) && r2.is_pos()) {
 | 
			
		||||
                if (get_value(v) == div(r1, r2)) continue;
 | 
			
		||||
            
 | 
			
		||||
                rational div_r = div(r1, r2);
 | 
			
		||||
                // p <= q * div(r1, q) + q - 1 => div(p, q) <= div(r1, r2)
 | 
			
		||||
                // p >= q * div(r1, q) => div(r1, q) <= div(p, q)
 | 
			
		||||
                rational mul(1);
 | 
			
		||||
                rational hi = r2 * div_r + r2 - 1;
 | 
			
		||||
                rational lo = r2 * div_r;
 | 
			
		||||
 | 
			
		||||
                // used to normalize inequalities so they 
 | 
			
		||||
                // don't appear as 8*x >= 15, but x >= 2
 | 
			
		||||
                expr *n1 = nullptr, *n2 = nullptr;
 | 
			
		||||
                if (a.is_mul(p, n1, n2) && is_numeral(n1, mul) && mul.is_pos()) {
 | 
			
		||||
                    p = n2;
 | 
			
		||||
                    hi = floor(hi/mul);
 | 
			
		||||
                    lo = ceil(lo/mul);
 | 
			
		||||
                }
 | 
			
		||||
                literal p_le_r1  = mk_literal(a.mk_le(p, a.mk_numeral(hi, true)));
 | 
			
		||||
                literal p_ge_r1  = mk_literal(a.mk_ge(p, a.mk_numeral(lo, true)));
 | 
			
		||||
                literal n_le_div = mk_literal(a.mk_le(n, a.mk_numeral(div_r, true)));
 | 
			
		||||
                literal n_ge_div = mk_literal(a.mk_ge(n, a.mk_numeral(div_r, true)));
 | 
			
		||||
                mk_axiom(~p_le_r1, n_le_div); 
 | 
			
		||||
                mk_axiom(~p_ge_r1, n_ge_div);
 | 
			
		||||
 | 
			
		||||
                all_divs_valid = false;
 | 
			
		||||
 | 
			
		||||
                TRACE("arith",
 | 
			
		||||
                      tout << r1 << " div " << r2 << "\n";
 | 
			
		||||
                      literal_vector lits;
 | 
			
		||||
                      lits.push_back(~p_le_r1);
 | 
			
		||||
                      lits.push_back(n_le_div);
 | 
			
		||||
                      ctx().display_literals_verbose(tout, lits) << "\n\n";
 | 
			
		||||
                      lits[0] = ~p_ge_r1;
 | 
			
		||||
                      lits[1] = n_ge_div;
 | 
			
		||||
                      ctx().display_literals_verbose(tout, lits) << "\n";);                      
 | 
			
		||||
                continue;
 | 
			
		||||
            }
 | 
			
		||||
#if 0
 | 
			
		||||
 | 
			
		||||
            // TBD similar for non-linear division.
 | 
			
		||||
            // better to deal with in nla_solver:
 | 
			
		||||
 | 
			
		||||
            all_divs_valid = false;
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
            //  
 | 
			
		||||
            //    p/q <= r1/r2 => n <= div(r1, r2)
 | 
			
		||||
            // <=>
 | 
			
		||||
            //    p*r2 <= q*r1 => n <= div(r1, r2)
 | 
			
		||||
            //
 | 
			
		||||
            //    p/q >= r1/r2 => n >= div(r1, r2)
 | 
			
		||||
            // <=>
 | 
			
		||||
            //    p*r2 >= r1*q => n >= div(r1, r2)
 | 
			
		||||
            // 
 | 
			
		||||
            expr_ref zero(a.mk_int(0), m);
 | 
			
		||||
            expr_ref divc(a.mk_numeral(div(r1, r2), true), m);
 | 
			
		||||
            expr_ref pqr(a.mk_sub(a.mk_mul(a.mk_numeral(r2, true), p), a.mk_mul(a.mk_numeral(r1, true), q)), m);            
 | 
			
		||||
            literal pq_lhs   = ~mk_literal(a.mk_le(pqr, zero));
 | 
			
		||||
            literal pq_rhs   = ~mk_literal(a.mk_ge(pqr, zero));
 | 
			
		||||
            literal n_le_div = mk_literal(a.mk_le(n, divc));
 | 
			
		||||
            literal n_ge_div = mk_literal(a.mk_ge(n, divc)); 
 | 
			
		||||
            mk_axiom(pq_lhs, n_le_div); 
 | 
			
		||||
            mk_axiom(pq_rhs, n_ge_div);
 | 
			
		||||
            TRACE("arith",
 | 
			
		||||
                  literal_vector lits;
 | 
			
		||||
                  lits.push_back(pq_lhs);
 | 
			
		||||
                  lits.push_back(n_le_div);
 | 
			
		||||
                  ctx().display_literals_verbose(tout, lits) << "\n";
 | 
			
		||||
                  lits[0] = pq_rhs;
 | 
			
		||||
                  lits[1] = n_ge_div;
 | 
			
		||||
                  ctx().display_literals_verbose(tout, lits) << "\n";);
 | 
			
		||||
#endif
 | 
			
		||||
        }
 | 
			
		||||
        
 | 
			
		||||
        return all_divs_valid;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    expr_ref var2expr(lp::var_index v) {
 | 
			
		||||
        std::ostringstream name;
 | 
			
		||||
        name << "v" << m_solver->local2external(v);
 | 
			
		||||
        return expr_ref(m.mk_const(symbol(name.str().c_str()), a.mk_int()), m);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    expr_ref multerm(rational const& r, expr* e) {
 | 
			
		||||
        if (r.is_one()) return expr_ref(e, m);
 | 
			
		||||
        return expr_ref(a.mk_mul(a.mk_numeral(r, true), e), m);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    expr_ref term2expr(lp::lar_term const& term) {
 | 
			
		||||
        expr_ref t(m);
 | 
			
		||||
        expr_ref_vector ts(m);
 | 
			
		||||
        for (auto const& p : term) {
 | 
			
		||||
            lp::var_index wi = p.var();
 | 
			
		||||
            if (m_solver->is_term(wi)) {
 | 
			
		||||
                ts.push_back(multerm(p.coeff(), term2expr(m_solver->get_term(wi))));
 | 
			
		||||
            }
 | 
			
		||||
            else {
 | 
			
		||||
                ts.push_back(multerm(p.coeff(), var2expr(wi)));
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        if (ts.size() == 1) {
 | 
			
		||||
            t = ts.back();
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            t = a.mk_add(ts.size(), ts.c_ptr());
 | 
			
		||||
        }
 | 
			
		||||
        return t;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    expr_ref constraint2fml(lp::constraint_index ci) {
 | 
			
		||||
        lp::lar_base_constraint const& c = *m_solver->constraints()[ci];
 | 
			
		||||
        expr_ref fml(m);
 | 
			
		||||
        expr_ref_vector ts(m);
 | 
			
		||||
        rational rhs = c.m_right_side;
 | 
			
		||||
        for (auto cv : c.get_left_side_coefficients()) {
 | 
			
		||||
            ts.push_back(multerm(cv.first, var2expr(cv.second)));
 | 
			
		||||
        }
 | 
			
		||||
        switch (c.m_kind) {
 | 
			
		||||
        case lp::LE: fml = a.mk_le(a.mk_add(ts.size(), ts.c_ptr()), a.mk_numeral(rhs, true)); break;
 | 
			
		||||
        case lp::LT: fml = a.mk_lt(a.mk_add(ts.size(), ts.c_ptr()), a.mk_numeral(rhs, true)); break;
 | 
			
		||||
        case lp::GE: fml = a.mk_ge(a.mk_add(ts.size(), ts.c_ptr()), a.mk_numeral(rhs, true)); break;
 | 
			
		||||
        case lp::GT: fml = a.mk_gt(a.mk_add(ts.size(), ts.c_ptr()), a.mk_numeral(rhs, true)); break;
 | 
			
		||||
        case lp::EQ: fml = m.mk_eq(a.mk_add(ts.size(), ts.c_ptr()), a.mk_numeral(rhs, true)); break;
 | 
			
		||||
        }
 | 
			
		||||
        return fml;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void dump_cut_lemma(std::ostream& out, lp::lar_term const& term, lp::mpq const& k, lp::explanation const& ex, bool upper) {
 | 
			
		||||
        m_solver->print_term(term, out << "bound: "); 
 | 
			
		||||
        out << (upper?" <= ":" >= ") << k << "\n";
 | 
			
		||||
        for (auto const& p : term) {
 | 
			
		||||
            lp::var_index wi = p.var();
 | 
			
		||||
            out << p.coeff() << " * ";
 | 
			
		||||
            if (m_solver->is_term(wi)) {
 | 
			
		||||
                m_solver->print_term(m_solver->get_term(wi), out) << "\n";
 | 
			
		||||
            }
 | 
			
		||||
            else {
 | 
			
		||||
                out << "v" << m_solver->local2external(wi) << "\n";
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        for (auto const& ev : ex.m_explanation) {
 | 
			
		||||
            m_solver->print_constraint(ev.second, out << ev.first << ": ");
 | 
			
		||||
        }
 | 
			
		||||
        expr_ref_vector fmls(m);
 | 
			
		||||
        for (auto const& ev : ex.m_explanation) {
 | 
			
		||||
            fmls.push_back(constraint2fml(ev.second));
 | 
			
		||||
        }        
 | 
			
		||||
        expr_ref t(term2expr(term), m);
 | 
			
		||||
        if (upper) {
 | 
			
		||||
            fmls.push_back(m.mk_not(a.mk_ge(t, a.mk_numeral(k, true))));
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            fmls.push_back(m.mk_not(a.mk_le(t, a.mk_numeral(k, true))));
 | 
			
		||||
        }
 | 
			
		||||
        ast_pp_util visitor(m);
 | 
			
		||||
        visitor.collect(fmls);
 | 
			
		||||
        visitor.display_decls(out);
 | 
			
		||||
        visitor.display_asserts(out, fmls, true);
 | 
			
		||||
        out << "(check-sat)\n";            
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    lbool check_lia() {
 | 
			
		||||
        if (m.canceled()) {
 | 
			
		||||
            TRACE("arith", tout << "canceled\n";);
 | 
			
		||||
            return l_undef;
 | 
			
		||||
        }
 | 
			
		||||
        lp::lar_term term;
 | 
			
		||||
        lp::mpq k;
 | 
			
		||||
        lp::explanation ex; // TBD, this should be streamlined accross different explanations
 | 
			
		||||
        bool upper;
 | 
			
		||||
        switch(m_lia->check(term, k, ex, upper)) {
 | 
			
		||||
        if (!check_idiv_bounds()) {
 | 
			
		||||
            TRACE("arith", tout << "idiv bounds check\n";);
 | 
			
		||||
            return l_false;
 | 
			
		||||
        }
 | 
			
		||||
        m_explanation.reset();
 | 
			
		||||
        switch (m_lia->check()) {
 | 
			
		||||
        case lp::lia_move::sat:
 | 
			
		||||
            return l_true;
 | 
			
		||||
        case lp::lia_move::branch: {
 | 
			
		||||
            TRACE("arith", tout << "branch\n";);
 | 
			
		||||
            app_ref b = mk_bound(term, k, !upper);
 | 
			
		||||
            app_ref b = mk_bound(m_lia->get_term(), m_lia->get_offset(), !m_lia->is_upper());
 | 
			
		||||
            IF_VERBOSE(2, verbose_stream() << "branch " << b << "\n";);
 | 
			
		||||
            // branch on term >= k + 1
 | 
			
		||||
            // branch on term <= k
 | 
			
		||||
            // TBD: ctx().force_phase(ctx().get_literal(b));
 | 
			
		||||
| 
						 | 
				
			
			@ -1440,11 +1773,13 @@ public:
 | 
			
		|||
            TRACE("arith", tout << "cut\n";);
 | 
			
		||||
            ++m_stats.m_gomory_cuts;
 | 
			
		||||
            // m_explanation implies term <= k
 | 
			
		||||
            app_ref b = mk_bound(term, k, !upper);
 | 
			
		||||
            app_ref b = mk_bound(m_lia->get_term(), m_lia->get_offset(), !m_lia->is_upper());
 | 
			
		||||
            IF_VERBOSE(2, verbose_stream() << "cut " << b << "\n");
 | 
			
		||||
            TRACE("arith", dump_cut_lemma(tout, m_lia->get_term(), m_lia->get_offset(), m_lia->get_explanation(), m_lia->is_upper()););
 | 
			
		||||
            m_eqs.reset();
 | 
			
		||||
            m_core.reset();
 | 
			
		||||
            m_params.reset();
 | 
			
		||||
            for (auto const& ev : ex.m_explanation) {
 | 
			
		||||
            for (auto const& ev : m_lia->get_explanation().m_explanation) {
 | 
			
		||||
                if (!ev.first.is_zero()) { 
 | 
			
		||||
                    set_evidence(ev.second);
 | 
			
		||||
                }
 | 
			
		||||
| 
						 | 
				
			
			@ -1457,8 +1792,9 @@ public:
 | 
			
		|||
            return l_false;
 | 
			
		||||
        }
 | 
			
		||||
        case lp::lia_move::conflict:
 | 
			
		||||
            TRACE("arith", tout << "conflict\n";);
 | 
			
		||||
            // ex contains unsat core
 | 
			
		||||
            m_explanation = ex.m_explanation;
 | 
			
		||||
            m_explanation = m_lia->get_explanation().m_explanation;
 | 
			
		||||
            set_conflict1();
 | 
			
		||||
            return l_false;
 | 
			
		||||
        case lp::lia_move::undef:
 | 
			
		||||
| 
						 | 
				
			
			@ -2062,18 +2398,18 @@ public:
 | 
			
		|||
        SASSERT(!bounds.empty());
 | 
			
		||||
        if (bounds.size() == 1) return;
 | 
			
		||||
        if (m_unassigned_bounds[v] == 0) return;
 | 
			
		||||
 | 
			
		||||
        bool v_is_int = is_int(v);
 | 
			
		||||
        literal lit1(bv, !is_true);
 | 
			
		||||
        literal lit2 = null_literal;
 | 
			
		||||
        bool find_glb = (is_true == (k == lp_api::lower_t));
 | 
			
		||||
        TRACE("arith", tout << "find_glb: " << find_glb << " is_true: " << is_true << " k: " << k << " is_lower: " << (k == lp_api::lower_t) << "\n";);
 | 
			
		||||
        if (find_glb) {
 | 
			
		||||
            rational glb;
 | 
			
		||||
            lp_api::bound* lb = 0;
 | 
			
		||||
            for (unsigned i = 0; i < bounds.size(); ++i) {
 | 
			
		||||
                lp_api::bound* b2 = bounds[i];
 | 
			
		||||
            lp_api::bound* lb = nullptr;
 | 
			
		||||
            for (lp_api::bound* b2 : bounds) {
 | 
			
		||||
                if (b2 == &b) continue;
 | 
			
		||||
                rational const& val2 = b2->get_value();
 | 
			
		||||
                if ((is_true ? val2 < val : val2 <= val) && (!lb || glb < val2)) {
 | 
			
		||||
                if (((is_true || v_is_int) ? val2 < val : val2 <= val) && (!lb || glb < val2)) {
 | 
			
		||||
                    lb = b2;
 | 
			
		||||
                    glb = val2;
 | 
			
		||||
                }
 | 
			
		||||
| 
						 | 
				
			
			@ -2084,12 +2420,11 @@ public:
 | 
			
		|||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            rational lub;
 | 
			
		||||
            lp_api::bound* ub = 0;
 | 
			
		||||
            for (unsigned i = 0; i < bounds.size(); ++i) {
 | 
			
		||||
                lp_api::bound* b2 = bounds[i];
 | 
			
		||||
            lp_api::bound* ub = nullptr;
 | 
			
		||||
            for (lp_api::bound* b2 : bounds) {
 | 
			
		||||
                if (b2 == &b) continue;
 | 
			
		||||
                rational const& val2 = b2->get_value();
 | 
			
		||||
                if ((is_true ? val < val2 : val <= val2) && (!ub || val2 < lub)) {
 | 
			
		||||
                if (((is_true || v_is_int) ? val < val2 : val <= val2) && (!ub || val2 < lub)) {
 | 
			
		||||
                    ub = b2;
 | 
			
		||||
                    lub = val2;
 | 
			
		||||
                }
 | 
			
		||||
| 
						 | 
				
			
			@ -2107,7 +2442,7 @@ public:
 | 
			
		|||
        m_params.reset();
 | 
			
		||||
        m_core.reset();
 | 
			
		||||
        m_eqs.reset();
 | 
			
		||||
        m_core.push_back(lit2);
 | 
			
		||||
        m_core.push_back(lit1);
 | 
			
		||||
        m_params.push_back(parameter(symbol("farkas")));
 | 
			
		||||
        m_params.push_back(parameter(rational(1)));
 | 
			
		||||
        m_params.push_back(parameter(rational(1)));
 | 
			
		||||
| 
						 | 
				
			
			@ -2383,6 +2718,18 @@ public:
 | 
			
		|||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool var_has_bound(lp::var_index vi, bool is_lower) {
 | 
			
		||||
        bool is_strict = false;
 | 
			
		||||
        rational b;
 | 
			
		||||
        lp::constraint_index ci;
 | 
			
		||||
        if (is_lower) {
 | 
			
		||||
            return m_solver->has_lower_bound(vi, ci, b, is_strict);
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            return m_solver->has_upper_bound(vi, ci, b, is_strict);
 | 
			
		||||
        }        
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool has_upper_bound(lp::var_index vi, lp::constraint_index& ci, rational const& bound) { return has_bound(vi, ci, bound, false); }
 | 
			
		||||
 | 
			
		||||
    bool has_lower_bound(lp::var_index vi, lp::constraint_index& ci, rational const& bound) { return has_bound(vi, ci, bound, true); }
 | 
			
		||||
| 
						 | 
				
			
			@ -2606,7 +2953,7 @@ public:
 | 
			
		|||
            m_todo_terms.push_back(std::make_pair(vi, rational::one()));
 | 
			
		||||
 | 
			
		||||
            TRACE("arith", tout << "v" << v << " := w" << vi << "\n";
 | 
			
		||||
                  m_solver->print_term(m_solver->get_term(vi), tout); tout << "\n";);
 | 
			
		||||
                  m_solver->print_term(m_solver->get_term(vi), tout) << "\n";);
 | 
			
		||||
 | 
			
		||||
            m_nra->am().set(r, 0);
 | 
			
		||||
            while (!m_todo_terms.empty()) {
 | 
			
		||||
| 
						 | 
				
			
			@ -2614,13 +2961,13 @@ public:
 | 
			
		|||
                vi = m_todo_terms.back().first;
 | 
			
		||||
                m_todo_terms.pop_back();
 | 
			
		||||
                lp::lar_term const& term = m_solver->get_term(vi);
 | 
			
		||||
                TRACE("arith", m_solver->print_term(term, tout); tout << "\n";);
 | 
			
		||||
                TRACE("arith", m_solver->print_term(term, tout) << "\n";);
 | 
			
		||||
                scoped_anum r1(m_nra->am());
 | 
			
		||||
                rational c1 = term.m_v * wcoeff;
 | 
			
		||||
                rational c1(0);
 | 
			
		||||
                m_nra->am().set(r1, c1.to_mpq());
 | 
			
		||||
                m_nra->am().add(r, r1, r);                
 | 
			
		||||
                for (auto const & arg : term) {
 | 
			
		||||
                    lp::var_index wi = m_solver->local2external(arg.var());
 | 
			
		||||
                    lp::var_index wi = arg.var();
 | 
			
		||||
                    c1 = arg.coeff() * wcoeff;
 | 
			
		||||
                    if (m_solver->is_term(wi)) {
 | 
			
		||||
                        m_todo_terms.push_back(std::make_pair(wi, c1));
 | 
			
		||||
| 
						 | 
				
			
			@ -2658,13 +3005,23 @@ public:
 | 
			
		|||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool get_value(enode* n, expr_ref& r) {
 | 
			
		||||
    bool get_value(enode* n, rational& val) {
 | 
			
		||||
        theory_var v = n->get_th_var(get_id());            
 | 
			
		||||
        if (!can_get_bound(v)) return false;
 | 
			
		||||
        lp::var_index vi = m_theory_var2var_index[v];
 | 
			
		||||
        rational val;
 | 
			
		||||
        if (m_solver->has_value(vi, val)) {
 | 
			
		||||
            TRACE("arith", tout << expr_ref(n->get_owner(), m) << " := " << val << "\n";);
 | 
			
		||||
            if (is_int(n) && !val.is_int()) return false;
 | 
			
		||||
            return true;
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
    }    
 | 
			
		||||
 | 
			
		||||
    bool get_value(enode* n, expr_ref& r) {
 | 
			
		||||
        rational val;
 | 
			
		||||
        if (get_value(n, val)) {
 | 
			
		||||
            r = a.mk_numeral(val, is_int(n));
 | 
			
		||||
            return true;
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -2673,7 +3030,7 @@ public:
 | 
			
		|||
        }
 | 
			
		||||
    }    
 | 
			
		||||
 | 
			
		||||
    bool get_lower(enode* n, expr_ref& r) {
 | 
			
		||||
    bool get_lower(enode* n, rational& val, bool& is_strict) {
 | 
			
		||||
        theory_var v = n->get_th_var(get_id());
 | 
			
		||||
        if (!can_get_bound(v)) {
 | 
			
		||||
            TRACE("arith", tout << "cannot get lower for " << v << "\n";);
 | 
			
		||||
| 
						 | 
				
			
			@ -2681,29 +3038,36 @@ public:
 | 
			
		|||
        }
 | 
			
		||||
        lp::var_index vi = m_theory_var2var_index[v];
 | 
			
		||||
        lp::constraint_index ci;
 | 
			
		||||
        rational val;
 | 
			
		||||
        return m_solver->has_lower_bound(vi, ci, val, is_strict);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool get_lower(enode* n, expr_ref& r) {
 | 
			
		||||
        bool is_strict;
 | 
			
		||||
        if (m_solver->has_lower_bound(vi, ci, val, is_strict)) {
 | 
			
		||||
        rational val;
 | 
			
		||||
        if (get_lower(n, val, is_strict) && !is_strict) {
 | 
			
		||||
            r = a.mk_numeral(val, is_int(n));
 | 
			
		||||
            return true;
 | 
			
		||||
        }
 | 
			
		||||
        TRACE("arith", m_solver->print_constraints(tout << "does not have lower bound " << vi << "\n"););
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool get_upper(enode* n, expr_ref& r) {
 | 
			
		||||
    bool get_upper(enode* n, rational& val, bool& is_strict) {
 | 
			
		||||
        theory_var v = n->get_th_var(get_id());
 | 
			
		||||
        if (!can_get_bound(v))
 | 
			
		||||
            return false;
 | 
			
		||||
        lp::var_index vi = m_theory_var2var_index[v];
 | 
			
		||||
        lp::constraint_index ci;
 | 
			
		||||
        rational val;
 | 
			
		||||
        return m_solver->has_upper_bound(vi, ci, val, is_strict);
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool get_upper(enode* n, expr_ref& r) {
 | 
			
		||||
        bool is_strict;
 | 
			
		||||
        if (m_solver->has_upper_bound(vi, ci, val, is_strict)) {
 | 
			
		||||
        rational val;
 | 
			
		||||
        if (get_upper(n, val, is_strict) && !is_strict) {
 | 
			
		||||
            r = a.mk_numeral(val, is_int(n));
 | 
			
		||||
            return true;
 | 
			
		||||
        }
 | 
			
		||||
        TRACE("arith", m_solver->print_constraints(tout << "does not have upper bound " << vi << "\n"););
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -2875,7 +3239,6 @@ public:
 | 
			
		|||
            coeffs.find(w, c0);
 | 
			
		||||
            coeffs.insert(w, c0 + ti.coeff() * coeff);
 | 
			
		||||
        }
 | 
			
		||||
        offset += coeff * term.m_v;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    app_ref coeffs2app(u_map<rational> const& coeffs, rational const& offset, bool is_int) {
 | 
			
		||||
| 
						 | 
				
			
			@ -2918,7 +3281,9 @@ public:
 | 
			
		|||
        for (auto const& kv : coeffs) {
 | 
			
		||||
            g = gcd(g, kv.m_value);
 | 
			
		||||
        }
 | 
			
		||||
         if (!g.is_one() && !g.is_zero()) {
 | 
			
		||||
        if (g.is_zero())
 | 
			
		||||
            return rational::one();
 | 
			
		||||
        if (!g.is_one()) {
 | 
			
		||||
            for (auto& kv : coeffs) {
 | 
			
		||||
                kv.m_value /= g;
 | 
			
		||||
            }             
 | 
			
		||||
| 
						 | 
				
			
			@ -3132,6 +3497,9 @@ void theory_lra::init_model(model_generator & m) {
 | 
			
		|||
model_value_proc * theory_lra::mk_value(enode * n, model_generator & mg) {
 | 
			
		||||
    return m_imp->mk_value(n, mg);
 | 
			
		||||
}
 | 
			
		||||
bool theory_lra::get_value(enode* n, rational& r) {
 | 
			
		||||
    return m_imp->get_value(n, r);
 | 
			
		||||
}
 | 
			
		||||
bool theory_lra::get_value(enode* n, expr_ref& r) {
 | 
			
		||||
    return m_imp->get_value(n, r);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -3141,6 +3509,12 @@ bool theory_lra::get_lower(enode* n, expr_ref& r) {
 | 
			
		|||
bool theory_lra::get_upper(enode* n, expr_ref& r) {
 | 
			
		||||
    return m_imp->get_upper(n, r);
 | 
			
		||||
}
 | 
			
		||||
bool theory_lra::get_lower(enode* n, rational& r, bool& is_strict) {
 | 
			
		||||
    return m_imp->get_lower(n, r, is_strict);
 | 
			
		||||
}
 | 
			
		||||
bool theory_lra::get_upper(enode* n, rational& r, bool& is_strict) {
 | 
			
		||||
    return m_imp->get_upper(n, r, is_strict);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool theory_lra::validate_eq_in_model(theory_var v1, theory_var v2, bool is_true) const {
 | 
			
		||||
    return m_imp->validate_eq_in_model(v1, v2, is_true);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -78,8 +78,11 @@ namespace smt {
 | 
			
		|||
        model_value_proc * mk_value(enode * n, model_generator & mg) override;
 | 
			
		||||
 | 
			
		||||
        bool get_value(enode* n, expr_ref& r) override;
 | 
			
		||||
        bool get_value(enode* n, rational& r);
 | 
			
		||||
        bool get_lower(enode* n, expr_ref& r);
 | 
			
		||||
        bool get_upper(enode* n, expr_ref& r);
 | 
			
		||||
        bool get_lower(enode* n, rational& r, bool& is_strict);
 | 
			
		||||
        bool get_upper(enode* n, rational& r, bool& is_strict);
 | 
			
		||||
 | 
			
		||||
        bool validate_eq_in_model(theory_var v1, theory_var v2, bool is_true) const override;
 | 
			
		||||
                
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -4588,10 +4588,10 @@ bool theory_seq::lower_bound2(expr* _e, rational& lo) {
 | 
			
		|||
    theory_mi_arith* tha = get_th_arith<theory_mi_arith>(ctx, m_autil.get_family_id(), e);
 | 
			
		||||
    if (!tha) {
 | 
			
		||||
        theory_i_arith* thi = get_th_arith<theory_i_arith>(ctx, m_autil.get_family_id(), e);
 | 
			
		||||
        if (!thi || !thi->get_lower(ctx.get_enode(e), _lo)) return false;
 | 
			
		||||
        if (!thi || !thi->get_lower(ctx.get_enode(e), _lo) || !m_autil.is_numeral(_lo, lo)) return false;
 | 
			
		||||
    }
 | 
			
		||||
    enode *ee = ctx.get_enode(e);
 | 
			
		||||
    if (!tha->get_lower(ee, _lo) || m_autil.is_numeral(_lo, lo)) {
 | 
			
		||||
    if (tha && (!tha->get_lower(ee, _lo) || m_autil.is_numeral(_lo, lo))) {
 | 
			
		||||
        enode *next = ee->get_next();
 | 
			
		||||
        bool flag = false;
 | 
			
		||||
        while (next != ee) {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -217,13 +217,12 @@ struct mus::imp {
 | 
			
		|||
        }
 | 
			
		||||
 | 
			
		||||
        expr_set mss_set;
 | 
			
		||||
        for (unsigned i = 0; i < mss.size(); ++i) {
 | 
			
		||||
            mss_set.insert(mss[i]);
 | 
			
		||||
        for (expr* e : mss) {
 | 
			
		||||
            mss_set.insert(e);
 | 
			
		||||
        }
 | 
			
		||||
        expr_set::iterator it = min_core.begin(), end = min_core.end();
 | 
			
		||||
        for (; it != end; ++it) {
 | 
			
		||||
            if (mss_set.contains(*it) && min_lit != *it) {
 | 
			
		||||
                unknown.push_back(*it);
 | 
			
		||||
        for (expr * e : min_core) {
 | 
			
		||||
            if (mss_set.contains(e) && min_lit != e) {
 | 
			
		||||
                unknown.push_back(e);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        core_literal = min_lit;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -178,10 +178,19 @@ lbool solver::preferred_sat(expr_ref_vector const& asms, vector<expr_ref_vector>
 | 
			
		|||
    return check_sat(0, nullptr);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool solver::is_literal(ast_manager& m, expr* e) {
 | 
			
		||||
    return is_uninterp_const(e) || (m.is_not(e, e) && is_uninterp_const(e));
 | 
			
		||||
 | 
			
		||||
static bool is_m_atom(ast_manager& m, expr* f) {
 | 
			
		||||
    if (!is_app(f)) return true;
 | 
			
		||||
    app* _f = to_app(f);
 | 
			
		||||
    family_id bfid = m.get_basic_family_id();
 | 
			
		||||
    if (_f->get_family_id() != bfid) return true;
 | 
			
		||||
    if (_f->get_num_args() > 0 && m.is_bool(_f->get_arg(0))) return false;    
 | 
			
		||||
    return m.is_eq(f) || m.is_distinct(f);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool solver::is_literal(ast_manager& m, expr* e) {
 | 
			
		||||
    return is_m_atom(m, e) || (m.is_not(e, e) && is_m_atom(m, e));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void solver::assert_expr(expr* f) {
 | 
			
		||||
    expr_ref fml(f, get_manager());
 | 
			
		||||
| 
						 | 
				
			
			@ -256,3 +265,40 @@ expr_ref_vector solver::get_units(ast_manager& m) {
 | 
			
		|||
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
expr_ref_vector solver::get_non_units(ast_manager& m) {
 | 
			
		||||
    expr_ref_vector result(m), fmls(m);
 | 
			
		||||
    get_assertions(fmls);
 | 
			
		||||
    family_id bfid = m.get_basic_family_id();
 | 
			
		||||
    expr_mark marked;
 | 
			
		||||
    unsigned sz0 = fmls.size();
 | 
			
		||||
    for (unsigned i = 0; i < fmls.size(); ++i) {
 | 
			
		||||
        expr* f = fmls.get(i);
 | 
			
		||||
        if (marked.is_marked(f)) continue;
 | 
			
		||||
        marked.mark(f);
 | 
			
		||||
        if (!is_app(f)) {
 | 
			
		||||
            if (i >= sz0) result.push_back(f);
 | 
			
		||||
            continue;
 | 
			
		||||
        }
 | 
			
		||||
        app* _f = to_app(f);
 | 
			
		||||
        if (_f->get_family_id() == bfid) {
 | 
			
		||||
            // basic objects are true/false/and/or/not/=/distinct 
 | 
			
		||||
            // and proof objects (that are not Boolean).
 | 
			
		||||
            if (i < sz0 && m.is_not(f) && is_m_atom(m, _f->get_arg(0))) {
 | 
			
		||||
                marked.mark(_f->get_arg(0));
 | 
			
		||||
            }
 | 
			
		||||
            else if (_f->get_num_args() > 0 && m.is_bool(_f->get_arg(0))) {
 | 
			
		||||
                fmls.append(_f->get_num_args(), _f->get_args());
 | 
			
		||||
            }
 | 
			
		||||
            else if (i >= sz0 && is_m_atom(m, f)) {
 | 
			
		||||
                result.push_back(f);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        
 | 
			
		||||
        else {
 | 
			
		||||
            if (i >= sz0) result.push_back(f);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -236,6 +236,8 @@ public:
 | 
			
		|||
    */
 | 
			
		||||
    expr_ref_vector get_units(ast_manager& m);
 | 
			
		||||
 | 
			
		||||
    expr_ref_vector get_non_units(ast_manager& m);
 | 
			
		||||
 | 
			
		||||
    class scoped_push {
 | 
			
		||||
        solver& s;
 | 
			
		||||
        bool    m_nopop;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,4 +1,5 @@
 | 
			
		|||
namespace lp {
 | 
			
		||||
#include "util/lp/lp_utils.h"
 | 
			
		||||
struct gomory_test {
 | 
			
		||||
    gomory_test(
 | 
			
		||||
        std::function<std::string (unsigned)> name_function_p,
 | 
			
		||||
| 
						 | 
				
			
			@ -88,7 +89,7 @@ struct gomory_test {
 | 
			
		|||
        lp_assert(is_int(x_j));
 | 
			
		||||
        lp_assert(!a.is_int());
 | 
			
		||||
             lp_assert(f_0 > zero_of_type<mpq>() && f_0 < one_of_type<mpq>());
 | 
			
		||||
        mpq f_j =  int_solver::fractional_part(a);
 | 
			
		||||
        mpq f_j =  fractional_part(a);
 | 
			
		||||
        TRACE("gomory_cut_detail", 
 | 
			
		||||
              tout << a << " x_j = " << x_j << ", k = " << k << "\n";
 | 
			
		||||
              tout << "f_j: " << f_j << "\n";
 | 
			
		||||
| 
						 | 
				
			
			@ -184,7 +185,6 @@ struct gomory_test {
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    void print_term(lar_term & t, std::ostream & out) {
 | 
			
		||||
        lp_assert(is_zero(t.m_v));
 | 
			
		||||
        vector<std::pair<mpq, unsigned>>  row;
 | 
			
		||||
        for (auto p : t.m_coeffs)
 | 
			
		||||
            row.push_back(std::make_pair(p.second, p.first));
 | 
			
		||||
| 
						 | 
				
			
			@ -206,7 +206,7 @@ struct gomory_test {
 | 
			
		|||
        unsigned x_j;
 | 
			
		||||
        mpq a;
 | 
			
		||||
        bool some_int_columns = false;
 | 
			
		||||
        mpq f_0  = int_solver::fractional_part(get_value(inf_col));
 | 
			
		||||
        mpq f_0  = fractional_part(get_value(inf_col));
 | 
			
		||||
        mpq one_min_f_0 = 1 - f_0;
 | 
			
		||||
        for ( auto pp : row) {
 | 
			
		||||
            a = pp.first;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -2667,13 +2667,20 @@ void test_term() {
 | 
			
		|||
    lar_solver solver;
 | 
			
		||||
    unsigned _x = 0;
 | 
			
		||||
    unsigned _y = 1;
 | 
			
		||||
    unsigned _one = 2;
 | 
			
		||||
    var_index x = solver.add_var(_x, false);
 | 
			
		||||
    var_index y = solver.add_var(_y, false);
 | 
			
		||||
    var_index one = solver.add_var(_one, false);
 | 
			
		||||
 | 
			
		||||
    vector<std::pair<mpq, var_index>> term_one;
 | 
			
		||||
    term_one.push_back(std::make_pair((int)1, one));
 | 
			
		||||
    solver.add_constraint(term_one, lconstraint_kind::EQ, mpq(0));
 | 
			
		||||
 | 
			
		||||
    vector<std::pair<mpq, var_index>> term_ls;
 | 
			
		||||
    term_ls.push_back(std::pair<mpq, var_index>((int)1, x));
 | 
			
		||||
    term_ls.push_back(std::pair<mpq, var_index>((int)1, y));
 | 
			
		||||
    var_index z = solver.add_term(term_ls, mpq(3));
 | 
			
		||||
    term_ls.push_back(std::make_pair((int)3, one));
 | 
			
		||||
    var_index z = solver.add_term(term_ls);
 | 
			
		||||
 | 
			
		||||
    vector<std::pair<mpq, var_index>> ls;
 | 
			
		||||
    ls.push_back(std::pair<mpq, var_index>((int)1, x));
 | 
			
		||||
| 
						 | 
				
			
			@ -2743,10 +2750,10 @@ void test_bound_propagation_one_small_sample1() {
 | 
			
		|||
    vector<std::pair<mpq, var_index>> coeffs;
 | 
			
		||||
    coeffs.push_back(std::pair<mpq, var_index>(1, a));
 | 
			
		||||
    coeffs.push_back(std::pair<mpq, var_index>(-1, c));
 | 
			
		||||
    ls.add_term(coeffs, zero_of_type<mpq>());
 | 
			
		||||
    ls.add_term(coeffs);
 | 
			
		||||
    coeffs.pop_back();
 | 
			
		||||
    coeffs.push_back(std::pair<mpq, var_index>(-1, b));
 | 
			
		||||
    ls.add_term(coeffs, zero_of_type<mpq>());
 | 
			
		||||
    ls.add_term(coeffs);
 | 
			
		||||
    coeffs.clear();
 | 
			
		||||
    coeffs.push_back(std::pair<mpq, var_index>(1, a));
 | 
			
		||||
    coeffs.push_back(std::pair<mpq, var_index>(-1, b));
 | 
			
		||||
| 
						 | 
				
			
			@ -3485,12 +3492,12 @@ void test_maximize_term() {
 | 
			
		|||
    vector<std::pair<mpq, var_index>> term_ls;
 | 
			
		||||
    term_ls.push_back(std::pair<mpq, var_index>((int)1, x));
 | 
			
		||||
    term_ls.push_back(std::pair<mpq, var_index>((int)-1, y));
 | 
			
		||||
    unsigned term_x_min_y = solver.add_term(term_ls, mpq(0));
 | 
			
		||||
    unsigned term_x_min_y = solver.add_term(term_ls);
 | 
			
		||||
    term_ls.clear();
 | 
			
		||||
    term_ls.push_back(std::pair<mpq, var_index>((int)2, x));
 | 
			
		||||
    term_ls.push_back(std::pair<mpq, var_index>((int)2, y));
 | 
			
		||||
    
 | 
			
		||||
    unsigned term_2x_pl_2y = solver.add_term(term_ls, mpq(0));
 | 
			
		||||
    unsigned term_2x_pl_2y = solver.add_term(term_ls);
 | 
			
		||||
    solver.add_var_bound(term_x_min_y,  LE, zero_of_type<mpq>());
 | 
			
		||||
    solver.add_var_bound(term_2x_pl_2y, LE, mpq((int)5));
 | 
			
		||||
    solver.find_feasible_solution();
 | 
			
		||||
| 
						 | 
				
			
			@ -3502,8 +3509,7 @@ void test_maximize_term() {
 | 
			
		|||
        std::cout<< "v[" << p.first << "] = " << p.second << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << "calling int_solver\n";
 | 
			
		||||
    lar_term t; mpq k; explanation ex; bool upper;
 | 
			
		||||
    lia_move lm = i_solver.check(t, k, ex, upper);
 | 
			
		||||
    lia_move lm = i_solver.check();
 | 
			
		||||
    VERIFY(lm == lia_move::sat);
 | 
			
		||||
    impq term_max;
 | 
			
		||||
    lp_status st = solver.maximize_term(term_2x_pl_2y, term_max);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -18,6 +18,7 @@ Copyright (c) 2015 Microsoft Corporation
 | 
			
		|||
#include "ast/rewriter/th_rewriter.h"
 | 
			
		||||
#include "tactic/fd_solver/fd_solver.h"
 | 
			
		||||
#include "solver/solver.h"
 | 
			
		||||
#include "ast/arith_decl_plugin.h"
 | 
			
		||||
 | 
			
		||||
static void test1() {
 | 
			
		||||
    ast_manager m;
 | 
			
		||||
| 
						 | 
				
			
			@ -194,9 +195,20 @@ static void test3() {
 | 
			
		|||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void test4() {
 | 
			
		||||
    ast_manager m;
 | 
			
		||||
    reg_decl_plugins(m);
 | 
			
		||||
    arith_util arith(m);
 | 
			
		||||
    expr_ref a(m.mk_const(symbol("a"), arith.mk_int()), m);
 | 
			
		||||
    expr_ref b(m.mk_const(symbol("b"), arith.mk_int()), m);
 | 
			
		||||
    expr_ref eq(m.mk_eq(a,b), m);
 | 
			
		||||
    std::cout << "is_atom: " << is_atom(m, eq) << "\n";
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void tst_pb2bv() {
 | 
			
		||||
    test1();
 | 
			
		||||
    test2();
 | 
			
		||||
    test3();
 | 
			
		||||
    test4();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,11 +1,12 @@
 | 
			
		|||
if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/version.h")
 | 
			
		||||
  message(FATAL_ERROR "\"${CMAKE_CURRENT_SOURCE_DIR}/version.h\""
 | 
			
		||||
if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/z3_version.h")
 | 
			
		||||
  message(FATAL_ERROR "\"${CMAKE_CURRENT_SOURCE_DIR}/z3_version.h\""
 | 
			
		||||
          ${z3_polluted_tree_msg}
 | 
			
		||||
  )
 | 
			
		||||
endif()
 | 
			
		||||
 | 
			
		||||
set(Z3_FULL_VERSION "\"${Z3_FULL_VERSION_STR}\"")
 | 
			
		||||
configure_file(version.h.cmake.in ${CMAKE_CURRENT_BINARY_DIR}/version.h)
 | 
			
		||||
configure_file(z3_version.h.cmake.in ${CMAKE_CURRENT_BINARY_DIR}/z3_version.h)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
z3_add_component(util
 | 
			
		||||
  SOURCES
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -6,6 +6,7 @@ z3_add_component(lp
 | 
			
		|||
    core_solver_pretty_printer.cpp
 | 
			
		||||
    dense_matrix.cpp
 | 
			
		||||
    eta_matrix.cpp
 | 
			
		||||
    gomory.cpp
 | 
			
		||||
    indexed_vector.cpp
 | 
			
		||||
    int_solver.cpp
 | 
			
		||||
    lar_solver.cpp
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -17,10 +17,6 @@ const impq & bound_propagator::get_upper_bound(unsigned j) const {
 | 
			
		|||
}
 | 
			
		||||
void bound_propagator::try_add_bound(mpq  v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict) {
 | 
			
		||||
    j = m_lar_solver.adjust_column_index_to_term_index(j);    
 | 
			
		||||
    if (m_lar_solver.is_term(j)) {
 | 
			
		||||
        // lp treats terms as not having a free coefficient, restoring it below for the outside consumption
 | 
			
		||||
        v += m_lar_solver.get_term(j).m_v;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    lconstraint_kind kind = is_low? GE : LE;
 | 
			
		||||
    if (strict)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -69,16 +69,6 @@ public:
 | 
			
		|||
        m_column_index(static_cast<unsigned>(-1))
 | 
			
		||||
    {}
 | 
			
		||||
    
 | 
			
		||||
    column_info(unsigned column_index) :
 | 
			
		||||
        m_lower_bound_is_set(false),
 | 
			
		||||
        m_lower_bound_is_strict(false),
 | 
			
		||||
        m_upper_bound_is_set (false),
 | 
			
		||||
        m_upper_bound_is_strict (false),
 | 
			
		||||
        m_is_fixed(false),
 | 
			
		||||
        m_cost(numeric_traits<T>::zero()),
 | 
			
		||||
        m_column_index(column_index) {
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    column_info(const column_info & ci) {
 | 
			
		||||
        m_name = ci.m_name;
 | 
			
		||||
        m_lower_bound_is_set = ci.m_lower_bound_is_set;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -33,29 +33,6 @@ public:
 | 
			
		|||
        print_linear_combination_of_column_indices(coeff, out);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void print_linear_combination_of_column_indices_only(const vector<std::pair<T, unsigned>> & coeffs, std::ostream & out) const {
 | 
			
		||||
        bool first = true;
 | 
			
		||||
        for (const auto & it : coeffs) {
 | 
			
		||||
            auto val = it.first;
 | 
			
		||||
            if (first) {
 | 
			
		||||
                first = false;
 | 
			
		||||
            } else {
 | 
			
		||||
                if (numeric_traits<T>::is_pos(val)) {
 | 
			
		||||
                    out << " + ";
 | 
			
		||||
                } else {
 | 
			
		||||
                    out << " - ";
 | 
			
		||||
                    val = -val;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            if (val == -numeric_traits<T>::one())
 | 
			
		||||
                out << " - ";
 | 
			
		||||
            else if (val != numeric_traits<T>::one())
 | 
			
		||||
                out << T_to_string(val);
 | 
			
		||||
        
 | 
			
		||||
            out << "v" << it.second;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    template <typename T>
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										341
									
								
								src/util/lp/gomory.cpp
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										341
									
								
								src/util/lp/gomory.cpp
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,341 @@
 | 
			
		|||
/*++
 | 
			
		||||
  Copyright (c) 2017 Microsoft Corporation
 | 
			
		||||
 | 
			
		||||
  Module Name:
 | 
			
		||||
 | 
			
		||||
  <name>
 | 
			
		||||
 | 
			
		||||
  Abstract:
 | 
			
		||||
 | 
			
		||||
  <abstract>
 | 
			
		||||
 | 
			
		||||
  Author:
 | 
			
		||||
  Nikolaj Bjorner (nbjorner)
 | 
			
		||||
  Lev Nachmanson (levnach)
 | 
			
		||||
 | 
			
		||||
  Revision History:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  --*/
 | 
			
		||||
#include "util/lp/gomory.h"
 | 
			
		||||
#include "util/lp/int_solver.h"
 | 
			
		||||
#include "util/lp/lar_solver.h"
 | 
			
		||||
#include "util/lp/lp_utils.h"
 | 
			
		||||
namespace lp {
 | 
			
		||||
 | 
			
		||||
class gomory::imp {
 | 
			
		||||
    lar_term   &          m_t; // the term to return in the cut
 | 
			
		||||
    mpq        &          m_k; // the right side of the cut
 | 
			
		||||
    explanation&          m_ex; // the conflict explanation
 | 
			
		||||
    unsigned              m_inf_col; // a basis column which has to be an integer but has a non integral value
 | 
			
		||||
    const row_strip<mpq>& m_row;
 | 
			
		||||
    const int_solver&     m_int_solver;
 | 
			
		||||
    mpq                   m_lcm_den;
 | 
			
		||||
    mpq                   m_f;
 | 
			
		||||
    mpq                   m_one_minus_f;
 | 
			
		||||
    mpq                   m_fj;
 | 
			
		||||
    mpq                   m_one_minus_fj;
 | 
			
		||||
    
 | 
			
		||||
    const impq & get_value(unsigned j) const { return m_int_solver.get_value(j); }
 | 
			
		||||
    bool is_real(unsigned j) const { return m_int_solver.is_real(j); }
 | 
			
		||||
    bool at_lower(unsigned j) const { return m_int_solver.at_lower(j); }
 | 
			
		||||
    bool at_upper(unsigned j) const { return m_int_solver.at_upper(j); }
 | 
			
		||||
    const impq & lower_bound(unsigned j) const { return m_int_solver.lower_bound(j); }
 | 
			
		||||
    const impq & upper_bound(unsigned j) const  { return m_int_solver.upper_bound(j); }
 | 
			
		||||
    constraint_index column_lower_bound_constraint(unsigned j) const { return m_int_solver.column_lower_bound_constraint(j); }
 | 
			
		||||
    constraint_index column_upper_bound_constraint(unsigned j) const { return m_int_solver.column_upper_bound_constraint(j); }
 | 
			
		||||
    bool column_is_fixed(unsigned j) const { return m_int_solver.m_lar_solver->column_is_fixed(j); }
 | 
			
		||||
 | 
			
		||||
    void int_case_in_gomory_cut(unsigned j) {
 | 
			
		||||
        lp_assert(is_int(j) && m_fj.is_pos());
 | 
			
		||||
        TRACE("gomory_cut_detail", 
 | 
			
		||||
              tout << " k = " << m_k;
 | 
			
		||||
              tout << ", fj: " << m_fj << ", ";
 | 
			
		||||
              tout << (at_lower(j)?"at_lower":"at_upper")<< std::endl;
 | 
			
		||||
              );
 | 
			
		||||
        mpq new_a;
 | 
			
		||||
        if (at_lower(j)) {
 | 
			
		||||
            new_a = m_fj <= m_one_minus_f ? m_fj / m_one_minus_f : ((1 - m_fj) / m_f);
 | 
			
		||||
            lp_assert(new_a.is_pos());
 | 
			
		||||
            m_k.addmul(new_a, lower_bound(j).x);
 | 
			
		||||
            m_ex.push_justification(column_lower_bound_constraint(j));            
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            lp_assert(at_upper(j));
 | 
			
		||||
            // the upper terms are inverted: therefore we have the minus
 | 
			
		||||
            new_a = - (m_fj <= m_f ? m_fj / m_f  : ((1 - m_fj) / m_one_minus_f));
 | 
			
		||||
            lp_assert(new_a.is_neg());
 | 
			
		||||
            m_k.addmul(new_a, upper_bound(j).x);
 | 
			
		||||
            m_ex.push_justification(column_upper_bound_constraint(j));
 | 
			
		||||
        }
 | 
			
		||||
        m_t.add_monomial(new_a, j);
 | 
			
		||||
        m_lcm_den = lcm(m_lcm_den, denominator(new_a));
 | 
			
		||||
        TRACE("gomory_cut_detail", tout << "v" << j << " new_a = " << new_a << ", k = " << m_k << ", m_lcm_den = " << m_lcm_den << "\n";);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void real_case_in_gomory_cut(const mpq & a, unsigned j) {
 | 
			
		||||
        TRACE("gomory_cut_detail_real", tout << "real\n";);
 | 
			
		||||
        mpq new_a;
 | 
			
		||||
        if (at_lower(j)) {
 | 
			
		||||
            if (a.is_pos()) {
 | 
			
		||||
                new_a = a / m_one_minus_f;
 | 
			
		||||
            }
 | 
			
		||||
            else {
 | 
			
		||||
                new_a = - a / m_f;
 | 
			
		||||
            }
 | 
			
		||||
            m_k.addmul(new_a, lower_bound(j).x); // is it a faster operation than
 | 
			
		||||
            // k += lower_bound(j).x * new_a;  
 | 
			
		||||
            m_ex.push_justification(column_lower_bound_constraint(j));
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            lp_assert(at_upper(j));
 | 
			
		||||
            if (a.is_pos()) {
 | 
			
		||||
                new_a =  - a / m_f; 
 | 
			
		||||
            }
 | 
			
		||||
            else {
 | 
			
		||||
                new_a =   a / m_one_minus_f; 
 | 
			
		||||
            }
 | 
			
		||||
            m_k.addmul(new_a, upper_bound(j).x); //  k += upper_bound(j).x * new_a; 
 | 
			
		||||
            m_ex.push_justification(column_upper_bound_constraint(j));
 | 
			
		||||
        }
 | 
			
		||||
        TRACE("gomory_cut_detail_real", tout << a << "*v" << j << " k: " << m_k << "\n";);
 | 
			
		||||
        m_t.add_monomial(new_a, j);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    lia_move report_conflict_from_gomory_cut() {
 | 
			
		||||
        lp_assert(m_k.is_pos());
 | 
			
		||||
        // conflict 0 >= k where k is positive
 | 
			
		||||
        m_k.neg(); // returning 0 <= -k
 | 
			
		||||
        return lia_move::conflict;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void adjust_term_and_k_for_some_ints_case_gomory() {
 | 
			
		||||
        lp_assert(!m_t.is_empty());
 | 
			
		||||
        // k = 1 + sum of m_t at bounds
 | 
			
		||||
        auto pol = m_t.coeffs_as_vector();
 | 
			
		||||
        m_t.clear();
 | 
			
		||||
        if (pol.size() == 1) {
 | 
			
		||||
            TRACE("gomory_cut_detail", tout << "pol.size() is 1" << std::endl;);
 | 
			
		||||
            unsigned v = pol[0].second;
 | 
			
		||||
            lp_assert(is_int(v));
 | 
			
		||||
            const mpq& a = pol[0].first;
 | 
			
		||||
            m_k /= a;
 | 
			
		||||
            if (a.is_pos()) { // we have av >= k
 | 
			
		||||
                if (!m_k.is_int())
 | 
			
		||||
                    m_k = ceil(m_k);
 | 
			
		||||
                // switch size
 | 
			
		||||
                m_t.add_monomial(- mpq(1), v);
 | 
			
		||||
                m_k.neg();
 | 
			
		||||
            } else {
 | 
			
		||||
                if (!m_k.is_int())
 | 
			
		||||
                    m_k = floor(m_k);
 | 
			
		||||
                m_t.add_monomial(mpq(1), v);
 | 
			
		||||
            }
 | 
			
		||||
        } else {
 | 
			
		||||
            m_lcm_den = lcm(m_lcm_den, denominator(m_k));
 | 
			
		||||
            lp_assert(m_lcm_den.is_pos());
 | 
			
		||||
            TRACE("gomory_cut_detail", tout << "pol.size() > 1 den: " << m_lcm_den << std::endl;);
 | 
			
		||||
            if (!m_lcm_den.is_one()) {
 | 
			
		||||
                // normalize coefficients of integer parameters to be integers.
 | 
			
		||||
                for (auto & pi: pol) {
 | 
			
		||||
                    pi.first *= m_lcm_den;
 | 
			
		||||
                    SASSERT(!is_int(pi.second) || pi.first.is_int());
 | 
			
		||||
                }
 | 
			
		||||
                m_k *= m_lcm_den;
 | 
			
		||||
            }
 | 
			
		||||
            // negate everything to return -pol <= -m_k
 | 
			
		||||
            for (const auto & pi: pol) {
 | 
			
		||||
                TRACE("gomory_cut", tout << pi.first << "* " << "v" << pi.second << "\n";);
 | 
			
		||||
                m_t.add_monomial(-pi.first, pi.second);
 | 
			
		||||
            }
 | 
			
		||||
            m_k.neg();
 | 
			
		||||
        }
 | 
			
		||||
        TRACE("gomory_cut_detail", tout << "k = " << m_k << std::endl;);
 | 
			
		||||
        lp_assert(m_k.is_int());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::string var_name(unsigned j) const {
 | 
			
		||||
        return std::string("x") + std::to_string(j);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::ostream& dump_coeff_val(std::ostream & out, const mpq & a) const {
 | 
			
		||||
        if (a.is_int()) {
 | 
			
		||||
            out << a;
 | 
			
		||||
        } 
 | 
			
		||||
        else if ( a >= zero_of_type<mpq>())
 | 
			
		||||
            out << "(/ " << numerator(a) << " " << denominator(a) << ")";
 | 
			
		||||
        else {
 | 
			
		||||
            out << "(- ( / " <<   numerator(-a) << " " << denominator(-a) << "))";
 | 
			
		||||
        }
 | 
			
		||||
        return out;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void dump_coeff(std::ostream & out, const T& c) const {
 | 
			
		||||
        out << "( * ";
 | 
			
		||||
        dump_coeff_val(out, c.coeff());
 | 
			
		||||
        out << " " << var_name(c.var()) << ")";
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    std::ostream& dump_row_coefficients(std::ostream & out) const {
 | 
			
		||||
        mpq lc(1);
 | 
			
		||||
        for (const auto& p : m_row) {
 | 
			
		||||
            lc = lcm(lc, denominator(p.coeff())); 
 | 
			
		||||
        }        
 | 
			
		||||
        for (const auto& p : m_row) {
 | 
			
		||||
            dump_coeff_val(out << " (* ", p.coeff()*lc) << " " << var_name(p.var()) << ")";
 | 
			
		||||
        }
 | 
			
		||||
        return out;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    void dump_the_row(std::ostream& out) const {
 | 
			
		||||
        out << "; the row, excluding fixed vars\n";
 | 
			
		||||
        out << "(assert ( = ( +";
 | 
			
		||||
        dump_row_coefficients(out) << ") 0))\n";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void dump_declaration(std::ostream& out, unsigned v) const {
 | 
			
		||||
        out << "(declare-const " << var_name(v) << (is_int(v) ? " Int" : " Real") << ")\n";
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    void dump_declarations(std::ostream& out) const {
 | 
			
		||||
        // for a column j the var name is vj
 | 
			
		||||
        for (const auto & p : m_row) {
 | 
			
		||||
            dump_declaration(out, p.var());
 | 
			
		||||
        }
 | 
			
		||||
        for (const auto& p : m_t) {
 | 
			
		||||
            unsigned v = p.var();
 | 
			
		||||
            if (m_int_solver.m_lar_solver->is_term(v)) {
 | 
			
		||||
                dump_declaration(out, v);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void dump_lower_bound_expl(std::ostream & out, unsigned j) const {
 | 
			
		||||
        out << "(assert (>= " << var_name(j) << " " << lower_bound(j).x << "))\n";
 | 
			
		||||
    }
 | 
			
		||||
    void dump_upper_bound_expl(std::ostream & out, unsigned j) const {
 | 
			
		||||
        out << "(assert (<= " << var_name(j) << " " << upper_bound(j).x << "))\n";
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    void dump_explanations(std::ostream& out) const {
 | 
			
		||||
        for (const auto & p : m_row) {            
 | 
			
		||||
            unsigned j = p.var();
 | 
			
		||||
            if (j == m_inf_col || (!is_real(j) && p.coeff().is_int())) {
 | 
			
		||||
                continue;
 | 
			
		||||
            }
 | 
			
		||||
            else if (at_lower(j)) {
 | 
			
		||||
                dump_lower_bound_expl(out, j);
 | 
			
		||||
            } else {
 | 
			
		||||
                lp_assert(at_upper(j));
 | 
			
		||||
                dump_upper_bound_expl(out, j);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::ostream& dump_term_coefficients(std::ostream & out) const {
 | 
			
		||||
        for (const auto& p : m_t) {
 | 
			
		||||
            dump_coeff(out, p);
 | 
			
		||||
        }
 | 
			
		||||
        return out;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    std::ostream& dump_term_sum(std::ostream & out) const {
 | 
			
		||||
        return dump_term_coefficients(out << "(+ ") << ")";
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    std::ostream& dump_term_le_k(std::ostream & out) const {
 | 
			
		||||
        return dump_term_sum(out << "(<= ") << " " << m_k << ")";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void dump_the_cut_assert(std::ostream & out) const {
 | 
			
		||||
        dump_term_le_k(out << "(assert (not ") << "))\n";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void dump_cut_and_constraints_as_smt_lemma(std::ostream& out) const {
 | 
			
		||||
        dump_declarations(out);
 | 
			
		||||
        dump_the_row(out);
 | 
			
		||||
        dump_explanations(out);
 | 
			
		||||
        dump_the_cut_assert(out);
 | 
			
		||||
        out << "(check-sat)\n";
 | 
			
		||||
    }
 | 
			
		||||
public:
 | 
			
		||||
    lia_move create_cut() {
 | 
			
		||||
        TRACE("gomory_cut",
 | 
			
		||||
              tout << "applying cut at:\n"; print_linear_combination_of_column_indices_only(m_row, tout); tout << std::endl;
 | 
			
		||||
              for (auto & p : m_row) {
 | 
			
		||||
                  m_int_solver.m_lar_solver->m_mpq_lar_core_solver.m_r_solver.print_column_info(p.var(), tout);
 | 
			
		||||
              }
 | 
			
		||||
              tout << "inf_col = " << m_inf_col << std::endl;
 | 
			
		||||
              );
 | 
			
		||||
        
 | 
			
		||||
        // gomory will be   t <= k and the current solution has a property t > k
 | 
			
		||||
        m_k = 1;
 | 
			
		||||
        m_t.clear();
 | 
			
		||||
        mpq m_lcm_den(1);
 | 
			
		||||
        bool some_int_columns = false;
 | 
			
		||||
        mpq m_f  = fractional_part(get_value(m_inf_col));
 | 
			
		||||
        TRACE("gomory_cut_detail", tout << "m_f: " << m_f << ", ";
 | 
			
		||||
              tout << "1 - m_f: " << 1 - m_f << ", get_value(m_inf_col).x - m_f = " << get_value(m_inf_col).x - m_f;);
 | 
			
		||||
        lp_assert(m_f.is_pos() && (get_value(m_inf_col).x - m_f).is_int());  
 | 
			
		||||
 | 
			
		||||
        mpq one_min_m_f = 1 - m_f;
 | 
			
		||||
        for (const auto & p : m_row) {
 | 
			
		||||
            unsigned j = p.var();
 | 
			
		||||
            if (j == m_inf_col) {
 | 
			
		||||
                lp_assert(p.coeff() == one_of_type<mpq>());
 | 
			
		||||
                TRACE("gomory_cut_detail", tout << "seeing basic var";);
 | 
			
		||||
                continue;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
             // use -p.coeff() to make the format compatible with the format used in: Integrating Simplex with DPLL(T)
 | 
			
		||||
            if (is_real(j)) {  
 | 
			
		||||
                real_case_in_gomory_cut(- p.coeff(), j);
 | 
			
		||||
            } else {
 | 
			
		||||
                if (p.coeff().is_int()) {
 | 
			
		||||
                    // m_fj will be zero and no monomial will be added
 | 
			
		||||
                    continue;
 | 
			
		||||
                }
 | 
			
		||||
                some_int_columns = true;
 | 
			
		||||
                m_fj = fractional_part(-p.coeff());
 | 
			
		||||
				m_one_minus_fj = 1 - m_fj;
 | 
			
		||||
                int_case_in_gomory_cut(j);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if (m_t.is_empty())
 | 
			
		||||
            return report_conflict_from_gomory_cut();
 | 
			
		||||
        if (some_int_columns)
 | 
			
		||||
            adjust_term_and_k_for_some_ints_case_gomory();
 | 
			
		||||
        lp_assert(m_int_solver.current_solution_is_inf_on_cut());
 | 
			
		||||
        TRACE("gomory_cut_detail", dump_cut_and_constraints_as_smt_lemma(tout););
 | 
			
		||||
        m_int_solver.m_lar_solver->subs_term_columns(m_t);
 | 
			
		||||
        TRACE("gomory_cut", print_linear_combination_of_column_indices_only(m_t, tout << "gomory cut:"); tout << " <= " << m_k << std::endl;);
 | 
			
		||||
        return lia_move::cut;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    imp(lar_term & t, mpq & k, explanation& ex, unsigned basic_inf_int_j, const row_strip<mpq>& row, const int_solver& int_slv ) :
 | 
			
		||||
        m_t(t),
 | 
			
		||||
        m_k(k),
 | 
			
		||||
        m_ex(ex),
 | 
			
		||||
        m_inf_col(basic_inf_int_j),
 | 
			
		||||
        m_row(row),
 | 
			
		||||
        m_int_solver(int_slv),
 | 
			
		||||
        m_lcm_den(1),
 | 
			
		||||
        m_f(fractional_part(get_value(basic_inf_int_j).x)),
 | 
			
		||||
        m_one_minus_f(1 - m_f) {}
 | 
			
		||||
    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
lia_move gomory::create_cut() {
 | 
			
		||||
    return m_imp->create_cut();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
gomory::gomory(lar_term & t, mpq & k, explanation& ex, unsigned basic_inf_int_j, const row_strip<mpq>& row, const int_solver& s) {
 | 
			
		||||
    m_imp = alloc(imp, t, k, ex, basic_inf_int_j, row, s);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
gomory::~gomory() { dealloc(m_imp); }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										36
									
								
								src/util/lp/gomory.h
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										36
									
								
								src/util/lp/gomory.h
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,36 @@
 | 
			
		|||
/*++
 | 
			
		||||
Copyright (c) 2017 Microsoft Corporation
 | 
			
		||||
 | 
			
		||||
Module Name:
 | 
			
		||||
 | 
			
		||||
    <name>
 | 
			
		||||
 | 
			
		||||
Abstract:
 | 
			
		||||
 | 
			
		||||
    <abstract>
 | 
			
		||||
 | 
			
		||||
Author:
 | 
			
		||||
    Nikolaj Bjorner (nbjorner)
 | 
			
		||||
    Lev Nachmanson (levnach)
 | 
			
		||||
 | 
			
		||||
Revision History:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
--*/
 | 
			
		||||
#pragma once
 | 
			
		||||
#include "util/lp/lar_term.h"
 | 
			
		||||
#include "util/lp/lia_move.h"
 | 
			
		||||
#include "util/lp/explanation.h"
 | 
			
		||||
#include "util/lp/static_matrix.h"
 | 
			
		||||
 | 
			
		||||
namespace lp {
 | 
			
		||||
class int_solver;
 | 
			
		||||
class gomory {
 | 
			
		||||
    class imp;
 | 
			
		||||
    imp                  *m_imp;
 | 
			
		||||
public :
 | 
			
		||||
    gomory(lar_term & t, mpq & k, explanation& ex, unsigned basic_inf_int_j, const row_strip<mpq>& row, const int_solver& s);
 | 
			
		||||
    lia_move create_cut();
 | 
			
		||||
    ~gomory();
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -8,6 +8,7 @@
 | 
			
		|||
#include "util/lp/lp_utils.h"
 | 
			
		||||
#include <utility>
 | 
			
		||||
#include "util/lp/monomial.h"
 | 
			
		||||
#include "util/lp/gomory.h"
 | 
			
		||||
namespace lp {
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -101,10 +102,7 @@ bool int_solver::is_gomory_cut_target(const row_strip<mpq>& row) {
 | 
			
		|||
    unsigned j;
 | 
			
		||||
    for (const auto & p : row) {
 | 
			
		||||
        j = p.var();
 | 
			
		||||
        if (is_base(j)) continue;
 | 
			
		||||
        if (!at_bound(j))
 | 
			
		||||
            return false;
 | 
			
		||||
        if (!is_zero(get_value(j).y)) {
 | 
			
		||||
        if (!is_base(j) && (!at_bound(j) || !is_zero(get_value(j).y))) {
 | 
			
		||||
            TRACE("gomory_cut", tout << "row is not gomory cut target:\n";
 | 
			
		||||
                  display_column(tout, j);
 | 
			
		||||
                  tout << "infinitesimal: " << !is_zero(get_value(j).y) << "\n";);
 | 
			
		||||
| 
						 | 
				
			
			@ -115,36 +113,6 @@ bool int_solver::is_gomory_cut_target(const row_strip<mpq>& row) {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void int_solver::real_case_in_gomory_cut(const mpq & a, unsigned x_j, const mpq& f_0, const mpq& one_minus_f_0) {
 | 
			
		||||
    TRACE("gomory_cut_detail_real", tout << "real\n";);
 | 
			
		||||
    mpq new_a;
 | 
			
		||||
    if (at_low(x_j)) {
 | 
			
		||||
        if (a.is_pos()) {
 | 
			
		||||
            new_a  =  a / one_minus_f_0;
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            new_a  =  a / f_0;
 | 
			
		||||
            new_a.neg();
 | 
			
		||||
        }
 | 
			
		||||
        m_k->addmul(new_a, lower_bound(x_j).x); // is it a faster operation than
 | 
			
		||||
        // k += lower_bound(x_j).x * new_a;  
 | 
			
		||||
        m_ex->push_justification(column_lower_bound_constraint(x_j), new_a);
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
        lp_assert(at_upper(x_j));
 | 
			
		||||
        if (a.is_pos()) {
 | 
			
		||||
            new_a =   a / f_0; 
 | 
			
		||||
            new_a.neg(); // the upper terms are inverted.
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            new_a =   a / one_minus_f_0; 
 | 
			
		||||
        }
 | 
			
		||||
        m_k->addmul(new_a, upper_bound(x_j).x); //  k += upper_bound(x_j).x * new_a; 
 | 
			
		||||
        m_ex->push_justification(column_upper_bound_constraint(x_j), new_a);
 | 
			
		||||
    }
 | 
			
		||||
    TRACE("gomory_cut_detail_real", tout << a << "*v" << x_j << " k: " << *m_k << "\n";);
 | 
			
		||||
    m_t->add_monomial(new_a, x_j);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
constraint_index int_solver::column_upper_bound_constraint(unsigned j) const {
 | 
			
		||||
    return m_lar_solver->get_column_upper_bound_witness(j);
 | 
			
		||||
| 
						 | 
				
			
			@ -155,221 +123,31 @@ constraint_index int_solver::column_lower_bound_constraint(unsigned j) const {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void int_solver::int_case_in_gomory_cut(const mpq & a, unsigned x_j,
 | 
			
		||||
                                        mpq & lcm_den, const mpq& f_0, const mpq& one_minus_f_0) {
 | 
			
		||||
    lp_assert(is_int(x_j));
 | 
			
		||||
    lp_assert(!a.is_int());
 | 
			
		||||
    mpq f_j =  fractional_part(a);
 | 
			
		||||
    TRACE("gomory_cut_detail", 
 | 
			
		||||
          tout << a << " x_j" << x_j << " k = " << *m_k << "\n";
 | 
			
		||||
          tout << "f_j: " << f_j << "\n";
 | 
			
		||||
          tout << "f_0: " << f_0 << "\n";
 | 
			
		||||
          tout << "1 - f_0: " << 1 - f_0 << "\n";
 | 
			
		||||
          tout << "at_low(" << x_j << ") = " << at_low(x_j) << std::endl;
 | 
			
		||||
          );
 | 
			
		||||
    lp_assert (!f_j.is_zero());
 | 
			
		||||
    mpq new_a;
 | 
			
		||||
    if (at_low(x_j)) {
 | 
			
		||||
        if (f_j <= one_minus_f_0) {
 | 
			
		||||
            new_a = f_j / one_minus_f_0;
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            new_a = (1 - f_j) / f_0;
 | 
			
		||||
        }
 | 
			
		||||
        m_k->addmul(new_a, lower_bound(x_j).x);
 | 
			
		||||
        m_ex->push_justification(column_lower_bound_constraint(x_j), new_a);
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
        lp_assert(at_upper(x_j));
 | 
			
		||||
        if (f_j <= f_0) {
 | 
			
		||||
            new_a = f_j / f_0;
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            new_a = (mpq(1) - f_j) / one_minus_f_0;
 | 
			
		||||
        }
 | 
			
		||||
        new_a.neg(); // the upper terms are inverted
 | 
			
		||||
        m_k->addmul(new_a, upper_bound(x_j).x);
 | 
			
		||||
        m_ex->push_justification(column_upper_bound_constraint(x_j), new_a);
 | 
			
		||||
    }
 | 
			
		||||
    TRACE("gomory_cut_detail", tout << "new_a: " << new_a << " k: " << *m_k << "\n";);
 | 
			
		||||
    m_t->add_monomial(new_a, x_j);
 | 
			
		||||
    lcm_den = lcm(lcm_den, denominator(new_a));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
lia_move int_solver::report_conflict_from_gomory_cut() {
 | 
			
		||||
    TRACE("empty_pol",);
 | 
			
		||||
    lp_assert(m_k->is_pos());
 | 
			
		||||
    // conflict 0 >= k where k is positive
 | 
			
		||||
    m_k->neg(); // returning 0 <= -k
 | 
			
		||||
    return lia_move::conflict;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void int_solver::gomory_cut_adjust_t_and_k(vector<std::pair<mpq, unsigned>> & pol,
 | 
			
		||||
                                           lar_term & t,
 | 
			
		||||
                                           mpq &k,
 | 
			
		||||
                                           bool some_ints,
 | 
			
		||||
                                           mpq & lcm_den) {
 | 
			
		||||
    if (!some_ints)
 | 
			
		||||
        return;
 | 
			
		||||
        
 | 
			
		||||
    t.clear();
 | 
			
		||||
    if (pol.size() == 1) {
 | 
			
		||||
        unsigned v = pol[0].second;
 | 
			
		||||
        lp_assert(is_int(v));
 | 
			
		||||
        bool k_is_int = k.is_int();
 | 
			
		||||
        const mpq& a = pol[0].first;
 | 
			
		||||
        k /= a;
 | 
			
		||||
        if (a.is_pos()) { // we have av >= k
 | 
			
		||||
            if (!k_is_int)
 | 
			
		||||
                k = ceil(k);
 | 
			
		||||
            // switch size
 | 
			
		||||
            t.add_monomial(- mpq(1), v);
 | 
			
		||||
            k.neg();
 | 
			
		||||
        } else {
 | 
			
		||||
            if (!k_is_int)
 | 
			
		||||
                k = floor(k);
 | 
			
		||||
            t.add_monomial(mpq(1), v);
 | 
			
		||||
        }
 | 
			
		||||
    } else if (some_ints) {
 | 
			
		||||
        lcm_den = lcm(lcm_den, denominator(k));
 | 
			
		||||
        lp_assert(lcm_den.is_pos());
 | 
			
		||||
        if (!lcm_den.is_one()) {
 | 
			
		||||
            // normalize coefficients of integer parameters to be integers.
 | 
			
		||||
            for (auto & pi: pol) {
 | 
			
		||||
                pi.first *= lcm_den;
 | 
			
		||||
                SASSERT(!is_int(pi.second) || pi.first.is_int());
 | 
			
		||||
            }
 | 
			
		||||
            k *= lcm_den;
 | 
			
		||||
        }
 | 
			
		||||
        // negate everything to return -pol <= -k
 | 
			
		||||
        for (const auto & pi: pol)
 | 
			
		||||
            t.add_monomial(-pi.first, pi.second);
 | 
			
		||||
        k.neg();
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool int_solver::current_solution_is_inf_on_cut() const {
 | 
			
		||||
    const auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x;
 | 
			
		||||
    impq v = m_t->apply(x);
 | 
			
		||||
    mpq sign = *m_upper ? one_of_type<mpq>()  : -one_of_type<mpq>();
 | 
			
		||||
    CTRACE("current_solution_is_inf_on_cut", v * sign <= (*m_k) * sign,
 | 
			
		||||
           tout << "m_upper = " << *m_upper << std::endl;
 | 
			
		||||
           tout << "v = " << v << ", k = " << (*m_k) << std::endl;
 | 
			
		||||
    impq v = m_t.apply(x);
 | 
			
		||||
    mpq sign = m_upper ? one_of_type<mpq>()  : -one_of_type<mpq>();
 | 
			
		||||
    CTRACE("current_solution_is_inf_on_cut", v * sign <= m_k * sign,
 | 
			
		||||
           tout << "m_upper = " << m_upper << std::endl;
 | 
			
		||||
           tout << "v = " << v << ", k = " << m_k << std::endl;
 | 
			
		||||
          );
 | 
			
		||||
    return v * sign > (*m_k) * sign;
 | 
			
		||||
    return v * sign > m_k * sign;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void int_solver::adjust_term_and_k_for_some_ints_case_gomory(mpq &lcm_den) {
 | 
			
		||||
    lp_assert(!m_t->is_empty());
 | 
			
		||||
    auto pol = m_t->coeffs_as_vector();
 | 
			
		||||
    m_t->clear();
 | 
			
		||||
    if (pol.size() == 1) {
 | 
			
		||||
        TRACE("gomory_cut_detail", tout << "pol.size() is 1" << std::endl;);
 | 
			
		||||
        unsigned v = pol[0].second;
 | 
			
		||||
        lp_assert(is_int(v));
 | 
			
		||||
        const mpq& a = pol[0].first;
 | 
			
		||||
        (*m_k) /= a;
 | 
			
		||||
        if (a.is_pos()) { // we have av >= k
 | 
			
		||||
            if (!(*m_k).is_int())
 | 
			
		||||
                (*m_k) = ceil((*m_k));
 | 
			
		||||
            // switch size
 | 
			
		||||
            m_t->add_monomial(- mpq(1), v);
 | 
			
		||||
            (*m_k).neg();
 | 
			
		||||
        } else {
 | 
			
		||||
            if (!(*m_k).is_int())
 | 
			
		||||
                (*m_k) = floor((*m_k));
 | 
			
		||||
            m_t->add_monomial(mpq(1), v);
 | 
			
		||||
        }
 | 
			
		||||
    } else {
 | 
			
		||||
        TRACE("gomory_cut_detail", tout << "pol.size() > 1" << std::endl;);
 | 
			
		||||
        lcm_den = lcm(lcm_den, denominator((*m_k)));
 | 
			
		||||
        lp_assert(lcm_den.is_pos());
 | 
			
		||||
        if (!lcm_den.is_one()) {
 | 
			
		||||
            // normalize coefficients of integer parameters to be integers.
 | 
			
		||||
            for (auto & pi: pol) {
 | 
			
		||||
                pi.first *= lcm_den;
 | 
			
		||||
                SASSERT(!is_int(pi.second) || pi.first.is_int());
 | 
			
		||||
            }
 | 
			
		||||
            (*m_k) *= lcm_den;
 | 
			
		||||
        }
 | 
			
		||||
        // negate everything to return -pol <= -(*m_k)
 | 
			
		||||
        for (const auto & pi: pol)
 | 
			
		||||
            m_t->add_monomial(-pi.first, pi.second);
 | 
			
		||||
        (*m_k).neg();
 | 
			
		||||
    }
 | 
			
		||||
    TRACE("gomory_cut_detail", tout << "k = " << (*m_k) << std::endl;);
 | 
			
		||||
    lp_assert((*m_k).is_int());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
lia_move int_solver::mk_gomory_cut( unsigned inf_col, const row_strip<mpq> & row) {
 | 
			
		||||
 | 
			
		||||
    lp_assert(column_is_int_inf(inf_col));
 | 
			
		||||
 | 
			
		||||
    TRACE("gomory_cut",
 | 
			
		||||
          tout << "applying cut at:\n"; m_lar_solver->print_row(row, tout); tout << std::endl;
 | 
			
		||||
          for (auto & p : row) {
 | 
			
		||||
              m_lar_solver->m_mpq_lar_core_solver.m_r_solver.print_column_info(p.var(), tout);
 | 
			
		||||
          }
 | 
			
		||||
          tout << "inf_col = " << inf_col << std::endl;
 | 
			
		||||
          );
 | 
			
		||||
        
 | 
			
		||||
    // gomory will be   t <= k and the current solution has a property t > k
 | 
			
		||||
    *m_k = 1;
 | 
			
		||||
    mpq lcm_den(1);
 | 
			
		||||
    unsigned x_j;
 | 
			
		||||
    mpq a;
 | 
			
		||||
    bool some_int_columns = false;
 | 
			
		||||
    mpq f_0  = int_solver::fractional_part(get_value(inf_col));
 | 
			
		||||
    mpq one_min_f_0 = 1 - f_0;
 | 
			
		||||
    for (const auto & p : row) {
 | 
			
		||||
        x_j = p.var();
 | 
			
		||||
        if (x_j == inf_col)
 | 
			
		||||
            continue;
 | 
			
		||||
        // make the format compatible with the format used in: Integrating Simplex with DPLL(T)
 | 
			
		||||
        a = p.coeff();
 | 
			
		||||
        a.neg();  
 | 
			
		||||
        if (is_real(x_j)) 
 | 
			
		||||
            real_case_in_gomory_cut(a, x_j, f_0, one_min_f_0);
 | 
			
		||||
        else if (!a.is_int()) { // f_j will be zero and no monomial will be added
 | 
			
		||||
            some_int_columns = true;
 | 
			
		||||
            int_case_in_gomory_cut(a, x_j, lcm_den, f_0, one_min_f_0);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (m_t->is_empty())
 | 
			
		||||
        return report_conflict_from_gomory_cut();
 | 
			
		||||
    if (some_int_columns)
 | 
			
		||||
        adjust_term_and_k_for_some_ints_case_gomory(lcm_den);
 | 
			
		||||
 | 
			
		||||
    lp_assert(current_solution_is_inf_on_cut());
 | 
			
		||||
    m_lar_solver->subs_term_columns(*m_t);
 | 
			
		||||
    TRACE("gomory_cut", tout<<"precut:"; m_lar_solver->print_term(*m_t, tout); tout << " <= " << *m_k << std::endl;);
 | 
			
		||||
    return lia_move::cut;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int int_solver::find_free_var_in_gomory_row(const row_strip<mpq>& row) {
 | 
			
		||||
    unsigned j;
 | 
			
		||||
    for (const auto & p : row) {
 | 
			
		||||
        j = p.var();
 | 
			
		||||
        if (!is_base(j) && is_free(j))
 | 
			
		||||
            return static_cast<int>(j);
 | 
			
		||||
    }
 | 
			
		||||
    return -1;
 | 
			
		||||
    gomory gc(m_t, m_k, m_ex, inf_col, row, *this);
 | 
			
		||||
    return gc.create_cut();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
lia_move int_solver::proceed_with_gomory_cut(unsigned j) {
 | 
			
		||||
    const row_strip<mpq>& row = m_lar_solver->get_row(row_of_basic_column(j));
 | 
			
		||||
 | 
			
		||||
    if (-1 != find_free_var_in_gomory_row(row))  
 | 
			
		||||
        return lia_move::undef;
 | 
			
		||||
 | 
			
		||||
    if (!is_gomory_cut_target(row)) 
 | 
			
		||||
        return lia_move::undef;
 | 
			
		||||
        return create_branch_on_column(j);
 | 
			
		||||
 | 
			
		||||
    *m_upper = true;
 | 
			
		||||
    m_upper = true;
 | 
			
		||||
    return mk_gomory_cut(j, row);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -394,17 +172,19 @@ typedef monomial mono;
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
// this will allow to enable and disable tracking of the pivot rows
 | 
			
		||||
struct pivoted_rows_tracking_control {
 | 
			
		||||
struct check_return_helper {
 | 
			
		||||
    lar_solver *     m_lar_solver;
 | 
			
		||||
    const lia_move & m_r;
 | 
			
		||||
    bool             m_track_pivoted_rows;
 | 
			
		||||
    pivoted_rows_tracking_control(lar_solver* ls) :
 | 
			
		||||
    check_return_helper(lar_solver* ls, const lia_move& r) :
 | 
			
		||||
        m_lar_solver(ls),
 | 
			
		||||
        m_r(r),
 | 
			
		||||
        m_track_pivoted_rows(ls->get_track_pivoted_rows())
 | 
			
		||||
    {
 | 
			
		||||
        TRACE("pivoted_rows", tout << "pivoted rows = " << ls->m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows->size() << std::endl;);
 | 
			
		||||
        m_lar_solver->set_track_pivoted_rows(false);
 | 
			
		||||
    }
 | 
			
		||||
    ~pivoted_rows_tracking_control() {
 | 
			
		||||
    ~check_return_helper() {
 | 
			
		||||
        TRACE("pivoted_rows", tout << "pivoted rows = " << m_lar_solver->m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows->size() << std::endl;);
 | 
			
		||||
        m_lar_solver->set_track_pivoted_rows(m_track_pivoted_rows);
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -589,21 +369,21 @@ lia_move int_solver::make_hnf_cut() {
 | 
			
		|||
#else
 | 
			
		||||
    vector<mpq> x0;
 | 
			
		||||
#endif
 | 
			
		||||
    lia_move r =  m_hnf_cutter.create_cut(*m_t, *m_k, *m_ex, *m_upper, x0);
 | 
			
		||||
    lia_move r =  m_hnf_cutter.create_cut(m_t, m_k, m_ex, m_upper, x0);
 | 
			
		||||
 | 
			
		||||
    if (r == lia_move::cut) {      
 | 
			
		||||
        TRACE("hnf_cut",
 | 
			
		||||
              m_lar_solver->print_term(*m_t, tout << "cut:"); 
 | 
			
		||||
              tout << " <= " << *m_k << std::endl;
 | 
			
		||||
              m_lar_solver->print_term(m_t, tout << "cut:"); 
 | 
			
		||||
              tout << " <= " << m_k << std::endl;
 | 
			
		||||
              for (unsigned i : m_hnf_cutter.constraints_for_explanation()) {
 | 
			
		||||
                  m_lar_solver->print_constraint(i, tout);
 | 
			
		||||
              }              
 | 
			
		||||
              );
 | 
			
		||||
        lp_assert(current_solution_is_inf_on_cut());
 | 
			
		||||
        settings().st().m_hnf_cuts++;
 | 
			
		||||
        m_ex->clear();        
 | 
			
		||||
        m_ex.clear();        
 | 
			
		||||
        for (unsigned i : m_hnf_cutter.constraints_for_explanation()) {
 | 
			
		||||
             m_ex->push_justification(i);
 | 
			
		||||
             m_ex.push_justification(i);
 | 
			
		||||
        }
 | 
			
		||||
    } 
 | 
			
		||||
    return r;
 | 
			
		||||
| 
						 | 
				
			
			@ -619,14 +399,17 @@ lia_move int_solver::hnf_cut() {
 | 
			
		|||
    return lia_move::undef;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex, bool & upper) {
 | 
			
		||||
lia_move int_solver::check() {
 | 
			
		||||
    if (!has_inf_int()) return lia_move::sat;
 | 
			
		||||
 | 
			
		||||
    m_t = &t;  m_k = &k;  m_ex = &ex; m_upper = &upper;
 | 
			
		||||
    m_t.clear();
 | 
			
		||||
    m_k.reset();
 | 
			
		||||
    m_ex.clear();
 | 
			
		||||
    m_upper = false;
 | 
			
		||||
    lia_move r = run_gcd_test();
 | 
			
		||||
    if (r != lia_move::undef) return r;
 | 
			
		||||
 | 
			
		||||
    pivoted_rows_tracking_control pc(m_lar_solver);
 | 
			
		||||
    check_return_helper pc(m_lar_solver, r);
 | 
			
		||||
 | 
			
		||||
    if(settings().m_int_pivot_fixed_vars_from_basis)
 | 
			
		||||
        m_lar_solver->pivot_fixed_vars_from_basis();
 | 
			
		||||
| 
						 | 
				
			
			@ -862,8 +645,8 @@ bool int_solver::gcd_test_for_row(static_matrix<mpq, numeric_pair<mpq>> & A, uns
 | 
			
		|||
void int_solver::add_to_explanation_from_fixed_or_boxed_column(unsigned j) {
 | 
			
		||||
    constraint_index lc, uc;
 | 
			
		||||
    m_lar_solver->get_bound_constraint_witnesses_for_column(j, lc, uc);
 | 
			
		||||
    m_ex->m_explanation.push_back(std::make_pair(mpq(1), lc));
 | 
			
		||||
    m_ex->m_explanation.push_back(std::make_pair(mpq(1), uc));
 | 
			
		||||
    m_ex.m_explanation.push_back(std::make_pair(mpq(1), lc));
 | 
			
		||||
    m_ex.m_explanation.push_back(std::make_pair(mpq(1), uc));
 | 
			
		||||
}
 | 
			
		||||
void int_solver::fill_explanation_from_fixed_columns(const row_strip<mpq> & row) {
 | 
			
		||||
    for (const auto & c : row) {
 | 
			
		||||
| 
						 | 
				
			
			@ -1126,7 +909,7 @@ bool int_solver::at_bound(unsigned j) const {
 | 
			
		|||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool int_solver::at_low(unsigned j) const {
 | 
			
		||||
bool int_solver::at_lower(unsigned j) const {
 | 
			
		||||
    auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
 | 
			
		||||
    switch (mpq_solver.m_column_types[j] ) {
 | 
			
		||||
    case column_type::fixed:
 | 
			
		||||
| 
						 | 
				
			
			@ -1258,20 +1041,20 @@ const impq& int_solver::lower_bound(unsigned j) const {
 | 
			
		|||
 | 
			
		||||
lia_move int_solver::create_branch_on_column(int j) {
 | 
			
		||||
    TRACE("check_main_int", tout << "branching" << std::endl;);
 | 
			
		||||
    lp_assert(m_t->is_empty());
 | 
			
		||||
    lp_assert(m_t.is_empty());
 | 
			
		||||
    lp_assert(j != -1);
 | 
			
		||||
    m_t->add_monomial(mpq(1), m_lar_solver->adjust_column_index_to_term_index(j));
 | 
			
		||||
    m_t.add_monomial(mpq(1), m_lar_solver->adjust_column_index_to_term_index(j));
 | 
			
		||||
    if (is_free(j)) {
 | 
			
		||||
        *m_upper = true;
 | 
			
		||||
        *m_k = mpq(0);
 | 
			
		||||
        m_upper = true;
 | 
			
		||||
        m_k = mpq(0);
 | 
			
		||||
    } else {
 | 
			
		||||
        *m_upper = left_branch_is_more_narrow_than_right(j);
 | 
			
		||||
        *m_k = *m_upper? floor(get_value(j)) : ceil(get_value(j));        
 | 
			
		||||
        m_upper = left_branch_is_more_narrow_than_right(j);
 | 
			
		||||
        m_k = m_upper? floor(get_value(j)) : ceil(get_value(j));        
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    TRACE("arith_int", tout << "branching v" << j << " = " << get_value(j) << "\n";
 | 
			
		||||
          display_column(tout, j);
 | 
			
		||||
          tout << "k = " << *m_k << std::endl;
 | 
			
		||||
          tout << "k = " << m_k << std::endl;
 | 
			
		||||
          );
 | 
			
		||||
    return lia_move::branch;
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -39,20 +39,31 @@ public:
 | 
			
		|||
    // fields
 | 
			
		||||
    lar_solver          *m_lar_solver;
 | 
			
		||||
    unsigned            m_number_of_calls;
 | 
			
		||||
    lar_term            *m_t; // the term to return in the cut
 | 
			
		||||
    mpq                 *m_k; // the right side of the cut
 | 
			
		||||
    explanation         *m_ex; // the conflict explanation
 | 
			
		||||
    bool                *m_upper; // we have a cut m_t*x <= k if m_upper is true nad m_t*x >= k otherwise
 | 
			
		||||
    lar_term            m_t; // the term to return in the cut
 | 
			
		||||
    mpq                 m_k; // the right side of the cut
 | 
			
		||||
    explanation         m_ex; // the conflict explanation
 | 
			
		||||
    bool                m_upper; // we have a cut m_t*x <= k if m_upper is true nad m_t*x >= k otherwise
 | 
			
		||||
    hnf_cutter          m_hnf_cutter;
 | 
			
		||||
    // methods
 | 
			
		||||
    int_solver(lar_solver* lp);
 | 
			
		||||
 | 
			
		||||
    // main function to check that the solution provided by lar_solver is valid for integral values,
 | 
			
		||||
    // or provide a way of how it can be adjusted.
 | 
			
		||||
    lia_move check(lar_term& t, mpq& k, explanation& ex, bool & upper);
 | 
			
		||||
    lia_move check();
 | 
			
		||||
    lar_term const& get_term() const { return m_t; }
 | 
			
		||||
    mpq const& get_offset() const { return m_k; }
 | 
			
		||||
    explanation const& get_explanation() const { return m_ex; }
 | 
			
		||||
    bool is_upper() const { return m_upper; }
 | 
			
		||||
 | 
			
		||||
    bool move_non_basic_column_to_bounds(unsigned j);
 | 
			
		||||
    lia_move check_wrapper(lar_term& t, mpq& k, explanation& ex);    
 | 
			
		||||
    bool is_base(unsigned j) const;
 | 
			
		||||
    bool is_real(unsigned j) const;
 | 
			
		||||
    const impq & lower_bound(unsigned j) const;
 | 
			
		||||
    const impq & upper_bound(unsigned j) const;
 | 
			
		||||
    bool is_int(unsigned j) const;
 | 
			
		||||
    const impq & get_value(unsigned j) const;
 | 
			
		||||
    bool at_lower(unsigned j) const;
 | 
			
		||||
    bool at_upper(unsigned j) const;
 | 
			
		||||
    
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -79,10 +90,7 @@ private:
 | 
			
		|||
    void add_to_explanation_from_fixed_or_boxed_column(unsigned j);
 | 
			
		||||
    lia_move patch_nbasic_columns();
 | 
			
		||||
    bool get_freedom_interval_for_column(unsigned j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m);
 | 
			
		||||
    const impq & lower_bound(unsigned j) const;
 | 
			
		||||
    const impq & upper_bound(unsigned j) const;
 | 
			
		||||
    bool is_int(unsigned j) const;
 | 
			
		||||
    bool is_real(unsigned j) const;
 | 
			
		||||
private:
 | 
			
		||||
    bool is_boxed(unsigned j) const;
 | 
			
		||||
    bool is_fixed(unsigned j) const;
 | 
			
		||||
    bool is_free(unsigned j) const;
 | 
			
		||||
| 
						 | 
				
			
			@ -91,7 +99,6 @@ private:
 | 
			
		|||
    void set_value_for_nbasic_column_ignore_old_values(unsigned j, const impq & new_val);
 | 
			
		||||
    bool non_basic_columns_are_at_bounds() const;
 | 
			
		||||
    bool is_feasible() const;
 | 
			
		||||
    const impq & get_value(unsigned j) const;
 | 
			
		||||
    bool column_is_int_inf(unsigned j) const;
 | 
			
		||||
    void trace_inf_rows() const;
 | 
			
		||||
    lia_move branch_or_sat();
 | 
			
		||||
| 
						 | 
				
			
			@ -104,39 +111,22 @@ private:
 | 
			
		|||
    bool move_non_basic_columns_to_bounds();
 | 
			
		||||
    void branch_infeasible_int_var(unsigned);
 | 
			
		||||
    lia_move mk_gomory_cut(unsigned inf_col, const row_strip<mpq>& row);
 | 
			
		||||
    lia_move report_conflict_from_gomory_cut();
 | 
			
		||||
    void adjust_term_and_k_for_some_ints_case_gomory(mpq& lcm_den);
 | 
			
		||||
    lia_move proceed_with_gomory_cut(unsigned j);
 | 
			
		||||
    int find_free_var_in_gomory_row(const row_strip<mpq>& );
 | 
			
		||||
    bool is_gomory_cut_target(const row_strip<mpq>&);
 | 
			
		||||
    bool at_bound(unsigned j) const;
 | 
			
		||||
    bool at_low(unsigned j) const;
 | 
			
		||||
    bool at_upper(unsigned j) const;
 | 
			
		||||
    bool has_low(unsigned j) const;
 | 
			
		||||
    bool has_upper(unsigned j) const;
 | 
			
		||||
    unsigned row_of_basic_column(unsigned j) const;
 | 
			
		||||
    inline static bool is_rational(const impq & n) {
 | 
			
		||||
        return is_zero(n.y);  
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    void display_column(std::ostream & out, unsigned j) const;
 | 
			
		||||
    inline static
 | 
			
		||||
    mpq fractional_part(const impq & n) {
 | 
			
		||||
        lp_assert(is_rational(n));
 | 
			
		||||
        return n.x - floor(n.x);
 | 
			
		||||
    }
 | 
			
		||||
private:
 | 
			
		||||
    void real_case_in_gomory_cut(const mpq & a, unsigned x_j, const mpq& f_0, const mpq& one_minus_f_0);
 | 
			
		||||
    void int_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & lcm_den, const mpq& f_0, const mpq& one_minus_f_0);
 | 
			
		||||
    constraint_index column_upper_bound_constraint(unsigned j) const;
 | 
			
		||||
    constraint_index column_lower_bound_constraint(unsigned j) const;
 | 
			
		||||
    void display_row_info(std::ostream & out, unsigned row_index) const;
 | 
			
		||||
    void gomory_cut_adjust_t_and_k(vector<std::pair<mpq, unsigned>> & pol, lar_term & t, mpq &k, bool num_ints, mpq &lcm_den);
 | 
			
		||||
    bool current_solution_is_inf_on_cut() const;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
    bool shift_var(unsigned j, unsigned range);
 | 
			
		||||
private:
 | 
			
		||||
    void display_row_info(std::ostream & out, unsigned row_index) const;
 | 
			
		||||
    unsigned random();
 | 
			
		||||
    bool has_inf_int() const;
 | 
			
		||||
    lia_move create_branch_on_column(int j);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -75,7 +75,7 @@ struct lar_term_constraint: public lar_base_constraint {
 | 
			
		|||
    }
 | 
			
		||||
    unsigned size() const override { return m_term->size();}
 | 
			
		||||
    lar_term_constraint(const lar_term *t, lconstraint_kind kind, const mpq& right_side) : lar_base_constraint(kind, right_side), m_term(t) { }
 | 
			
		||||
    mpq get_free_coeff_of_left_side() const override { return m_term->m_v;}
 | 
			
		||||
    // mpq get_free_coeff_of_left_side() const override { return m_term->m_v;}
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -27,7 +27,7 @@ void clear() {lp_assert(false); // not implemented
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
lar_solver::lar_solver() : m_status(lp_status::OPTIMAL),
 | 
			
		||||
lar_solver::lar_solver() : m_status(lp_status::UNKNOWN),
 | 
			
		||||
                           m_infeasible_column_index(-1),
 | 
			
		||||
                           m_terms_start_index(1000000),
 | 
			
		||||
                           m_mpq_lar_core_solver(m_settings, *this),
 | 
			
		||||
| 
						 | 
				
			
			@ -71,7 +71,7 @@ bool lar_solver::sizes_are_correct() const {
 | 
			
		|||
}
 | 
			
		||||
    
 | 
			
		||||
 
 | 
			
		||||
void lar_solver::print_implied_bound(const implied_bound& be, std::ostream & out) const {
 | 
			
		||||
std::ostream& lar_solver::print_implied_bound(const implied_bound& be, std::ostream & out) const {
 | 
			
		||||
    out << "implied bound\n";
 | 
			
		||||
    unsigned v = be.m_j;
 | 
			
		||||
    if (is_term(v)) {
 | 
			
		||||
| 
						 | 
				
			
			@ -83,6 +83,7 @@ void lar_solver::print_implied_bound(const implied_bound& be, std::ostream & out
 | 
			
		|||
    }
 | 
			
		||||
    out << " " << lconstraint_kind_string(be.kind()) << " "  << be.m_bound << std::endl;
 | 
			
		||||
    out << "end of implied bound" << std::endl;
 | 
			
		||||
    return out;
 | 
			
		||||
}
 | 
			
		||||
    
 | 
			
		||||
bool lar_solver::implied_bound_is_correctly_explained(implied_bound const & be, const vector<std::pair<mpq, unsigned>> & explanation) const {
 | 
			
		||||
| 
						 | 
				
			
			@ -136,7 +137,7 @@ bool lar_solver::implied_bound_is_correctly_explained(implied_bound const & be,
 | 
			
		|||
            kind = static_cast<lconstraint_kind>(-kind);
 | 
			
		||||
        }
 | 
			
		||||
        rs_of_evidence /= ratio;
 | 
			
		||||
        rs_of_evidence += t->m_v * ratio;
 | 
			
		||||
        // rs_of_evidence += t->m_v * ratio;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return kind == be.kind() && rs_of_evidence == be.m_bound;
 | 
			
		||||
| 
						 | 
				
			
			@ -601,7 +602,7 @@ void lar_solver::register_monoid_in_map(std::unordered_map<var_index, mpq> & coe
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
void lar_solver::substitute_terms_in_linear_expression(const vector<std::pair<mpq, var_index>>& left_side_with_terms,
 | 
			
		||||
                                                       vector<std::pair<mpq, var_index>> &left_side, mpq & free_coeff) const {
 | 
			
		||||
                                                       vector<std::pair<mpq, var_index>> &left_side) const {
 | 
			
		||||
    std::unordered_map<var_index, mpq> coeffs;
 | 
			
		||||
    for (auto & t : left_side_with_terms) {
 | 
			
		||||
        unsigned j = t.second;
 | 
			
		||||
| 
						 | 
				
			
			@ -612,7 +613,6 @@ void lar_solver::substitute_terms_in_linear_expression(const vector<std::pair<mp
 | 
			
		|||
            for (auto & p : term.coeffs()){
 | 
			
		||||
                register_monoid_in_map(coeffs, t.first * p.second , p.first);
 | 
			
		||||
            }
 | 
			
		||||
            free_coeff += t.first * term.m_v;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -781,7 +781,7 @@ void lar_solver::solve_with_core_solver() {
 | 
			
		|||
        update_x_and_inf_costs_for_columns_with_changed_bounds();
 | 
			
		||||
    m_mpq_lar_core_solver.solve();
 | 
			
		||||
    set_status(m_mpq_lar_core_solver.m_r_solver.get_status());
 | 
			
		||||
    lp_assert(m_status != lp_status::OPTIMAL || all_constraints_hold());
 | 
			
		||||
    lp_assert((m_settings.random_next() % 100) != 0 || m_status != lp_status::OPTIMAL || all_constraints_hold());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
| 
						 | 
				
			
			@ -909,13 +909,8 @@ bool lar_solver::try_to_set_fixed(column_info<mpq> & ci) {
 | 
			
		|||
    return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
column_type lar_solver::get_column_type(const column_info<mpq> & ci) {
 | 
			
		||||
    auto ret = ci.get_column_type_no_flipping();
 | 
			
		||||
    if (ret == column_type::boxed) { // changing boxed to fixed because of the no span
 | 
			
		||||
        if (ci.get_lower_bound() == ci.get_upper_bound())
 | 
			
		||||
            ret = column_type::fixed;
 | 
			
		||||
    }
 | 
			
		||||
    return ret;
 | 
			
		||||
column_type lar_solver::get_column_type(unsigned j) const{
 | 
			
		||||
    return m_mpq_lar_core_solver.m_column_types[j];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::string lar_solver::get_column_name(unsigned j) const {
 | 
			
		||||
| 
						 | 
				
			
			@ -975,8 +970,10 @@ bool lar_solver::the_relations_are_of_same_type(const vector<std::pair<mpq, unsi
 | 
			
		|||
            flip_kind(m_constraints[con_ind]->m_kind);
 | 
			
		||||
        if (kind == GT || kind == LT)
 | 
			
		||||
            strict = true;
 | 
			
		||||
        if (kind == GE || kind == GT) n_of_G++;
 | 
			
		||||
        else if (kind == LE || kind == LT) n_of_L++;
 | 
			
		||||
        if (kind == GE || kind == GT) 
 | 
			
		||||
            n_of_G++;
 | 
			
		||||
        else if (kind == LE || kind == LT) 
 | 
			
		||||
            n_of_L++;
 | 
			
		||||
    }
 | 
			
		||||
    the_kind_of_sum = n_of_G ? GE : (n_of_L ? LE : EQ);
 | 
			
		||||
    if (strict)
 | 
			
		||||
| 
						 | 
				
			
			@ -1116,7 +1113,7 @@ bool lar_solver::has_upper_bound(var_index var, constraint_index& ci, mpq& value
 | 
			
		|||
bool lar_solver::has_value(var_index var, mpq& value) const {
 | 
			
		||||
    if (is_term(var)) {
 | 
			
		||||
        lar_term const& t = get_term(var);
 | 
			
		||||
        value = t.m_v;
 | 
			
		||||
        value = 0;
 | 
			
		||||
        for (auto const& cv : t) {
 | 
			
		||||
            impq const& r = get_column_value(cv.var());
 | 
			
		||||
            if (!numeric_traits<mpq>::is_zero(r.y)) return false;
 | 
			
		||||
| 
						 | 
				
			
			@ -1177,6 +1174,7 @@ void lar_solver::get_model(std::unordered_map<var_index, mpq> & variable_values)
 | 
			
		|||
        std::unordered_set<impq> set_of_different_pairs; 
 | 
			
		||||
        std::unordered_set<mpq> set_of_different_singles;
 | 
			
		||||
        delta = m_mpq_lar_core_solver.find_delta_for_strict_bounds(delta);
 | 
			
		||||
        TRACE("get_model", tout << "delta=" << delta << "size = " << m_mpq_lar_core_solver.m_r_x.size() << std::endl;);
 | 
			
		||||
        for (i = 0; i < m_mpq_lar_core_solver.m_r_x.size(); i++ ) {
 | 
			
		||||
            const numeric_pair<mpq> & rp = m_mpq_lar_core_solver.m_r_x[i];
 | 
			
		||||
            set_of_different_pairs.insert(rp);
 | 
			
		||||
| 
						 | 
				
			
			@ -1208,42 +1206,40 @@ std::string lar_solver::get_variable_name(var_index vi) const {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
// ********** print region start
 | 
			
		||||
void lar_solver::print_constraint(constraint_index ci, std::ostream & out) const {
 | 
			
		||||
std::ostream& lar_solver::print_constraint(constraint_index ci, std::ostream & out) const {
 | 
			
		||||
    if (ci >= m_constraints.size()) {
 | 
			
		||||
        out << "constraint " << T_to_string(ci) << " is not found";
 | 
			
		||||
        out << std::endl;
 | 
			
		||||
        return;
 | 
			
		||||
        return out;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    print_constraint(m_constraints[ci], out);
 | 
			
		||||
    return print_constraint(m_constraints[ci], out);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void lar_solver::print_constraints(std::ostream& out) const  {
 | 
			
		||||
std::ostream& lar_solver::print_constraints(std::ostream& out) const  {
 | 
			
		||||
    out << "number of constraints = " << m_constraints.size() << std::endl;
 | 
			
		||||
    for (auto c : m_constraints) {
 | 
			
		||||
        print_constraint(c, out);
 | 
			
		||||
    }
 | 
			
		||||
    return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void lar_solver::print_terms(std::ostream& out) const  {
 | 
			
		||||
std::ostream& lar_solver::print_terms(std::ostream& out) const  {
 | 
			
		||||
    for (auto it : m_terms) {
 | 
			
		||||
        print_term(*it, out);
 | 
			
		||||
        out << "\n";
 | 
			
		||||
        print_term(*it, out) << "\n";
 | 
			
		||||
    }
 | 
			
		||||
    return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void lar_solver::print_left_side_of_constraint(const lar_base_constraint * c, std::ostream & out) const {
 | 
			
		||||
std::ostream& lar_solver::print_left_side_of_constraint(const lar_base_constraint * c, std::ostream & out) const {
 | 
			
		||||
    print_linear_combination_of_column_indices(c->get_left_side_coefficients(), out);
 | 
			
		||||
    mpq free_coeff = c->get_free_coeff_of_left_side();
 | 
			
		||||
    if (!is_zero(free_coeff))
 | 
			
		||||
        out << " + " << free_coeff;
 | 
			
		||||
        
 | 
			
		||||
    return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void lar_solver::print_term(lar_term const& term, std::ostream & out) const {
 | 
			
		||||
    if (!numeric_traits<mpq>::is_zero(term.m_v)) {
 | 
			
		||||
        out << term.m_v << " + ";
 | 
			
		||||
    }
 | 
			
		||||
std::ostream& lar_solver::print_term(lar_term const& term, std::ostream & out) const {
 | 
			
		||||
    bool first = true;
 | 
			
		||||
    for (const auto p : term) {
 | 
			
		||||
        mpq val = p.coeff();
 | 
			
		||||
| 
						 | 
				
			
			@ -1263,14 +1259,12 @@ void lar_solver::print_term(lar_term const& term, std::ostream & out) const {
 | 
			
		|||
            out << T_to_string(val);
 | 
			
		||||
        out << this->get_column_name(p.var());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void lar_solver::print_term_as_indices(lar_term const& term, std::ostream & out) const {
 | 
			
		||||
    if (!numeric_traits<mpq>::is_zero(term.m_v)) {
 | 
			
		||||
        out << term.m_v << " + ";
 | 
			
		||||
    }
 | 
			
		||||
    print_linear_combination_of_column_indices_only(term.coeffs_as_vector(), out);
 | 
			
		||||
std::ostream& lar_solver::print_term_as_indices(lar_term const& term, std::ostream & out) const {
 | 
			
		||||
    print_linear_combination_of_column_indices_only(term, out);
 | 
			
		||||
    return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
mpq lar_solver::get_left_side_val(const lar_base_constraint &  cns, const std::unordered_map<var_index, mpq> & var_map) const {
 | 
			
		||||
| 
						 | 
				
			
			@ -1284,9 +1278,10 @@ mpq lar_solver::get_left_side_val(const lar_base_constraint &  cns, const std::u
 | 
			
		|||
    return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void lar_solver::print_constraint(const lar_base_constraint * c, std::ostream & out) const {
 | 
			
		||||
std::ostream& lar_solver::print_constraint(const lar_base_constraint * c, std::ostream & out) const {
 | 
			
		||||
    print_left_side_of_constraint(c, out);
 | 
			
		||||
    out << " " << lconstraint_kind_string(c->m_kind) << " " << c->m_right_side << std::endl;
 | 
			
		||||
    return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void lar_solver::fill_var_set_for_random_update(unsigned sz, var_index const * vars, vector<unsigned>& column_list) {
 | 
			
		||||
| 
						 | 
				
			
			@ -1492,7 +1487,7 @@ bool lar_solver::term_is_int(const lar_term * t) const {
 | 
			
		|||
    for (auto const & p :  t->m_coeffs)
 | 
			
		||||
        if (! (column_is_int(p.first)  && p.second.is_int()))
 | 
			
		||||
            return false;
 | 
			
		||||
    return t->m_v.is_int();
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool lar_solver::var_is_int(var_index v) const {
 | 
			
		||||
| 
						 | 
				
			
			@ -1593,17 +1588,13 @@ void lar_solver::add_new_var_to_core_fields_for_mpq(bool register_in_basis) {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
var_index lar_solver::add_term_undecided(const vector<std::pair<mpq, var_index>> & coeffs,
 | 
			
		||||
                                         const mpq &m_v) {
 | 
			
		||||
    push_and_register_term(new lar_term(coeffs, m_v));
 | 
			
		||||
var_index lar_solver::add_term_undecided(const vector<std::pair<mpq, var_index>> & coeffs) {
 | 
			
		||||
    push_and_register_term(new lar_term(coeffs));
 | 
			
		||||
    return m_terms_start_index + m_terms.size() - 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if Z3DEBUG_CHECK_UNIQUE_TERMS
 | 
			
		||||
bool lar_solver::term_coeffs_are_ok(const vector<std::pair<mpq, var_index>> & coeffs, const mpq& v) {
 | 
			
		||||
    if (coeffs.empty()) {
 | 
			
		||||
        return is_zero(v);
 | 
			
		||||
    }
 | 
			
		||||
bool lar_solver::term_coeffs_are_ok(const vector<std::pair<mpq, var_index>> & coeffs) {
 | 
			
		||||
 | 
			
		||||
    for (const auto & p : coeffs) {
 | 
			
		||||
        if (column_is_real(p.second))
 | 
			
		||||
| 
						 | 
				
			
			@ -1638,12 +1629,11 @@ void lar_solver::push_and_register_term(lar_term* t) {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
// terms
 | 
			
		||||
var_index lar_solver::add_term(const vector<std::pair<mpq, var_index>> & coeffs,
 | 
			
		||||
                               const mpq &m_v) {
 | 
			
		||||
var_index lar_solver::add_term(const vector<std::pair<mpq, var_index>> & coeffs) {
 | 
			
		||||
    if (strategy_is_undecided())
 | 
			
		||||
        return add_term_undecided(coeffs, m_v);
 | 
			
		||||
        return add_term_undecided(coeffs);
 | 
			
		||||
 | 
			
		||||
    push_and_register_term(new lar_term(coeffs, m_v));
 | 
			
		||||
    push_and_register_term(new lar_term(coeffs));
 | 
			
		||||
    unsigned adjusted_term_index = m_terms.size() - 1;
 | 
			
		||||
    var_index ret = m_terms_start_index + adjusted_term_index;
 | 
			
		||||
    if (use_tableau() && !coeffs.empty()) {
 | 
			
		||||
| 
						 | 
				
			
			@ -1656,7 +1646,7 @@ var_index lar_solver::add_term(const vector<std::pair<mpq, var_index>> & coeffs,
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
void lar_solver::add_row_from_term_no_constraint(const lar_term * term, unsigned term_ext_index) {
 | 
			
		||||
    TRACE("dump_terms", print_term(*term, tout); tout << std::endl;);
 | 
			
		||||
    TRACE("dump_terms", print_term(*term, tout) << std::endl;);
 | 
			
		||||
    register_new_ext_var_index(term_ext_index, term_is_int(term));
 | 
			
		||||
    // j will be a new variable
 | 
			
		||||
    unsigned j = A_r().column_count();
 | 
			
		||||
| 
						 | 
				
			
			@ -1738,9 +1728,8 @@ void lar_solver::add_var_bound_on_constraint_for_term(var_index j, lconstraint_k
 | 
			
		|||
    //    lp_assert(!term_is_int(m_terms[adjusted_term_index]) || right_side.is_int());
 | 
			
		||||
    unsigned term_j;
 | 
			
		||||
    if (m_var_register.external_is_used(j, term_j)) {
 | 
			
		||||
        mpq rs = right_side - m_terms[adjusted_term_index]->m_v;
 | 
			
		||||
        m_constraints.push_back(new lar_term_constraint(m_terms[adjusted_term_index], kind, right_side));
 | 
			
		||||
        update_column_type_and_bound(term_j, kind, rs, ci);
 | 
			
		||||
        update_column_type_and_bound(term_j, kind, right_side, ci);
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
        add_constraint_from_term_and_create_new_column_row(j, m_terms[adjusted_term_index], kind, right_side);
 | 
			
		||||
| 
						 | 
				
			
			@ -1749,11 +1738,10 @@ void lar_solver::add_var_bound_on_constraint_for_term(var_index j, lconstraint_k
 | 
			
		|||
 | 
			
		||||
constraint_index lar_solver::add_constraint(const vector<std::pair<mpq, var_index>>& left_side_with_terms, lconstraint_kind kind_par, const mpq& right_side_parm) {
 | 
			
		||||
    vector<std::pair<mpq, var_index>> left_side;
 | 
			
		||||
    mpq rs = -right_side_parm;
 | 
			
		||||
    substitute_terms_in_linear_expression(left_side_with_terms, left_side, rs);
 | 
			
		||||
    unsigned term_index = add_term(left_side, zero_of_type<mpq>());
 | 
			
		||||
    substitute_terms_in_linear_expression(left_side_with_terms, left_side);
 | 
			
		||||
    unsigned term_index = add_term(left_side);
 | 
			
		||||
    constraint_index ci = m_constraints.size();
 | 
			
		||||
    add_var_bound_on_constraint_for_term(term_index, kind_par, -rs, ci);
 | 
			
		||||
    add_var_bound_on_constraint_for_term(term_index, kind_par, right_side_parm, ci);
 | 
			
		||||
    return ci;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1762,7 +1750,7 @@ void lar_solver::add_constraint_from_term_and_create_new_column_row(unsigned ter
 | 
			
		|||
 | 
			
		||||
    add_row_from_term_no_constraint(term, term_j);
 | 
			
		||||
    unsigned j = A_r().column_count() - 1;
 | 
			
		||||
    update_column_type_and_bound(j, kind, right_side - term->m_v, m_constraints.size());
 | 
			
		||||
    update_column_type_and_bound(j, kind, right_side, m_constraints.size());
 | 
			
		||||
    m_constraints.push_back(new lar_term_constraint(term, kind, right_side));
 | 
			
		||||
    lp_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -1964,7 +1952,6 @@ void lar_solver::update_boxed_column_type_and_bound(var_index j, lconstraint_kin
 | 
			
		|||
 | 
			
		||||
            if (up < m_mpq_lar_core_solver.m_r_lower_bounds[j]) {
 | 
			
		||||
                m_status = lp_status::INFEASIBLE;
 | 
			
		||||
                lp_assert(false);
 | 
			
		||||
                m_infeasible_column_index = j;
 | 
			
		||||
            }
 | 
			
		||||
            else {
 | 
			
		||||
| 
						 | 
				
			
			@ -2261,6 +2248,7 @@ void lar_solver::set_cut_strategy(unsigned cut_frequency) {
 | 
			
		|||
    } 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
} // namespace lp
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -164,13 +164,11 @@ public:
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
    // terms
 | 
			
		||||
    var_index add_term(const vector<std::pair<mpq, var_index>> & coeffs,
 | 
			
		||||
                       const mpq &m_v);
 | 
			
		||||
    var_index add_term(const vector<std::pair<mpq, var_index>> & coeffs);
 | 
			
		||||
 | 
			
		||||
    var_index add_term_undecided(const vector<std::pair<mpq, var_index>> & coeffs,
 | 
			
		||||
                                 const mpq &m_v);
 | 
			
		||||
    var_index add_term_undecided(const vector<std::pair<mpq, var_index>> & coeffs);
 | 
			
		||||
 | 
			
		||||
    bool term_coeffs_are_ok(const vector<std::pair<mpq, var_index>> & coeffs, const mpq& v);
 | 
			
		||||
    bool term_coeffs_are_ok(const vector<std::pair<mpq, var_index>> & coeffs);
 | 
			
		||||
    void push_and_register_term(lar_term* t);
 | 
			
		||||
 | 
			
		||||
    void add_row_for_term(const lar_term * term, unsigned term_ext_index);
 | 
			
		||||
| 
						 | 
				
			
			@ -208,7 +206,10 @@ public:
 | 
			
		|||
    void update_lower_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci);
 | 
			
		||||
 | 
			
		||||
    void update_fixed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci);
 | 
			
		||||
 | 
			
		||||
    //end of init region
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    lp_settings & settings();
 | 
			
		||||
 | 
			
		||||
    lp_settings const & settings() const;
 | 
			
		||||
| 
						 | 
				
			
			@ -228,8 +229,6 @@ public:
 | 
			
		|||
    
 | 
			
		||||
    bool sizes_are_correct() const;
 | 
			
		||||
     
 | 
			
		||||
    void print_implied_bound(const implied_bound& be, std::ostream & out) const;
 | 
			
		||||
    
 | 
			
		||||
    bool implied_bound_is_correctly_explained(implied_bound const & be, const vector<std::pair<mpq, unsigned>> & explanation) const;
 | 
			
		||||
    
 | 
			
		||||
    void analyze_new_bounds_on_row(
 | 
			
		||||
| 
						 | 
				
			
			@ -238,8 +237,7 @@ public:
 | 
			
		|||
 | 
			
		||||
    void analyze_new_bounds_on_row_tableau(
 | 
			
		||||
        unsigned row_index,
 | 
			
		||||
        bound_propagator & bp
 | 
			
		||||
                                           );
 | 
			
		||||
        bound_propagator & bp);
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    void substitute_basis_var_in_terms_for_row(unsigned i);
 | 
			
		||||
| 
						 | 
				
			
			@ -331,7 +329,7 @@ public:
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
    void substitute_terms_in_linear_expression( const vector<std::pair<mpq, var_index>>& left_side_with_terms,
 | 
			
		||||
                                                vector<std::pair<mpq, var_index>> &left_side, mpq & free_coeff) const;
 | 
			
		||||
                                                vector<std::pair<mpq, var_index>> &left_side) const;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void detect_rows_of_bound_change_column_for_nbasic_column(unsigned j);
 | 
			
		||||
| 
						 | 
				
			
			@ -397,7 +395,7 @@ public:
 | 
			
		|||
 | 
			
		||||
    bool try_to_set_fixed(column_info<mpq> & ci);
 | 
			
		||||
 | 
			
		||||
    column_type get_column_type(const column_info<mpq> & ci);
 | 
			
		||||
    column_type get_column_type(unsigned j) const;
 | 
			
		||||
 | 
			
		||||
    std::string get_column_name(unsigned j) const;
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -436,30 +434,33 @@ public:
 | 
			
		|||
        int inf_sign) const;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void get_model(std::unordered_map<var_index, mpq> & variable_values) const;
 | 
			
		||||
 | 
			
		||||
    void get_model_do_not_care_about_diff_vars(std::unordered_map<var_index, mpq> & variable_values) const;
 | 
			
		||||
 | 
			
		||||
    std::string get_variable_name(var_index vi) const;
 | 
			
		||||
 | 
			
		||||
    // ********** print region start
 | 
			
		||||
    void print_constraint(constraint_index ci, std::ostream & out) const;
 | 
			
		||||
    // print utilities
 | 
			
		||||
 | 
			
		||||
    void print_constraints(std::ostream& out) const ;
 | 
			
		||||
    std::ostream& print_constraint(constraint_index ci, std::ostream & out) const;
 | 
			
		||||
 | 
			
		||||
    void print_terms(std::ostream& out) const;
 | 
			
		||||
    std::ostream& print_constraints(std::ostream& out) const ;
 | 
			
		||||
 | 
			
		||||
    void print_left_side_of_constraint(const lar_base_constraint * c, std::ostream & out) const;
 | 
			
		||||
    std::ostream& print_terms(std::ostream& out) const;
 | 
			
		||||
 | 
			
		||||
    void print_term(lar_term const& term, std::ostream & out) const;
 | 
			
		||||
    std::ostream& print_left_side_of_constraint(const lar_base_constraint * c, std::ostream & out) const;
 | 
			
		||||
 | 
			
		||||
    std::ostream& print_term(lar_term const& term, std::ostream & out) const;
 | 
			
		||||
 | 
			
		||||
    std::ostream& print_term_as_indices(lar_term const& term, std::ostream & out) const;
 | 
			
		||||
 | 
			
		||||
    std::ostream& print_constraint(const lar_base_constraint * c, std::ostream & out) const;
 | 
			
		||||
 | 
			
		||||
    std::ostream& print_implied_bound(const implied_bound& be, std::ostream & out) const;
 | 
			
		||||
 | 
			
		||||
    void print_term_as_indices(lar_term const& term, std::ostream & out) const;
 | 
			
		||||
    
 | 
			
		||||
    mpq get_left_side_val(const lar_base_constraint &  cns, const std::unordered_map<var_index, mpq> & var_map) const;
 | 
			
		||||
 | 
			
		||||
    void print_constraint(const lar_base_constraint * c, std::ostream & out) const;
 | 
			
		||||
 | 
			
		||||
    void fill_var_set_for_random_update(unsigned sz, var_index const * vars, vector<unsigned>& column_list);
 | 
			
		||||
 | 
			
		||||
    void random_update(unsigned sz, var_index const * vars);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -21,9 +21,9 @@
 | 
			
		|||
#include "util/lp/indexed_vector.h"
 | 
			
		||||
namespace lp {
 | 
			
		||||
struct lar_term {
 | 
			
		||||
    // the term evaluates to sum of m_coeffs + m_v
 | 
			
		||||
    // the term evaluates to sum of m_coeffs 
 | 
			
		||||
    std::unordered_map<unsigned, mpq> m_coeffs;
 | 
			
		||||
    mpq m_v;
 | 
			
		||||
    // mpq m_v;
 | 
			
		||||
    lar_term() {}
 | 
			
		||||
    void add_monomial(const mpq& c, unsigned j) {
 | 
			
		||||
        auto it = m_coeffs.find(j);
 | 
			
		||||
| 
						 | 
				
			
			@ -37,7 +37,7 @@ struct lar_term {
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    bool is_empty() const {
 | 
			
		||||
        return m_coeffs.size() == 0 && is_zero(m_v);
 | 
			
		||||
        return m_coeffs.size() == 0; // && is_zero(m_v);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    unsigned size() const { return static_cast<unsigned>(m_coeffs.size()); }
 | 
			
		||||
| 
						 | 
				
			
			@ -46,8 +46,7 @@ struct lar_term {
 | 
			
		|||
        return m_coeffs;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    lar_term(const vector<std::pair<mpq, unsigned>>& coeffs,
 | 
			
		||||
             const mpq & v) : m_v(v) {
 | 
			
		||||
    lar_term(const vector<std::pair<mpq, unsigned>>& coeffs) {
 | 
			
		||||
        for (const auto & p : coeffs) {
 | 
			
		||||
            add_monomial(p.first, p.second);
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -87,7 +86,7 @@ struct lar_term {
 | 
			
		|||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    T apply(const vector<T>& x) const {
 | 
			
		||||
        T ret = T(m_v);
 | 
			
		||||
        T ret(0);
 | 
			
		||||
        for (const auto & t : m_coeffs) {
 | 
			
		||||
            ret += t.second * x[t.first];
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -96,7 +95,6 @@ struct lar_term {
 | 
			
		|||
   
 | 
			
		||||
    void clear() {
 | 
			
		||||
        m_coeffs.clear();
 | 
			
		||||
        m_v = zero_of_type<mpq>();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    struct ival {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -577,7 +577,7 @@ public:
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    void print_column_info(unsigned j, std::ostream & out) const {
 | 
			
		||||
        out << "j = " << j << ", name = "<< column_name(j);
 | 
			
		||||
        out << "j = " << j << ",\tname = "<< column_name(j) << "\t";
 | 
			
		||||
        switch (m_column_types[j]) {
 | 
			
		||||
        case column_type::fixed:
 | 
			
		||||
        case column_type::boxed:
 | 
			
		||||
| 
						 | 
				
			
			@ -596,11 +596,11 @@ public:
 | 
			
		|||
            lp_assert(false);
 | 
			
		||||
        }
 | 
			
		||||
        //        out << "basis heading = " << m_basis_heading[j] << std::endl;
 | 
			
		||||
        out << " x =                " << m_x[j];
 | 
			
		||||
        out << "\tx = " << m_x[j];
 | 
			
		||||
        if (m_basis_heading[j] >= 0)
 | 
			
		||||
            out << " base\n";
 | 
			
		||||
        else
 | 
			
		||||
            out << " nbas\n";
 | 
			
		||||
           out << " \n";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool column_is_free(unsigned j) const { return this->m_column_type[j] == free; }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1238,6 +1238,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::print_column
 | 
			
		|||
        break;
 | 
			
		||||
    case column_type::free_column:
 | 
			
		||||
        out << "( _" << this->m_x[j] << "_)" << std::endl;
 | 
			
		||||
        break;
 | 
			
		||||
    default:
 | 
			
		||||
        lp_unreachable();
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -433,7 +433,15 @@ inline void ensure_increasing(vector<unsigned> & v) {
 | 
			
		|||
        }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline static bool is_rational(const impq & n) { return is_zero(n.y); }
 | 
			
		||||
 | 
			
		||||
inline static mpq fractional_part(const impq & n) {
 | 
			
		||||
    lp_assert(is_rational(n));
 | 
			
		||||
    return n.x - floor(n.x);
 | 
			
		||||
}
 | 
			
		||||
inline static mpq fractional_part(const mpq & n) {
 | 
			
		||||
    return n - floor(n);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if Z3DEBUG
 | 
			
		||||
bool D();
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -24,7 +24,7 @@ Revision History:
 | 
			
		|||
namespace lp {
 | 
			
		||||
template <typename T, typename X> column_info<T> * lp_solver<T, X>::get_or_create_column_info(unsigned column) {
 | 
			
		||||
    auto it = m_map_from_var_index_to_column_info.find(column);
 | 
			
		||||
    return (it == m_map_from_var_index_to_column_info.end())? (m_map_from_var_index_to_column_info[column] = new column_info<T>(static_cast<unsigned>(-1))) : it->second;
 | 
			
		||||
    return (it == m_map_from_var_index_to_column_info.end())? (m_map_from_var_index_to_column_info[column] = new column_info<T>()) : it->second;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename T, typename X>
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -50,6 +50,29 @@ bool contains(const std::unordered_map<A, B> & map, const A& key) {
 | 
			
		|||
 | 
			
		||||
namespace lp {
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
void print_linear_combination_of_column_indices_only(const T & coeffs, std::ostream & out) {
 | 
			
		||||
    bool first = true;
 | 
			
		||||
    for (const auto & it : coeffs) {
 | 
			
		||||
        auto val = it.coeff();
 | 
			
		||||
        if (first) {
 | 
			
		||||
            first = false;
 | 
			
		||||
        } else {
 | 
			
		||||
            if (val.is_pos()) {
 | 
			
		||||
                out << " + ";
 | 
			
		||||
            } else {
 | 
			
		||||
                out << " - ";
 | 
			
		||||
                val = -val;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        if (val == 1)
 | 
			
		||||
            out << " ";
 | 
			
		||||
        else 
 | 
			
		||||
            out << T_to_string(val);
 | 
			
		||||
        
 | 
			
		||||
        out << "x" << it.var();
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline void throw_exception(std::string && str) {
 | 
			
		||||
    throw default_exception(std::move(str));
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -152,7 +152,7 @@ class mpz_manager {
 | 
			
		|||
    
 | 
			
		||||
    // make sure that n is a big number and has capacity equal to at least c.
 | 
			
		||||
    void allocate_if_needed(mpz & n, unsigned c) {
 | 
			
		||||
        c = std::max(c, m_init_cell_capacity);
 | 
			
		||||
        if (m_init_cell_capacity > c) c = m_init_cell_capacity;
 | 
			
		||||
        if (n.m_ptr == nullptr || capacity(n) < c) {
 | 
			
		||||
            deallocate(n);
 | 
			
		||||
            n.m_val             = 1;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue