3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 00:55:31 +00:00

add shortcuts for concatenation and equality propagation

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-12-08 16:17:04 +05:30
parent c8d9be0bbf
commit faebbc5384
3 changed files with 32 additions and 190 deletions

View file

@ -886,174 +886,6 @@ namespace qe {
tactic * translate(ast_manager & m) {
return alloc(nlqsat, m, m_mode, m_params);
}
#if 0
/**
Algorithm:
I := true
while there is M, such that M |= ~B & I:
find P, such that M => P => exists y . ~B & I
; forall y B => ~P
C := core of P with respect to A
; A => ~ C => ~ P
I := I & ~C
Alternative Algorithm:
R := false
while there is M, such that M |= A & ~R:
find I, such that M => I => forall y . B
R := R | I
*/
lbool interpolate(expr* a, expr* b, expr_ref& result) {
SASSERT(m_mode == interp_t);
reset();
app_ref enableA(m), enableB(m);
expr_ref A(m), B(m), fml(m);
expr_ref_vector fmls(m), answer(m);
// varsB are private to B.
nlsat::var_vector vars;
uint_set fvars;
private_vars(a, b, vars, fvars);
enableA = m.mk_const(symbol("#A"), m.mk_bool_sort());
enableB = m.mk_not(enableA);
A = m.mk_implies(enableA, a);
B = m.mk_implies(enableB, m.mk_not(b));
fml = m.mk_and(A, B);
hoist(fml);
nlsat::literal _enableB = nlsat::literal(m_a2b.to_var(enableB), false);
nlsat::literal _enableA = ~_enableB;
while (true) {
m_mode = qsat_t;
// enable B
m_assumptions.reset();
m_assumptions.push_back(_enableB);
lbool is_sat = check_sat();
switch (is_sat) {
case l_undef:
return l_undef;
case l_true:
break;
case l_false:
result = mk_and(answer);
return l_true;
}
// disable B, enable A
m_assumptions.reset();
m_assumptions.push_back(_enableA);
// add blocking clause to solver.
nlsat::scoped_literal_vector core(m_solver);
m_mode = elim_t;
mbp(vars, fvars, core);
// minimize core.
nlsat::literal_vector _core(core.size(), core.c_ptr());
_core.push_back(_enableA);
is_sat = m_solver.check(_core); // TBD: only for quantifier-free A. Generalize output of elim_t to be a core.
switch (is_sat) {
case l_undef:
return l_undef;
case l_true:
UNREACHABLE();
case l_false:
core.reset();
core.append(_core.size(), _core.c_ptr());
break;
}
negate_clause(core);
// keep polarity of enableA, such that clause is only
// used when checking satisfiability of B.
for (unsigned i = 0; i < core.size(); ++i) {
if (core[i].var() == _enableA.var()) core.set(i, ~core[i]);
}
add_clause(core); // Invariant is added as assumption for B.
answer.push_back(clause2fml(core)); // TBD: remove answer literal.
}
}
/**
\brief extract variables that are private to a (not used in b).
vars cover the real variables, and fvars cover the Boolean variables.
TBD: We want fvars to be the complement such that returned core contains
Shared boolean variables, but not the ones private to B.
*/
void private_vars(expr* a, expr* b, nlsat::var_vector& vars, uint_set& fvars) {
app_ref_vector varsA(m), varsB(m);
obj_hashtable<expr> varsAS;
pred_abs abs(m);
abs.get_free_vars(a, varsA);
abs.get_free_vars(b, varsB);
insert_set(varsAS, varsA);
for (unsigned i = 0; i < varsB.size(); ++i) {
if (varsAS.contains(varsB[i].get())) {
varsB[i] = varsB.back();
varsB.pop_back();
--i;
}
}
for (unsigned j = 0; j < varsB.size(); ++j) {
app* v = varsB[j].get();
if (m_a2b.is_var(v)) {
fvars.insert(m_a2b.to_var(v));
}
else if (m_t2x.is_var(v)) {
vars.push_back(m_t2x.to_var(v));
}
}
}
lbool maximize(app* _x, expr* _fml, scoped_anum& result, bool& unbounded) {
expr_ref fml(_fml, m);
reset();
hoist(fml);
nlsat::literal_vector lits;
lbool is_sat = l_true;
nlsat::var x = m_t2x.to_var(_x);
m_mode = qsat_t;
while (is_sat == l_true) {
is_sat = check_sat();
if (is_sat == l_true) {
// m_asms is minimized set of literals that satisfy formula.
nlsat::explain& ex = m_solver.get_explain();
polynomial::manager& pm = m_solver.pm();
anum_manager& am = m_solver.am();
ex.maximize(x, m_asms.size(), m_asms.c_ptr(), result, unbounded);
if (unbounded) {
break;
}
// TBD: assert the new bound on x using the result.
bool is_even = false;
polynomial::polynomial_ref pr(pm);
pr = pm.mk_polynomial(x);
rational r;
am.get_upper(result, r);
// result is algebraic numeral, but polynomials are not defined over extension field.
polynomial::polynomial* p = pr;
nlsat::bool_var b = m_solver.mk_ineq_atom(nlsat::atom::GT, 1, &p, &is_even);
nlsat::literal bound(b, false);
m_solver.mk_clause(1, &bound);
}
}
return is_sat;
}
#endif
};
};